Skip to main content

Collision-Induced Dissociation I: Quantal Treatment

  • Chapter

Abstract

In this chapter we are concerned with the elementary bimolecular-collision process A + BC → A + B + C (1) i.e., collision-induced dissociation (CID), which plays a basic role in the kinetics of high-temperature gases. It is of special importance in connection with unimolecular decay, relaxation in shock waves and chemical lasers, and three-body recombination, which is the reverse of CID. In recent years molecular beam data(1–6) on chemical systems exhibiting CID have become available. Consequently, the calculation of cross sections for CID has assumed increasing importance. Even so, the state of the art of computing CID cross sections for systems of chemical interest remains relatively undeveloped compared to that of treating inelastic (Chapters 4–13) and/or reactive (Chapters 14–19) scattering. A number of calculations of CID cross sections have, in fact, appeared. These have been based on a variety of methods: statistical (phase-space),(7,8) optical-model,(9) classical-trajectory (quasi-classical),(10–13) semiclassical,(14—19) and quantal.(20–29) As the statistical, optical-model, and semiclassical methods are treated extensively elsewhere in this volume (see Chapters 12, 16, and 19), we shall focus here on quantal techniques. The following chapter deals with quasiclassical treatments of CID.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.A. Chupka, J. Berkowitz, and M.E. Russell, A study of some reactions of H2+ in selected vibrational states, in Abstracts of the VI International Conference on the Physics of Electronic and Atomic Collisions, I. Amdur, editor, MIT Press, Cambridge, Mass. (1969), pp. 71–72.

    Google Scholar 

  2. F.P. Tully, Y.T. Lee, and R.S. Berry, Crossed molecular beam study of collision-induced dissociation of alkali halides, Chem. Phys. Lett. 9, 80–84 (1971).

    Article  CAS  Google Scholar 

  3. E.K. Parks, N.J. Hansen, and S. Wexler, Collision-induced ion pair formation of thallium halides: Absolute cross sections, J. Chem. Phys. 58, 5489–5501 (1973).

    Article  CAS  Google Scholar 

  4. E.K. Parks, A. Wagner, and S. Wexler, Collision-induced ion pair formation of thallium halides: Threshold behavior, J. Chem. Phys. 58, 5502–5512 (1973).

    Article  CAS  Google Scholar 

  5. J. Schöttler and J.P. Toennies, Dissociation of hydrogen molecules in collision with light alkali ions. I. Na+-D2, Chem. Phys. 2, 137–157 (1973).

    Article  Google Scholar 

  6. J. Schöttler and J.P. Toennies, Dissociation of hydrogen molecules in collisions with light alkali ions. II. +-H2, Chem. Phys. 4, 24–35 (1974).

    Article  Google Scholar 

  7. T.F. Moran and D.C. Fullerton, Statistical phase-space model of the collision-induced dissociation of excited O +2 and NO+ ions, J. Chem. Phys. 54, 5231–5236 (1971).

    Article  CAS  Google Scholar 

  8. C. Rebick and R.D. Levine, Collision-induced dissociation: A statistical theory, J. Chem. Phys. 58, 3942–3952 (1973).

    Article  CAS  Google Scholar 

  9. R.D. Levine and R.B. Bernstein, Collision-induced dissociation: A simplistic optical-model analysis, Chem. Phys. Lett. 11, 552–556 (1971).

    Article  CAS  Google Scholar 

  10. S.W. Benson and G.C. Berend, Vibrational energy exchange of highly excited anharmonic oscillators, J. Chem. Phys. 40, 1289–1298 (1964).

    Article  CAS  Google Scholar 

  11. H. Fan, Calculation of collisional dissociation of alkali halide molecules by one-dimensional models, J. Chem. Phys. 55, 4628–4632 (1971).

    Article  CAS  Google Scholar 

  12. W.H. Wong and G. Burns, The dynamics of dissociation of diatomic molecules and mass effect, J. Chem. Phys. 62, 1712–1713 (1975).

    Article  CAS  Google Scholar 

  13. R.E. Howard, R.E. Roberts, and M.J. DelleDonne, Three-body effects in the exchange and dissociation encounters for Ar + Ar2, J. Chem. Phys. 65, 3067–3074 (1976).

    Article  CAS  Google Scholar 

  14. L.L. Johnson and R.E. Roberts, A semiclassical treatment of collision induced dissociation, Chem. Phys. Lett. 7, 480–482 (1970).

    Article  CAS  Google Scholar 

  15. R.D. Levine, On the theory of collision-induced dissociation, Chem. Phys. Lett. 11, 109–112 (1971).

    Article  CAS  Google Scholar 

  16. W.G. Valence and J. Lin, Bound state to continuum transition probabilities, Physica (Utrecht) 52, 620 (1971).

    Article  Google Scholar 

  17. C.S. Lin, Semi-classical study of molecular dissociation: H2 + He, Chem. Phys. 3, 125–130 (1974).

    Article  CAS  Google Scholar 

  18. K.R. Dastidar (Mullick) and A.K. Barua, Dissociation of H2+ ion by collision-induced vibrational excitation, J. Chem. Phys. 62, 4373–4379 (1975).

    Article  CAS  Google Scholar 

  19. I. Rusinek and R.E. Roberts, Semiclassical calculation for collision induced dissociation, J. Chem. Phys. 65, 872–880 (1976).

    Article  CAS  Google Scholar 

  20. E. Bauer, Dissociation of hydrogen molecules by vibrational excitation and three-body recombination coefficient, Phys. Rev. 84, 315–321 (1951).

    Article  CAS  Google Scholar 

  21. E. Bauer, Dissociation of hydrogen molecules by vibrational excitation and three-body recombination coefficient. II, Phys. Rev. 85, 277–280 (1952).

    Article  CAS  Google Scholar 

  22. J. Lin, Bound state to continuum collisional probabilities. II. Morse oscillators, Physica (Utrecht) 62, 369–378 (1972).

    Article  CAS  Google Scholar 

  23. W.M. Bryce and F. Mandl, A Kohn variational principle for three-body break-up processes, J. Phys. B 5, 912–920 (1972).

    Article  Google Scholar 

  24. C.F. Bottcher, W.M. Bryce, and F. Mandl, Variational solution of a model breakup process, J. Phys. B. 7, 769–781 (1974).

    Article  CAS  Google Scholar 

  25. P. Eckelt and H.-J. Korsch, Collision-induced dissociation: Differential energy transfer probabilities, Chem. Phys. Lett. 18, 584–588 (1973).

    Article  CAS  Google Scholar 

  26. L.W. Ford, D.J. Diestler, and A.F. Wagner, A model study of collision-induced dissociation of a diatomic molecule by an atom, J. Chem. Phys. 63, 2019–2034 (1975).

    Article  CAS  Google Scholar 

  27. E.-W. Knapp, D.J. Diestler, and Y.-W. Lin, Close-coupling calculation of quantum-mechanical probabilities for collision-induced dissociation, Chem. Phys. Lett. 49, 379–383 (1977).

    Article  CAS  Google Scholar 

  28. G. Wolken, Jr., Quantum mechanical studies of collision induced dissociation: Discretization theory, J. Chem. Phys. 63, 528–533 (1975).

    Article  CAS  Google Scholar 

  29. E.-W. Knapp and D.J. Diestler, Quantum-mechanical treatment of collision-induced dissociation, J. Chem. Phys. 67, 4969 (1977).

    Article  CAS  Google Scholar 

  30. J.R. Taylor, Scattering Theory, John Wiley and Sons, New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Diestler, D.J. (1979). Collision-Induced Dissociation I: Quantal Treatment. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics