Skip to main content

Direct-Mode Chemical Reactions II: Classical Theories

  • Chapter
Atom - Molecule Collision Theory

Abstract

Other chapters of this book discuss accurate and approximate quantum-mechanical treatments of chemical reactions. Most of our understanding of chemical reactions, however, is based on classical models—both trajectory calculations (exact classical mechanics) and simpler classical models (approximate trajectories). Computational aspects of classical trajectory methods as applied to atom-molecule reactive collisions are discussed in Chapter 16 of this book. The present chapter emphasizes physical aspects of exact and approximate classical dynamical calculations for direct-mode chemical reactions. In particular it discusses the dependence of calculated reaction attributes on features of the potential energy hypersurfaces and the reliability of calculated reaction attributes. The reliability of the calculated results depends not only on the accuracy of the potential surface employed but also on the dynamical errors in the calculations. When numerically integrated exact classical trajectories are employed the dynamical approximation is simply the classical propagation of the motion. When simplified models are employed there are additional dynamical approximations whose validity must be examined carefully for the reaction or class of reactions under consideration. Statistical theories are sometimes applied to direct-mode reactions but are more generally applicable to complex-mode reactions, and are discussed in that context in Chapter 19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Truhlar, Quasiclassical predictions of final vibrational state distributions in reactive and nonreactive collisions, Int. J. Quantum Chem. Symp. 10, 239–250 (1976).

    CAS  Google Scholar 

  2. W.H. Miller, Semiclassical methods in reactive and non-reactive collisions, in The Physics of Electronic and Atomic Collisions, VIII ICPEAC, Invited Lectures and Progress Reports, B.C. Cobić and M.V. Kurepa, editors, Institute of Physics, Beograd (1973), pp. 503–528.

    Google Scholar 

  3. W.H. Miller, Classical S-matrix in molecular collisions, Adv. Chem. Phys. 30, 77–136 (1975).

    CAS  Google Scholar 

  4. E.J. Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys. 62, 1544–1555 (1975).

    CAS  Google Scholar 

  5. C.J. Ballhausen and A.E. Hansen, Electronic spectra, Ann. Rev. Phys. Chem. 23, 15–38 (1972).

    CAS  Google Scholar 

  6. T.F. O’Malley, Diabatic states of molecules—quasistationary electronic states, Adv. At. Mol. Phys. 7, 223–249 (1971).

    Google Scholar 

  7. R.W. Numrich and D.G. Truhlar, Mixing of ionic and covalent configurations for NaH, KH, and MgH+, J. Phys. Chem. 79, 2745–2766 (1975).

    CAS  Google Scholar 

  8. G.C. Schatz and J. Ross, Franck-Condon factors in studies of dynamics of chemical reactions. I. General theory, application to collinear atom-diatom reactions, J. Chem. Phys. 66, 1021–1036 (1977).

    CAS  Google Scholar 

  9. Z.H. Top and M. Baer, Incorporation of electronically nonadiabatic effects into bimolecular reactive systems. I. Theory, J. Chem. Phys. 66, 1363–1371 (1977).

    CAS  Google Scholar 

  10. J.C. Tully, Diatomics-in-molecules potential surfaces. II. Nonadiabatic and spin-orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).

    CAS  Google Scholar 

  11. J.C. Tully, Nonadiabatic processes in molecular collisions, in Modern Theoretical Chemistry, Vol. 2, Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 217–267.

    Google Scholar 

  12. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, Princeton, New Jersey (1950), pp. 530–532.

    Google Scholar 

  13. D.G. Truhlar, C.A. Mead, and A. Brandt, Time-reversal invariance, representations for scattering wavefunctions, symmetry of the scattering matrix, and differential cross-sections, Adv. Chem. Phys. 33, 295–344 (1975).

    Google Scholar 

  14. D.G. Truhlar, Multiple potential energy surfaces for reactions of species in degenerate electron states, J. Chem. Phys. 56, 3189–3190 (1972)

    CAS  Google Scholar 

  15. D.G. Truhlar, Erratum: 61, 440 (1974).

    Google Scholar 

  16. J.T. Muckerman and M.D. Newton, Comment on “Multiple potential energy surfaces for reactions of species in degenerate electronic states” by D.G. Truhlar, J. Chem. Phys. 56, 3191–3192 (1972).

    CAS  Google Scholar 

  17. J.C. Tully, Collisions of F(2P1/2) with H2, J. Chem. Phys. 60, 3042–3050 (1974).

    CAS  Google Scholar 

  18. A. Komornicki, T.F. George, and K. Morokuma, How much do multiple electronic surface influence chemical reactivity? F + H2: A case study, J. Chem. Phys. 65, 4312–4314 (1976).

    CAS  Google Scholar 

  19. J.P. Sung and D.W. Setser, Electronic and vibrational energy disposal in the reactions of fluorine atoms with hydrogen bromide and hydrogen iodide, Chem. Phys. Lett. 48, 413–419 (1977).

    CAS  Google Scholar 

  20. R.J. Donavon and D. Husain, Recent advances in the chemistry of electronically excited atoms, Chem. Rev. 70, 489–516 (1970).

    Google Scholar 

  21. D. Husain, The reactivity of electronically excited species, Ber. Bunsenges. Phys. Chem. 81, 168–177 (1977).

    CAS  Google Scholar 

  22. J.J. Kaufman, Potential-energy surface considerations for excited state reactions, Adv. Chem. Phys. 28, 113–169 (1975).

    CAS  Google Scholar 

  23. B.H. Mahan, Ion-molecule collision phenomena, in International Review of Science: Physical Chemistry, Series Two, Vol. 9, Chemical Kinetics, D.R. Herschbach, editor, Butterworths, London (1976), pp. 25–65.

    Google Scholar 

  24. P.A. Whitlock, Theoretical investigations of the energetics and dynamics of the reactions O(3P, 1D) + H2 and C(1D) + H2, Ph.D. Thesis, Research Institute for Engineering Sciences, Wayne State University, Detroit, Michigan (1977).

    Google Scholar 

  25. D.D. Parrish and D.R. Herschbach, Molecular beam chemistry: Persistent collision complexes in reactions of oxygen atoms with bromine molecules, J. Am. Chem. Soc. 95, 6133–6134 (1973).

    CAS  Google Scholar 

  26. D.A. Dixon, D.D. Parrish, and D.R. Herschbach, Possibility of singlet-triplet transitions in oxygen exchange reactions, Faraday Discuss. Chem. Soc. 55, 385–387 (1973).

    Google Scholar 

  27. D.St.A.G. Radlein, J.C. Whitehead, and R. Grice, Reactive scattering of oxygen atoms: O + I2, ICI, Br2, Mol. Phys. 29, 1813–1828 (1975).

    CAS  Google Scholar 

  28. R.B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York (1970).

    Google Scholar 

  29. B.H. Mahan, Molecular orbital correlations and ion-molecule reaction dynamics, J. Chem. Phys. 55, 1436–1446 (1971).

    CAS  Google Scholar 

  30. B.H. Mahan, Electronic structure and chemical dynamics, Acc. Chem. Res. 8, 55–61 (1975).

    CAS  Google Scholar 

  31. D.H. Liskow, C.F. Bender, and H.F. Schaeffer III. Potential energy surfaces related to the ion-molecule reaction C+ + H2, J. Chem. Phys. 61, 2507–2513 (1974).

    CAS  Google Scholar 

  32. C.R. Iden, R. Liardon, and W.S. Koski, Complex formation in the reaction C+ (D2, D) CD+, J. Chem. Phys. 54, 2757–2758 (1971).

    CAS  Google Scholar 

  33. B.H. Mahan and T.M. Sloane, Dynamics of the C+ -H2 reaction J. Chem. Phys. 59, 5661–5676 (1973).

    CAS  Google Scholar 

  34. C. Maltz, Barrier to complex formation in the hydrogen atom-chlorine molecule reaction, Chem. Phys. Lett. 9, 251–253 (1971).

    CAS  Google Scholar 

  35. W.A. Goddard III, Selection rules for chemical reactions using the orbital phase continuity principle, J. Am. Chem. Soc. 94, 793–807 (1972).

    CAS  Google Scholar 

  36. G.S. Hammond, A correlation of reaction rates, J. Am. Chem. Soc. 77, 334–338 (1955).

    CAS  Google Scholar 

  37. C.A. Parr and D.G. Truhlar, Potential energy surfaces for atom transfer reactions involving hydrogens and halogens, J. Phys. Chem. 75, 1844–1860 (1971).

    Google Scholar 

  38. S.W. Benson, Thermochemical Kinetics, 2nd edition, Wiley Interscience, New York (1976).

    Google Scholar 

  39. A.I. Popov, Interhalogen compounds and polyhalide anions, in MTP International Review of Science: Inorganic Chemistry, Series One, Vol. 3, Main Group Elements, Group VIII, and Noble Gases, V. Gutmann, editor, Butterworths, London (1971), pp. 53–84.

    Google Scholar 

  40. Y.T. Lee, P.R. LeBreton, J.D. McDonald, and D.R. Herschbach, Molecular beam kinetics: Evidence for preferred geometry in interhalogen exchange reactions, J. Chem. Phys. 51, 455–456 (1969).

    CAS  Google Scholar 

  41. J.D. McDonald, P.R. LeBreton, Y.T. Lee, and D.R. Herschbach, Molecular beam kinetics: Reactions of deuterium atoms with halogen molecules, J. Chem. Phys. 56, 769–788 (1972).

    CAS  Google Scholar 

  42. C.F. Carter, M.R. Levy, and R. Grice, Reactive scattering of methyl radicals: CH3 + ICI, IBr, I2, Discuss. Faraday Soc. 53, 357–368 (1973).

    Google Scholar 

  43. D.R. Herschbach, Reactive scattering in molecular beams, Adv. Chem. Phys. 10, 319–393 (1966).

    Google Scholar 

  44. A.D. Walsh, The electronic orbitals, shapes, and spectra of polyatomic molecules, J. Chem. Soc. 1953, 2260–2288 (1953).

    Google Scholar 

  45. R.J. Buenker and S.D. Peyerimhoff, Molecular geometry and the Mulliken-Walsh molecular orbital model. An ab initio study, Chem. Rev. 1974, 127–188 (1974).

    Google Scholar 

  46. A.D. Walsh, Some notes on the electronic spectra of small polyatomic molecules, in International Review of Science: Physical Chemistry, Series Two, Vol. 3, Spectroscopy, D.A. Ramsay, editor, Butterworths, London (1976), pp. 301–316.

    Google Scholar 

  47. G.G. Balint-Kurti, Potential energy surfaces for chemical reaction, Adv. Chem. Phys. 30, 137–184 (1975).

    CAS  Google Scholar 

  48. W.A. Goddard III and R.C. Ladner, A generalized orbital description of the reactions of small molecules, J. Am. Chem. Soc. 93, 6750–6756 (1971).

    CAS  Google Scholar 

  49. T.A. Halgren and W.N. Lipscomb, Self-consistent-field wavefunctions for complex molecules: The approximation of partial retention of diatomic differential overlap, J. Chem. Phys. 58, 1569–1591 (1973).

    CAS  Google Scholar 

  50. T.A. Halgren and D.A. Kleier, program to be submitted to Quantum Chemistry Pro-gram Exchange, Indiana University, Bloomington, Indiana.

    Google Scholar 

  51. P. Siegbahn and B. Liu, An accurate three-dimensional potential energy surface for H3, J. Chem. Phys. 68, 2457–2465 (1978).

    CAS  Google Scholar 

  52. D.A. Dixon, unpublished.

    Google Scholar 

  53. T. Carrington and J.C. Polanyi, Chemiluminescent reactions, in MTP International Review of Science: Physical Chemistry, Series One, Vol. 9, Chemical Kinetics, J.C. Polanyi, editor, Butterworths, London (1972), pp. 135–171.

    Google Scholar 

  54. L. Salem, C. Leforestier, G. Segal and R. Wetmore, On avoided surface crossings, J. Am. Chem. Soc. 97, 479–487 (1975).

    CAS  Google Scholar 

  55. C.A. Mead, The “non-crossing” rule for electronic potential energy surfaces: The role of time-reversal invariance, J. Chem. Phys. (in press), and references therein.

    Google Scholar 

  56. R. Wolfgang, Energy and chemical reactions. II. Intermediate complexes vs. direct mechanisms, Acc. Chem. Res. 3, 48–54 (1970).

    CAS  Google Scholar 

  57. D.J. McClure, C.H. Douglass, and W.R. Gentry, The dynamics of the reaction D2+ + O(3P) → OD+ + D, and the influence of the atomic quadrupole moment on the cross section at very low kinetic energies, J. Chem. Phys. 67, 2362–2370 (1977).

    CAS  Google Scholar 

  58. D.M. Manos and J.M. Parson, Crossed molecular beam study of chemiluminescent reactions of group IIIB atoms with O2, J. Chem. Phys. 63, 3575–3585 (1975).

    CAS  Google Scholar 

  59. K. Liu and J.M. Parson, Laser fluorescence detection of nascent product state distributions of Sc and Y with O2, NO, and SO2, J. Chem. Phys. 67, 1814–1828 (1977).

    CAS  Google Scholar 

  60. W.S. Struve, J.R. Krenos, D.L. McFadden, and D.R. Herschbach, Molecular beam kinetics: Angular distributions and chemiluminescence in reactions of alkali dimers with halogen atoms and molecules, J. Chem. Phys. 62, 404–419 (1975).

    CAS  Google Scholar 

  61. J.R. Krenos and J.C. Tully, Statistical partitioning of electronic energy: Reactions of alkali dimers with halogen atoms, J. Chem. Phys. 62, 420–424 (1975).

    CAS  Google Scholar 

  62. M.B. Faist and R.D. Levine, On the product electronic state distribution in reactions of alkali dimers with halogen atoms, Chem. Phys. Lett. 47, 5–10 (1977).

    CAS  Google Scholar 

  63. D.G. Truhlar and A. Kuppermann, Application of the statistical phase space theory to reactions of atomic hydrogen with deuterium halides, J. Phys. Chem. 73, 1722–1734(1969).

    Google Scholar 

  64. D.C. Fullerton and T.F. Moran, Application of the statistical phase-space theory to the reactions of rare-gas ions with nitrogen molecules, J. Chem. Phys. 54, 5221–5230 (1971).

    CAS  Google Scholar 

  65. G.H. Saban and T.F. Moran, Vibrational distribution of N2+ B2Σ products from Ne+ -N2 collisions, J. Chem. Phys. 47, 895–898 (1972).

    Google Scholar 

  66. D.G. Truhlar, Intermediate-coupling probability matrix approach to chemical reactions: Dependence of the reaction cross section for K + HCI → KCI + H on initial translational and vibrational energy, J. Am. Chem. Soc. 97, 6310–6317 (1975).

    CAS  Google Scholar 

  67. R.D. Levine, The formation of electronically excited products in chemical reactions: An information theoretic analysis, in Summer Colloquium on Electronic Transition Lasers, 2nd, Woods Hole, Massachusetts, 1975, J.I. Steinfeld, editor, M.I.T. Press, Cambridge, Massachusetts (1976), pp. 251–268.

    Google Scholar 

  68. J.C. Tully and R.K. Preston, Trajectory surface hopping approach to non-adiabatic molecular collisions: The reaction of H+ with D2, J. Chem. Phys. 55, 562–572 (1971).

    CAS  Google Scholar 

  69. J.C. Tully, Trajectories in ion-molecule reactions, Ber. Bunsenges. Phys. Chem. 77, 557–565 (1973).

    CAS  Google Scholar 

  70. P. Pechukas, Time-dependent semiclassical scattering theory. II. Atomic collisions, Phys. Rev. 181, 174–185 (1969).

    CAS  Google Scholar 

  71. J.R. Stine and J.T. Muckerman, On the multidimensional surface intersection problem and trajectory “surface hopping,” J. Chem. Phys. 65, 3975–3984 (1976).

    CAS  Google Scholar 

  72. J.R. Krenos, R.K. Preston, R. Wolfgang, and J.C. Tully, Molecular beam and trajectory studies of reactions of H+ with H2, J. Chem. Phys. 60, 1634–1659 (1974).

    CAS  Google Scholar 

  73. S. Chapman and R.K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar+ + H2 system, J. Chem. Phys. 60, 650–659 (1974).

    CAS  Google Scholar 

  74. A. Komornicki, T.F. George, and K. Morokuma, Decoupling scheme for a semiclassical treatment of electronic transitions in atom-diatom collisions: Real-valued trajectories and local analytic continuation, J. Chem. Phys. 65, 48–54 (1976).

    CAS  Google Scholar 

  75. J.R. Laing, J.-M. Yuan, I.H. Zimmerman, P.L. DeVries, and T.F. George, Semiclassical theory of electronic transitions in molecular collisions: Combined effects of tunneling and energetically inaccessible electronic states, J. Chem. Phys. 66, 2801–2805 (1977).

    CAS  Google Scholar 

  76. J.M. Bowman, S.C. Leasure, and A. Kuppermann, Large quantum effects in a model electronically nonadiabatic reaction: Ba + N2O BaO + N2, Chem. Phys. Lett. 43, 374–376 (1976).

    CAS  Google Scholar 

  77. J.L. Magee, The mechanism of reactions involving excited electronic states: The gaseous reactions of the alkali metals and halogens, J. Chem. Phys. 8, 687–698 (1940).

    CAS  Google Scholar 

  78. D. R. Herschbach, Molecular beam studies of internal excitation of reaction products, Appl Opt. Suppl. 2, 128–144 (1965).

    CAS  Google Scholar 

  79. J.L. Gole, Development of visible chemical lasers from reactions yielding visible chemiluminescence, in Summer Colloquium on Electronic Transition Lasers II, Third, Snow- mass, Colorado, 1976, L.E. Wilson, S.N. Suchard, and J.I. Steinfeld, editors, M.I.T. Press, Cambridge, Massachusetts (1977), pp. 136–166.

    Google Scholar 

  80. J.L. Gole, On the formation of the group IIA dihalides—correlation of reaction dynamics and molecular electronic structure, Chem. Phys., submitted for publication.

    Google Scholar 

  81. R. Grice, Reactive scattering, Adv. Chem. Phys. 30, 247–312 (1975).

    CAS  Google Scholar 

  82. G. Gioumousis and D.P. Stevenson, Reactions of gaseous molecule ions with gaseous molecules. V. Theory, J. Chem. Phys. 29, 294–299 (1958).

    CAS  Google Scholar 

  83. E. F. Greene and A. Kuppermann, Chemical reaction cross sections and rate constants, J. Chem. Ed. 45, 361–369 (1968).

    CAS  Google Scholar 

  84. E.W. McDaniel, V. Cermak, A. Dalgarno, E.E. Ferguson, and L. Friedman, Ion-Molecule Reactions, Wiley-Interscience, New York (1970), pp. 198–213.

    Google Scholar 

  85. R.D. Levine and R.B. Bernstein, Post-threshold energy dependence of the cross section for endoergic processes: Vibrational excitation and reactive scattering, J. Chem. Phys. 56, 2281–2287 (1972).

    CAS  Google Scholar 

  86. M. Henchman, Rate constants and cross sections, in Ion-Molecule Reactions, Vol. 1, J.L. Franklin, editor, Plenum Press, New York (1972), pp. 101–259.

    Google Scholar 

  87. R.M. Harris and D.R. Herschbach, Faraday Discuss. Chem. Soc. 55, 121–123 (1973).

    Google Scholar 

  88. T. Su and M.T. Bowers, Theory of ion-polar molecule collisions: Comparison with experimental charge transfer reactions of rare gas ions to geometric isomers of difluorobenzene and dichloroethylene, J. Chem. Phys. 58, 3027–3037 (1973).

    Google Scholar 

  89. M.T. Bowers and T. Su, Theory of ion polar molecule collisions, in Interaction Between Ions and Molecules, P. Ausloos, editor, Plenum Press, New York (1975), pp. 163–183.

    Google Scholar 

  90. W.R. Gentry and C.F. Giese, Long-range interaction of ions with atoms having partially filled p subshells, J. Chem. Phys. 67, 2355–2361 (1977).

    CAS  Google Scholar 

  91. D.G. Truhlar, Statistical phase-space theory of the reaction C+ + D2 including threshold behavior, J. Chem. Phys. 51, 4617–4623 (1969).

    CAS  Google Scholar 

  92. D.G. Truhlar, Enhancement of the reaction cross section of He + H2+ → HeH+ + H by vibrational excitation of H2+ according to the statistical phase-space theory, J. Chem. Phys. 56, 1481–1486 (1972)

    CAS  Google Scholar 

  93. D.G. Truhlar, Erratum: A.F. Wagner and D.G. Truhlar, ibid. 57, 4063–4064 (1972).

    Google Scholar 

  94. A. Henglein, Stripping effects in ion-molecule reactions, in Advances in Chemistry Series, Vol. 58, P.J. Ausloos, editor, American Chemical Society, Washington, D.C. (1966), pp. 63–79.

    Google Scholar 

  95. R.E. Minturn, S. Datz, and R.L. Becker, Alkali-atom-halogen-molecule reactions in molecular beams: The spectator stripping model, J. Chem. Phys. 44, 1149–1159 (1966).

    CAS  Google Scholar 

  96. P.B. Armentrout, R.V. Hodges, and J.L. Beauchamp, Endothermic reaction of uranium ions with N2, D2 and CD4, J. Chem. Phys. 66, 4683–4688 (1977).

    CAS  Google Scholar 

  97. J.T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 18F with HD, J. Chem. Phys. 57, 3388–3396 (1972).

    CAS  Google Scholar 

  98. D.R. Bates, C.J. Cook, and F.J. Smith, Classical theory of ion-molecule rearrangement collisions at high impact energies, Proc. Phys. Soc. London 83, 49–57 (1964).

    CAS  Google Scholar 

  99. J.C. Light and J. Horrocks, Molecular rearrangement collisions at high impact energies, Proc. Phys. Soc. London 84, 527–530 (1964).

    CAS  Google Scholar 

  100. R.J. Suplinskas, Kinematic model for atom-diatom reactions, J. Chem. Phys. 49, 5046–5053 (1968).

    CAS  Google Scholar 

  101. T.F. George and R.J. Suplinskas, Kinematic model for reaction. II. Ion-molecule reactions involving H2 and D2, J. Chem. Phys. 51, 3666–3670 (1969).

    CAS  Google Scholar 

  102. T.F. George and R.J. Suplinskas, Kinematic model for reaction. III. Detailed dynamics of the reaction of Ar+ with D2, J. Chem. Phys. 54, 1037–1045 (1971).

    CAS  Google Scholar 

  103. T.F. George and R.J. Suplinskas, Kinematic model for reaction. IV. Orientation and isotope effect in the Ar+ + HD reaction, J. Chem. Phys. 56, 1046–1049 (1971).

    Google Scholar 

  104. K.T. Gillen, B.H. Mahan, and J.S. Winn, Dynamics of the O+ + H2 reaction. II. Reactive and nonreactive scattering of O+ (4S3/2) at relative energies above 13 eV, J. Chem. Phys. 59, 6380–6396 (1973).

    CAS  Google Scholar 

  105. B.H. Mahan, An analysis of direct ion-molecule reactions, in Interaction Between Ions and Molecules, P. Ausloos, editor, Plenum Press, New York (1975), pp. 75–93.

    Google Scholar 

  106. B.H. Mahan, W.E.W. Ruska, and J.S. Winn, Sequential model of direct reactions, J. Chem. Phys. 65, 3888–3896 (1976).

    CAS  Google Scholar 

  107. P.J. Kuntz, E.M. Nemeth and J.C. Polanyi, Distribution of reaction products. IV. Reactions forming an ionic bond, M + XC(2D), J. Chem. Phys. 50, 4607–4622 (1969).

    CAS  Google Scholar 

  108. M.T. Marron, Simple collision theory of reactive hard spheres, J. Chem. Phys. 52, 4060–4061 (1970).

    CAS  Google Scholar 

  109. R. Grice and D.R. Hardin, Model for rebound reactions: M + RI, Mol. Phys. 21, 805–816 (1971).

    CAS  Google Scholar 

  110. A. Gonzalez Ureña and F.J. Aolz, Simple cross-section model for elementary reactions, Chem. Phys. Lett. 51, 281–286 (1977).

    Google Scholar 

  111. J.L. Kinsey, G.H. Kwei, and D.R. Herschbach, Molecular beam kinetics: Optical model for reactive scattering of alkali atoms and alkyl iodides, J. Chem. Phys. 64, 1914–1924(1976).

    CAS  Google Scholar 

  112. J. Lin and J.C. Light, Phase-space theory of chemical kinetics. III. Reactions with activation energy, J. Chem. Phys. 45, 2545–2559 (1966).

    CAS  Google Scholar 

  113. J.C. Light, Statistical theory of bimolecular exchange reactions, Discuss. Faraday Soc. 44, 14–29, 82 (1968).

    Google Scholar 

  114. R.D. Levine, Discuss. Faraday Soc. 44, 81–82 (1968).

    Google Scholar 

  115. A. Ben-Shaul, R.D. Levine, and R.B. Bernstein, Prior-expectation distribution functions for energy disposal and energy consumption in reactive molecular collisions, J. Chem. Phys. 61, 4937–4938 (1974).

    CAS  Google Scholar 

  116. M.D. Pattengill and J.C. Polanyi, A simple model of chemical reaction: FOTO (forced oscillation of a tightening oscillator), Chem. Phys. 3, 1–18 (1974).

    CAS  Google Scholar 

  117. H.S. Johnston, Gas Phase Reaction Rate Theory, Ronald Press, New York (1966).

    Google Scholar 

  118. D.D. Parrish and R.R. Herm, Harmonic forces linear model for reactions of Cs atoms with alkyl iodides, J. Chem. Phys. 53, 2431–2435 (1970).

    CAS  Google Scholar 

  119. P.J. Kuntz, M.H. Mok, and J.C. Polanyi, Distribution of reaction products. V. Reactions forming an ionic bond, M + XC(3D), J. Chem. Phys. 50, 4623–4652 (1969).

    CAS  Google Scholar 

  120. P.J. Kuntz, Ion-molecule reaction dynamics: A comparison of two direct interaction models, Chem. Phys. Lett. 4, 129–131 (1969).

    CAS  Google Scholar 

  121. P.J. Kuntz, Analytical properties of a direct interaction model for gas-phase chemical reaction A + BC → AB + C, Trans. Faraday Soc. 66, 2980–2996 (1970).

    CAS  Google Scholar 

  122. P.J. Kuntz, The K + ICH3 → KI + CH3 reaction: Interpretation of the product angular and energy distributions in terms of a direct interaction model, MoI. Phys. 23, 1035–1050 (1972).

    CAS  Google Scholar 

  123. M.T. Marron, Derivation of the DIPR model for reactive scattering, J. Chem. Phys. 58, 153–157 (1973).

    CAS  Google Scholar 

  124. R. Harris, Optical models in molecular scattering, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1970).

    Google Scholar 

  125. N.D. Weinstein, Angular momentum in chemical reactions, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1972).

    Google Scholar 

  126. D.S.Y. Hsu, Product rotational polarization in reactive scattering, Ph.D. Thesis, Harvard University, Cambridge, Massachusetts (1974).

    Google Scholar 

  127. D.R. Herschbach, Reactive scattering, Faraday Discuss. Chem. Soc. 55, 233–251 (1973).

    CAS  Google Scholar 

  128. R.A. LaBudde, P.J. Kuntz, R.B. Bernstein, and R.D. Levine, Classical trajectory study of the K + CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).

    CAS  Google Scholar 

  129. M. Godfrey and M. Karplus, Theoretical investigation of reactive collisions in molecular beams: K + Br2, J. Chem. Phys. 49, 3602–3609 (1968).

    CAS  Google Scholar 

  130. D.S.Y. Hsu, G.M. McClelland, and D.R. Herschbach, Molecular beam kinetics: Angle-angular momentum correlation in reactive scattering, J. Chem. Phys. 61, 4927–4928 (1974).

    CAS  Google Scholar 

  131. M. Karplus, Structural implications of reaction kinetics, in Structural Chemistry and Molecular Biology, A. Rich and N. Davidson, editors, W.H. Freeman, San Francisco (1968), pp. 837–847.

    Google Scholar 

  132. H. Heydtmann, Monte-Carlo-Rechnungen in der chemischen Kinetik, in Chemische Elementarprozesse, H. Hartmann, editor, Springer-Verlag, Heidelberg and New York (1968), pp. 143–156.

    Google Scholar 

  133. D.L. Bunker, Trajectory studies, in Molecular Beams and Reaction Kinetics, C. Schlier, editor, Academic Press, New York (1970), pp. 355–371.

    Google Scholar 

  134. M. Karplus, Special results of trajectory methods, in Molecular Beams and Reaction Kinetics, C. Schlier, editor, Academic Press, New York (1970), pp. 372–391.

    Google Scholar 

  135. D.L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  136. P.J. Kuntz, The computer simulation of reactive collisions, in The Physics of Electronic and Atomic Collisions, VII ICPEAC, Invited Papers and Progress Reports, T.R. Govers and F.J. deHeer, editors, North-Holland Publishing Co., Amsterdam (1972), pp. 427–442.

    Google Scholar 

  137. J.C. Keck, Monte Carlo trajectory calculations of atomic and molecular excitation in thermal systems, Adv. Atom. Molec. Phys. 8, 39–69 (1972).

    CAS  Google Scholar 

  138. J.C. Polanyi, Some concepts in reaction dynamics, Acc. Chem. Res. 5, 161–168 (1972).

    CAS  Google Scholar 

  139. J.C. Polanyi and J.L. Schreiber, The dynamics of bimolecular collisions, in Physical Chemistry—An Advanced Treatise, Vol. VIA, Kinetics of Gas Reactions, H. Eyring, W. Jost, and D. Henderson, editors, Academic Press, New York (1974), pp. 383–487.

    Google Scholar 

  140. R.N. Porter, Molecular trajectory calculations, Ann. Rev. Phys. Chem. 25, 317–356 (1974).

    CAS  Google Scholar 

  141. D.L. Bunker, Simple kinetic models from Arrhenius to the computer, Acc. Chem. Res. 5, 195–201 (1974).

    Google Scholar 

  142. I.W.M. Smith, The production of excited species in simple chemical reactions, Adv. Chem. Phys. 28, 1–112 (1975).

    CAS  Google Scholar 

  143. P.J. Kuntz, The classical trajectory method, in Interaction Between Ions and Molecules, P. Ausloos, editor, Plenum Press, New York (1975), pp. 123–137.

    Google Scholar 

  144. D.G. Truhlar and R.E. Wyatt, History of H3 kinetics, Ann. Rev. Phys. Chem. 27, 1–43 (1976).

    CAS  Google Scholar 

  145. R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Modern Theoretical Chemistry, Vol. 2, Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 1–52.

    Google Scholar 

  146. P J. Kuntz, Features of potential energy surfaces and their effect on collisions, in Modern Theoretical Chemistry, Vol. 2, Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 53–120.

    Google Scholar 

  147. R.L. Wilkins, Classical dynamics of bimolecular reactions, in Handbook of Chemical Lasers, R.W.F. Gross and J.F. Bott, editors, Wiley-Interscience, New York (1976), pp. 551–578.

    Google Scholar 

  148. C.A. Parr, J.C. Polanyi, and W.H. Wong, Distribution of reaction products (theory). VIII. C1 + HI, C1 + DI, J. Chem. Phys. 58, 5–20 (1973).

    CAS  Google Scholar 

  149. R.D. Levine and S.-F. Wu, Resonances in reactive collisions: Computational study of the H + H2 reaction, Chem. Phys. Lett. 11, 557–561 (1971).

    Google Scholar 

  150. J.W. Duff and D.G. Truhlar, Classical S matrix: Numerical applications to classically allowed chemical reactions, Chem. Phys. 4, 1–23 (1974).

    CAS  Google Scholar 

  151. J.R. Stine and R.A. Marcus, Semiclassical S matrix theory for a compound state resonance in the reactive collinear H + H2 collision, Chem. Phys. Lett. 29, 575–579 (1974).

    CAS  Google Scholar 

  152. J.W. Duff and D.G. Truhlar, Classical S matrix: Application of the Bessel uniform approximation to a chemical reaction, Chem. Phys. Lett. 40, 251–256 (1976).

    CAS  Google Scholar 

  153. I.C. Csizmadia, J.C. Polanyi, A.C. Roach, and W.H. Wong, Distribution of reaction products (theory). VII. D+ + H2 → DH + H+ using an ab initio potential energy surface, Can. J. Chem. 47, 4097–4099 (1969).

    CAS  Google Scholar 

  154. T.B. Borne and D.L. Bunker, Trajectory studies of halogen atom-molecule exchange reactions, J. Chem. Phys. 55, 4861–4866 (1971).

    CAS  Google Scholar 

  155. G.H. Kwei, B.P. Boffardi, and S.F. Sun, Classical trajectory studies with long-lived collision complexes. I. Reactions of K with NaC1 molecules, J. Chem. Phys. 58, 1722–1734 (1973).

    CAS  Google Scholar 

  156. A. Gelb and J.S. Alper, Energy transfer in reactive and nonreactive collisions of Na with Na2, Chem. Phys. 14, 365–373 (1976).

    CAS  Google Scholar 

  157. A. Gelb and J.S. Alper, Reaction probability and energy transfer in collisions of sodium atoms with sodium dimers, Chem. Phys. 19, 387–395 (1977).

    CAS  Google Scholar 

  158. J.C. Whitehead, Classical trajectory studies of alkali atom-alkali dimer exchange reactions: Na + Li2 and Li + Na2, Mol. Phys. 31, 549–569 (1976).

    CAS  Google Scholar 

  159. W.B. Miller, S.A. Safron, and D.R. Herschbach, Exchange reactions of alkali atoms with alkali halides: A collision complex mechanism, Discuss. Faraday Soc. 44, 108–122 (1968).

    Google Scholar 

  160. N.C. Blais and D.L. Bunker, Monte Carlo calculations. III. A general study of bimolecular exchange reactions, J. Chem. Phys. 39, 315–323 (1963).

    CAS  Google Scholar 

  161. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: The reaction H + Br2 → HBr + Br, J. Chem. Phys. 61, 4186–4203 (1974)

    CAS  Google Scholar 

  162. N.C. Blais and D.G. Truhlar, Erratum: 65, 3803–3804 (1976).

    CAS  Google Scholar 

  163. J.C. Polanyi and W.H. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51, 1439–1450 (1969).

    CAS  Google Scholar 

  164. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: Dynamics of the reaction F + D2 on a semiempirical valence-bond potential energy surface, J. Chem. Phys. 58, 1090–1108 (1973).

    CAS  Google Scholar 

  165. J.L. Schreiber, Classical trajectory studies of chemical reactions, Ph.D. Thesis, University of Toronto (1973).

    Google Scholar 

  166. D.J. Malcome-Lawes, Dynamics of hydrogen isotopic exchange reactions at high energies, J. Chem. Soc. Faraday Trans. II 71, 1183–1199 (1975).

    Google Scholar 

  167. J.C. Polanyi and J.L. Schreiber, The reaction F + H2 → HF + H: A case study in reaction dynamics, Faraday Discuss. Chem. Soc. 62, 267–290 (1977).

    CAS  Google Scholar 

  168. F. Schneider, U. Havemann, L. Zülicke, V. Pacák, K. Birkenshaw, and Z. Herman, Dynamics of the reaction H2+ (He, H)HeH+: Comparison of beam experiments with quasiclassical trajectory studies, Chem. Phys. Lett. 37, 323–328 (1976).

    CAS  Google Scholar 

  169. M. Karplus, R.N. Porter, and R.D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys. 43, 3259–3287 (1965).

    CAS  Google Scholar 

  170. G. C. Schatz and A. Kuppermann, Quantum mechanical reactive scattering for three-dimensional atom plus diatom systems. II. Accurate cross sections for H + H2, J. Chem. Phys. 65, 4668–4692 (1976).

    CAS  Google Scholar 

  171. J.T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reactions of fluorine atoms with H2, HD, and D2, J. Chem. Phys. 54, 1155–1164 (1971).

    CAS  Google Scholar 

  172. R.L. Jaffe and J.B. Anderson, Classical trajectory analysis of the reaction F + H2 → HF + H, J. Chem. Phys. 54, 2224–2236 (1971)

    CAS  Google Scholar 

  173. R.L. Jaffe and J.B. Anderson, Erratum: 56, 682 (1972).

    Google Scholar 

  174. J.T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56, 2997–3006 (1972).

    CAS  Google Scholar 

  175. A.M.G. Ding, L.J. Kirsch, D.S. Perry, J.C. Polanyi, and J.L. Schreiber, Effect of changing reagent energy on reaction probability and product energy distribution, Faraday Discuss. Chem. Soc. 55, 252–276 (1973).

    CAS  Google Scholar 

  176. N.H. Hijazi and J.C. Polanyi, Magnitude and orientation of rotation in exchange reactions A + BC → AB + C. II, Chem. Phys. 11, 1–16 (1975).

    CAS  Google Scholar 

  177. D.S.Y. Hsu, N.D. Weinstein, and D.R. Herschbach, Rotational polarization of reaction products: Analyses of electric deflection profiles, Mol. Phys. 29, 257–278 (1975).

    CAS  Google Scholar 

  178. D.A. Case and D.R. Herschbach, Statistical theory of angular momentum polarization in chemical reactions, Mol. Phys. 30, 1537–1564 (1975).

    CAS  Google Scholar 

  179. D.A. Case and D.R. Herschbach, Statistical theory of angular distributions and rotational orientation in chemical reactions, J. Chem. Phys. 64, 4212–4222 (1976).

    CAS  Google Scholar 

  180. N.C. Blais and D.G. Truhlar, Monte Carlo trajectories: Alignment of HBr rotational angular momentum as a function of scattering angle for the reaction H + Br2 → HBr + Br, J. Chem. Phys. 67, 1540–1546 (1977).

    CAS  Google Scholar 

  181. C.F. Goodeve, Three dimensional models of the potential energy of triatomic systems, Trans. Faraday Soc. 30, 60–68 (1934).

    CAS  Google Scholar 

  182. M.C. Evans and M. Polanyi, Notes on the luminescence of sodium vapor in highly dilute flames, Trans. Faraday Soc. 35, 178–185 (1939).

    CAS  Google Scholar 

  183. J.C. Polanyi, Energy distribution among reagents and products of atomic reactions, J. Chem. Phys. 31, 1338–1351 (1959).

    CAS  Google Scholar 

  184. P.J. Kuntz, E.M. Nemeth, J.C. Polanyi, S.D. Rosner, and C.E. Young, Energy distribution among products of exothermic reactions. II. Repulsive, mixed, and attractive energy release, J. Chem. Phys. 44, 1168–1184 (1966).

    CAS  Google Scholar 

  185. R.A. Marcus, Analytical mechanics and almost vibrationally-adiabatic chemical reactions, Discuss. Faraday Soc. 44, 7–13 (1968).

    Google Scholar 

  186. R.A. Marcus, On the analytical mechanics of chemical reactions: Classical mechanics of linear collisions, J. Chem. Phys. 45, 4500–4504 (1966).

    CAS  Google Scholar 

  187. R.D. Levine, Radiationless transitions and population inversions: Two examples of internal conversions, Chem. Phys. Lett. 10, 510–515 (1971).

    CAS  Google Scholar 

  188. G.L. Hofacker and R.D. Levine, Diabatic transition-state theory and the concept of temperature, Chem. Phys. Lett. 15, 165–170 (1972).

    CAS  Google Scholar 

  189. G.L. Hofacker and N. Rösch, Semiclassical evaluation of the translational-vibrational coupling from the potential energy surface of an atom-diatom collision, Ber. Bunsenges. Physik. Chem. 77, 661–664 (1973).

    CAS  Google Scholar 

  190. G.L. Hofacker and K.W. Michel, Prediction of vibrational inversion among products of exothermic radical reactions by a classical model, Ber. Bunsenges. Physik. Chem. 78, 174–175 (1974).

    CAS  Google Scholar 

  191. A. Ben-Shaul and G.L. Hofacker, Statistical and dynamical models of population inversion, in Handbook of Chemical Lasers, R.W.F. Gross and J.F. Bott, editors, Wiley- Interscience, New York (1976), pp. 579–617.

    Google Scholar 

  192. M.V. Basilevsky, Perturbation theory for vibrational transitions induced by bimolecular reactions, Mol. Phys. 26, 765–775 (1973).

    Google Scholar 

  193. J.W. Duff and D.G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic reactions and product energy in exothermic reactions, J. Chem. Phys. 62, 2477–2491 (1975).

    CAS  Google Scholar 

  194. F.T. Wall and R.N. Porter, Sensitivity of exchange-reaction probabilities to the potential-energy surface, J. Chem. Phys. 39, 3112–3117 (1963).

    CAS  Google Scholar 

  195. C.C. Rankin and J.C. Light, Quantum solution of collinear reactive systems: H + C12 → HC1 + C1, J. Chem. Phys. 51, 1701–1719 (1969).

    CAS  Google Scholar 

  196. N. Sathyamurthy, J.W. Duff, C.W. Stroud, and L.M. Raff, On the origin of the dynamical differences on the diatomics-in-molecules and splinefitted ab initio surfaces for the He + H2+ reaction, J. Chem. Phys. 67, 3563–3569 (1977).

    CAS  Google Scholar 

  197. T. Valencich and D.L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61, 21–29 (1974).

    CAS  Google Scholar 

  198. D.L. Bunker and E.A. Goring-Simpson, Alkali-methyl iodide reactions, Faraday Discuss. Chem. Soc. 55, 93–99 (1973).

    CAS  Google Scholar 

  199. L.M. Raff, Theoretical investigations of the reactions dynamics of polyatomic systems: Chemistry of the hot atom (T* + CH4) and (T* + CD4) systems, J. Chem. Phys. 60, 2220–2244 (1974).

    CAS  Google Scholar 

  200. J.D. McDonald and R.A. Marcus, Classical trajectory study of internal energy distributions in unimolecular processes, J. Chem. Phys. 65, 2180–2192 (1976).

    CAS  Google Scholar 

  201. R.L. Wilkins, Monte Carlo calculations of reaction rates and energy distribution among reaction products. II. H + HF(v) → H2(v′) + F and HF(v) HF(v′) + H, J. Chem. Phys. 58, 3038–3046 (1973).

    Google Scholar 

  202. D.S. Perry, J.C. Polanyi, and C.W. Wilson, Jr., Location of energy barriers. VI. The dynamics of endothermic reactions A + BC, Chem. Phys. 3, 317–331 (1974).

    CAS  Google Scholar 

  203. D.S. Perry and J.C. Polanyi, Energy distribution among reaction products. IX. F + H2, HD, and D2, Chem. Phys. 12, 419–431 (1976).

    CAS  Google Scholar 

  204. H.W. Cruse, P.J. Dagdigian, and R.N. Zare, Crossed beam reactions of barium with hydrogen halides: Measurement of internal state distribution by laser-induced fluorescence, Faraday Discuss. Chem. Soc. 55, 277–292 (1973).

    Google Scholar 

  205. J.G. Pruett and R.N. Zare, State-to-state reaction rates: Ba + HF(v= 0, 1) → BaF (v = 0–12) + H, J. Chem. Phys. 64, 1774–1783 (1976).

    CAS  Google Scholar 

  206. J.C. Polanyi, Molecular beam scattering, Faraday Discuss. Chem. Soc. 55, 389–409 (1973).

    Google Scholar 

  207. M. Baer, U. Halavee, and A. Persky, The collinear CI + XY system (X, Y = H, D): A comparison between quantum mechanical, classical, and transition state theory results, J. Chem. Phys. 61, 5122–5131 (1974).

    CAS  Google Scholar 

  208. P. A. Whitlock and J.T. Muckerman, Comparison of quasiclassical trajectory and classical S matrix treatments of collinear collisions of F and D2, J. Chem. Phys. 61, 4618–4629 (1974).

    CAS  Google Scholar 

  209. G.C. Schatz, J.M. Bowman, and A. Kuppermann, Exact quantum, quasiclassical, and semiclassical reaction probabilities for the collinear F + H2 → FH + H and F + D2 → FD + D reactions, J. Chem. Phys. 63, 674–684, 685–696 (1975).

    CAS  Google Scholar 

  210. D.G. Truhlar, J.A. Merrick, and J.W. Duff, Comparison of trajectory calculations, transition state theory, quantum mechanical reaction probabilities, and rate constants for the collinear reaction H + C12 HC1 + C1, Am. Chem. Soc. 97, 6771–6783 (1976);

    Google Scholar 

  211. J.C. Gray, D.G. Truhlar, and M. Baer, Test of trajectory calculations against quantum mechanical state-to-state and thermal collinear reaction rates for H + Cl2 → HC1 + C1, J. Phys. Chem., in press.

    Google Scholar 

  212. H. Essén, G.D. Billing, and M. Baer, Comparison of quantum mechanical and quasi-classical calculations of collinear reaction rate constants for the H + Cl2 and D + Cl2 systems, Chem. Phys. 17, 443–449 (1976).

    Google Scholar 

  213. G.E. Kellerhalls, N. Sathyamurthy, and L.M. Raff, Comparison of quantum mechanical and quasiclassical scattering as a function of surface topology, J. Chem. Phys. 64, 818–825 (1975).

    Google Scholar 

  214. N. Sathyamurthy, R. Rangarajan, and L.M. Raff, Reactive scattering calculations on a splinefitted ab initio surface: The He + H2 (v = 0, 1, 2) → HeH+ + H reaction, J. Chem. Phys. 64, 4606–4611 (1976).

    CAS  Google Scholar 

  215. J.C. Gray. D.G. Truhlar, L. Clemens, J.W. Duff, F.M. Chapman, Jr., G. Morrell, and E.F. Hayes, J. Chem. Phys. 69, 240–252 (1978).

    CAS  Google Scholar 

  216. J.B. Anderson, Energy requirements for chemical reaction: H + HF → H2 + F, J. Chem. Phys. 52, 3849–3850 (1970).

    CAS  Google Scholar 

  217. L.M. Raff, L.B. Sims, D.L. Thompson, and R.N. Porter, Dynamic effects in exchange reactions: dependence of thermal rate constants upon vibrational excitation, J. Chem. Phys. 53, 1606–1607 (1970).

    CAS  Google Scholar 

  218. R.N. Porter, L.B. Sims, D.L. Thompson, and L.M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys. 58, 2855–2869 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Truhlar, D.G., Dixon, D.A. (1979). Direct-Mode Chemical Reactions II: Classical Theories. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics