Electronic Excitation: Nonadiabatic Transitions

  • M. S. Child


Nonadiabatic transitions are, strictly, those arising from a breakdown of the Born-Oppenheimer approximation, the term adiabatic being reserved for the limit in which the electronic problem is solved with the nuclei fixed. This corresponds to a situation in which, in classical terms, the electrons would pass through many cycles of their periodic or quasiperiodic(1) motion in a time short compared with that required to achieve a significant perturbation to this motion by changing the nuclear geometry.


Electronic Excitation Configuration Interaction Molecular Collision Symmetric Resonance Coriolis Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1959).Google Scholar
  2. 2.
    H.F. Shaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).Google Scholar
  3. 3.
    G.A.L. Delvigne and J. Los, The differential cross-sections for chemi-ionization in alkali atom-halogen molecule collisions: Classical interpretation, Physica (Utrecht) 59, 61–76 (1972).CrossRefGoogle Scholar
  4. 4.
    A.P.M. Baede, Charge transfer between neutrals at hyperthermal energies, Adv. Chem. Phys. 30, 463–535 (1975).CrossRefGoogle Scholar
  5. 5.
    G.G. Balint-Kurti, Potential energy surfaces for simple chemical reactions: Li + F2→ LiF + F, Mol. Phys. 25, 393–435 (1973).CrossRefGoogle Scholar
  6. 6.
    C. Nyeland and J. Ross, Estimate of potential surface for K-C1-C1, J. Chem. Phys. 54, 1665–1670 (1971).CrossRefGoogle Scholar
  7. 7.
    R.K. Preston and J.C. Tully, Effects of surface crossing in chemical reactions: The H3 system, J. Chem. Phys. 54, 4297–4303 (1971).CrossRefGoogle Scholar
  8. 8.
    J. Krenos, R.K. Preston, R. Wolfgang, and J.C. Tully, Reaction of hydrogen atomic ions with hydrogen molecules, ab initio theory and a conceptual model, Chem. Phys. Lett. 10, 17–21 (1971).CrossRefGoogle Scholar
  9. 9.
    C.W. Bauschlicher, Jr., S.V. O’Neil, P.K. Preston, and H.F. Shaefer III, Avoided intersection of potential energy surfaces: The (H+ + H2, H + H2) system, J. Chem. Phys. 59, 1286–1291 (1973).CrossRefGoogle Scholar
  10. 10.
    P.J. Kuntz and A.C. Roach, Ion-molecule reactions of rare gases with hydrogen, J. Chem. Soc. Faraday II 68, 259–280 (1972); Erratum: 69, 926 (1973).CrossRefGoogle Scholar
  11. 11.
    Yu.N. Demkov, Charge transfer at small resonance defects, Sov. Phys. JETP 18, 138–142(1964).Google Scholar
  12. 12.
    D.S.F. Crothers, A critique of Zwaan-Stückelberg phase integral techniques, Adv. Phys. 20, 405–451 (1971).CrossRefGoogle Scholar
  13. 13.
    D.S.F. Crothers, Perturbed symmetric resonance: An exact formula, J. Phys. B 6, 1418–1425 (1973).CrossRefGoogle Scholar
  14. 14.
    R.K. Preston, C. Sloane, and W.H. Miller, Semi-classical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).CrossRefGoogle Scholar
  15. 15.
    I.H. Zimmerman and T.F. George, Quantum mechanical study of electronic transitions in collinear atom-molecule collisions, Chem. Phys. 7, 323–335 (1975).CrossRefGoogle Scholar
  16. 16.
    J.C. Tully, Collisions of F(2P1/2) with H2, J. Chem. Phys. 60, 3042–3050 (1974).CrossRefGoogle Scholar
  17. 17.
    F.T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179, 111–123 (1969).CrossRefGoogle Scholar
  18. 18.
    M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the three dimensional case, Chem. Phys. 15, 49–57 (1976).CrossRefGoogle Scholar
  19. 19.
    Z.H. Top and M. Baer, Incorporation of electronically non adiabatic effects into bimolecular reactive systems I. Theory, J. Chem. Phys. 66, 1363–1371 (1975).CrossRefGoogle Scholar
  20. 20.
    E. Bauer, E.R. Fisher, and F.R. Gilmore, De-excitation of electronically excited sodium by nitrogen, J. Chem. Phys. 51, 4173–4181 (1969).CrossRefGoogle Scholar
  21. 21.
    G.M. Kendall and R. Grice, Vibrational coordinates in the electron jump model, Mol. Phys. 24, 1373–1382 (1972).CrossRefGoogle Scholar
  22. 22.
    J.C. Tully and R.K. Preston, Trajectory surface hopping approach to non-adiabatic molecular collisions, J. Chem. Phys. 55, 562–572 (1971).CrossRefGoogle Scholar
  23. 23.
    W.H. Miller and T.F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56, 5637–5652 (1972).Google Scholar
  24. 24.
    Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: H+ + D2 → HD+ + D, J. Chem. Phys. 60, 4311–4322 (1972).CrossRefGoogle Scholar
  25. 25.
    E.E. Nikitin, Theory of non-adiabatic transitions. Recent development of the Landau-Zener-(Linear) model, in Chemische Elementarprozesse, H. Hartmann, editor, Springer-Verlag, Berlin (1968), pp. 43–77.Google Scholar
  26. 26.
    E.E. Nikitin, Theory of non-adiabatic transitions: Recent development with exponential models, Adv. Quantum Chem. 5, 135–184 (1970).CrossRefGoogle Scholar
  27. 27.
    J.B. Delos and W.R. Thorson, Phys. Rev. A 6, 728–745 (1972); Erratum: 9, 1026 (1974).Google Scholar
  28. 28.
    M.S. Child, Molecular Collision Theory, Academic Press, New York (1973).Google Scholar
  29. 29.
    M.S. Child, Semiclassical effects in heavy particle collisions, Adv. Atom. Mol. Phys. (to be published).Google Scholar
  30. 30.
    J.C. Tully, Nonadiabatic processes in molecular collisions, in Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 217–267.Google Scholar
  31. 31.
    P.K. Janev, Non-adiabatic transitions between ionic and covalent states, Adv. Atom. Mol. Phys. 12, 1–38 (1976).CrossRefGoogle Scholar
  32. 32.
    W.R. Thorson, Inelastic scattering of atoms I, J. Chem. Phys. 34, 1744–1757 (1961).CrossRefGoogle Scholar
  33. 33.
    D.J. Vezzetti and S.I. Rubinov, Asymptotic solution of the Schrödinger equation for the three body problem, Ann. Phys. (New York) 35, 373–395 (1965).CrossRefGoogle Scholar
  34. 34.
    W.H. Miller, Distorted-wave theory for collisions of an atom and a diatomic molecule, Chem. Phys. 49, 2373–2381 (1968).Google Scholar
  35. 35.
    R.T. Pack, Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60, 633–639 (1974).CrossRefGoogle Scholar
  36. 36.
    D.R. Bates and D.A. Williams, Low energy collisions between hydrogen atoms and protons, Proc. Phys. Soc. London 83, 425–433 (1964).CrossRefGoogle Scholar
  37. 37.
    S.K. Knudson and W.R. Thorson, Lyman-α excitation and resonant charge exchange in slow H + -H(ls) collisions, Can. J. Phys. 48, 313–329 (1970).CrossRefGoogle Scholar
  38. 38.
    W.R. Thorson, Nonadiabatic effects in the high energy scattering of normal helium atoms, J. Chem. Phys. 39, 1431–1441 (1963).CrossRefGoogle Scholar
  39. 39.
    Kovács, Rotational Structure of the Spectra of Diatomic Molecules (trans. L. Nemes ), Hilger, London (1969).Google Scholar
  40. 40.
    G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New York (1950).Google Scholar
  41. 41.
    R.K. Hinkley, J.A. Hall, T.E.H. Walker, and W.G. Richards,Doubling in 2∏ states of molecules, J. Phys. B. 5, 204–212 (1972).CrossRefGoogle Scholar
  42. 42.
    Z.H. Top and M. Baer, Incorporation of electronically non-adiabatic effects into reactive systems II. The collinear (H2 + H+,H2+ H) system, Chem. Phys. 25, 1–18 (1977).CrossRefGoogle Scholar
  43. 43.
    F.O. Ellison, A method of diatomics in molecules I. General theory and application to H20, J. Am. Chem. Soc. 85, 3540–3544 (1963).CrossRefGoogle Scholar
  44. 44.
    J.C. Tully, Diatomics-in-molecules potential energy surfaces I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).CrossRefGoogle Scholar
  45. 45.
    M. Baer and J. A. Beswick, Electronic non-adiabatic transitions in the reactive (Ar+ + H2, Ar + H2, ArH+ + H) system: Numerical results for the collinear configuration, Chem. Phys. Lett. 51, 360–364 (1977).CrossRefGoogle Scholar
  46. 46.
    M. Baer, Electronic non-adiabatic transitions in the reaction Ar+ + H2(vi = 0) → ArH+ + H: A comparison between exact collinear results and a two state model calculation, Mol. Phys. 35, 1637–1648 (1978).CrossRefGoogle Scholar
  47. 47.
    B.M. Smirnov, Formation and decay of negative ions, Sov. Phys. Dokl. 10, 218–221 (1965).Google Scholar
  48. 48.
    B.M. Smirnov, Negative ion gas laser, Sov. Phys. Dokl. 12, 242–244 (1967).Google Scholar
  49. 49.
    R.E. Olson, F.T. Smith, and E. Bauer, Estimation of the coupling matrix elements for one electron transfer systems, Appl. Opt. 10, 1848–1855 (1971).CrossRefGoogle Scholar
  50. 50.
    R. Grice and D.R. Herschbach, Long-range configuration interaction of ionic and covalent states, Mol. Phys. 27, 159–175 (1974).CrossRefGoogle Scholar
  51. 51.
    S.A. Adelman and D.R. Herschbach, Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides, Mol. Phys. 33, 793–809 (1977).CrossRefGoogle Scholar
  52. 52.
    M.M. Hubers, A.W. Kleyn, and J. Los, Ion pair formation in alkali-halogen collision at high velocities, Chem. Phys. 17, 303–325 (1976).CrossRefGoogle Scholar
  53. 53.
    J.A. Aten, G.E.H. Lanting, and J. Los, The energy dependence of differential cross- sections for ion-pair formation in Na, K, Cs + I2 collisions, Chem. Phys. 19, 241–251 (1977).CrossRefGoogle Scholar
  54. 54.
    T.E.H. Walker and W.G. Richards, Molecular spin-orbit coupling constants: The role of core polarization, Chem. Phys. 52, 1311–1314 (1970).Google Scholar
  55. 55.
    W.H. Moores and R. McWeeny, The calculation of spin-orbit splitting and g tensors for small molecules and radicals, Proc. R. Soc. London Ser. A 332, 365–384 (1973).CrossRefGoogle Scholar
  56. 56.
    J.A. Hall, T.E.H. Walker, and W.G. Richards, One-centre matrix elements of the spin-other orbit operator in linear molecules: Diagonal terms, Mol. Phys. 20, 753–759 (1971).Google Scholar
  57. 57.
    J.C. Tully, Diatomics in molecules potential energy surfaces II. Nonadiabatic and spin- orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).CrossRefGoogle Scholar
  58. 58.
    F.H. Mies, Molecular theory of atomic collisions: Fine-structure transitions, Phys. Rev. A 7, 942–951 (1973).CrossRefGoogle Scholar
  59. 59.
    J.S. Cohen and B. Schneider, Ground and excited states of Ne2 and Ne2 I. Potential curves with and without spin-orbit coupling, J. Chem. Phys. 61, 3230–3239 (1974).CrossRefGoogle Scholar
  60. 60.
    L.D. Landau, Zur Theorie der Energieübertragung II, Phys. Z. Sowjetunion 2, 46–51 (1932).Google Scholar
  61. 61.
    C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A 137, 696–702 (1932).CrossRefGoogle Scholar
  62. 62.
    E.C.G. Stückelberg, Theorie der unelastischen Stosse zwischen Atomen, Helv. Phys. Acta 5, 369–422 (1932).Google Scholar
  63. 63.
    D.R. Bates, Collisions involving the crossing of potential energy curves, Proc. R. Soc. London Ser. A 257, 22–31 (1960).CrossRefGoogle Scholar
  64. 64.
    L.P. Kotova, Angular distribution in inelastic atomic collisions, Sov. Phys. JETP 28, 719–722 (1969).Google Scholar
  65. 65.
    M.S. Child, Thermal energy scattering of alkali atoms from halogen atoms and molecules: The effect of curve crossing, Mol. Phys. 16, 313–327 (1969).CrossRefGoogle Scholar
  66. 66.
    A.D. Bandrauk and M.S. Child, Analytical predissociation line widths from scattering theory, Mol. Phys. 19, 95–111 (1970).CrossRefGoogle Scholar
  67. 67.
    M.S. Child, Curve crossing and the WKB approximation, Mol. Phys. 20, 171–184 (1971).CrossRefGoogle Scholar
  68. 68.
    M.S. Child, On the Stückelberg formula for non-adiabatic transitions, Mol. Phys. 28, 495–501 (1974).CrossRefGoogle Scholar
  69. 69.
    D.S.F. Crothers, Stückelberg curve-crossing phases: The parabolic model, J. Phys. B. 8, L442–L446 (1975).CrossRefGoogle Scholar
  70. 70.
    W.H. Miller, Uniform semiclassical approximations for elastic scattering and eigenvalue problems, J. Chem. Phys. 48, 464–467 (1968).CrossRefGoogle Scholar
  71. 71.
    M.S. Child, A uniform approximation for one-dimensional matrix elements, Mol. Phys. 29, 1421–1429 (1975).CrossRefGoogle Scholar
  72. 72.
    M.B. Faist and R.D. Levine, Collisional ionization and elastic scattering in alkalihalogen atom collisions, J. Chem. Phys. 64, 2953–2970 (1976).CrossRefGoogle Scholar
  73. 73.
    J. Grosser and A.E. de Vries, Single path transition probabilities in curve-crossing phenomena II. Phase shift, Chem. Phys. 10, 229–233 (1975).CrossRefGoogle Scholar
  74. 74.
    K.W. Ford and J.A. Wheeler, Semiclassical description of scattering, Ann. Phys. (N.Y.) 7, 259–286 (1959).CrossRefGoogle Scholar
  75. 75.
    K.W. Ford and J.A. Wheeler, Application of semiclassical analysis, Ann. Phys. (N.Y.) 7, 286–322 (1959).Google Scholar
  76. 76.
    R.E. Olson and F.T. Smith, Collision spectroscopy IV. Semiclassical theory of inelastic scattering with application to He+ + Ne, Phys. Rev. A 3, 1607–1617 (1971).CrossRefGoogle Scholar
  77. 77.
    G.A.L. Delvigne and J. Los, Rainbow, Stückelberg oscillations and rotational coupling on the differential cross-section of Na + I→ Na+ + I¯, Physica (Utrecht) 67, 166–196(1973).Google Scholar
  78. 78.
    M.S. Child and R.B. Gerber, Inversion of the Stückelberg oscillations in atom-atom scattering (to be published).Google Scholar
  79. 79.
    J.B. Delos, Studies of the potential-curve-crossing problem III. Collisional spectroscopy of close crossings, Phys. Rev. A 9, 1626–1634 (1974).CrossRefGoogle Scholar
  80. 80.
    M.B. Faist and R.B. Bernstein, Computational study of elastic and electronically inelastic scattering of Br by ground state I atoms: Role of potential curve crossing, J. Chem. Phys. 64, 2971–2984 (1976).Google Scholar
  81. 81.
    R.E. Olson, Two-state Stiickelberg-Landau-Zener theory applied to oscillatory inelastic total cross-sections, Phys. Rev. A 2, 121–126 (1970).CrossRefGoogle Scholar
  82. 82.
    J.R. Laing, T.F. George, I.H. Zimmerman, and Y.W. Lin, The vibronic representation for collinear atom-diatom collisions: Two state semiclassical model, J. Chem. Phys. 63, 842–851 (1975).CrossRefGoogle Scholar
  83. 83.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrodinger equation, J. Comput. Phys. 6, 378–391 (1970).CrossRefGoogle Scholar
  84. 84.
    W.A. Lester Jr. and R.B. Bernstein, Computational procedure for the close coupled rotational excitation problem, J. Chem. Phys. 48, 4896–4904 (1968).CrossRefGoogle Scholar
  85. 85.
    R.G. Gordon, Quantum scattering using piecewise analytic solutions, Methods Comput. Phys. 10, 81–110 (1971).Google Scholar
  86. 86.
    W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations of scattering II. Coupled channels, Chem. Phys. 51, 4815–4819 (1969).Google Scholar
  87. 87.
    B.R. Johnson and D. Secrest, The solution of the non-relativistic quantum scattering problem without exchange, J. Math. Phys. (N.Y.) 7, 2187–2195 (1966).CrossRefGoogle Scholar
  88. 88.
    B.R. Johnson, The multichannel log-derivative method for scattering calculations, J. Comput. Phys. 13, 445–449 (1973).CrossRefGoogle Scholar
  89. 89.
    A.M. Wooley, Semiclassical scattering theory and total cross sections for systems with many crossing points, Mol. Phys. 22, 607–618 (1971).CrossRefGoogle Scholar
  90. 90.
    M.S. Child, Semi-classical theory of tunnelling and curve-crossing problems: A diagrammatic approach, J. Mol. Spectrosc. 53, 280–296 (1974).CrossRefGoogle Scholar
  91. 91.
    M.S. Child, Franck-Condon transitions in multi-curve crossing processes, Faraday Discuss. Chem. Soc. 55, 30–33 (1973).Google Scholar
  92. 92.
    A.P.M. Baede and J. Los, Total cross-sections for charge transfer and production of free electrons by collisions between alkali atoms and some molecules, Physica (Utrecht) 52, 422–440 (1971).CrossRefGoogle Scholar
  93. 93.
    A.M.C. Moutinho, A.P.M. Baede, and J. Los, Charge transfer between alkali atoms and oxygen molecules, Physica (Utrecht) 51, 432–445 (1970).CrossRefGoogle Scholar
  94. 94.
    K. Lacmann and D.R. Herschbach, Collisional excitation and ionization of K atoms by diatomic molecules: Role of ion pair states, Chem. Phys. Lett. 6, 106–110 (1970).CrossRefGoogle Scholar
  95. 95.
    A.W. Kleyn, M.M. Hubers, J.A. Aten, and J. Los (to be published).Google Scholar
  96. 96.
    Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of charge exchange at low energies: Collinear H+ + H2 collisions, J. Phys. B 8, 265–272 (1975).CrossRefGoogle Scholar
  97. 97.
    Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Three-dimensional H+ + D2 HD+ + D, Chem. Phys. Lett. 30, 49–53 (1975).CrossRefGoogle Scholar
  98. 98.
    A.Komornicki, T.F. George, and K. Morokuma, Decoupling scheme for a semi-classical treatment of electronic transitions in atom-diatom collisions: Real-valued trajectories and local analytic continuation, J. Chem. Phys. 65, 48–54 (1976).CrossRefGoogle Scholar
  99. 99.
    R. K. Preston, C. Sloane, and W.H. Miller, Semiclassical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).CrossRefGoogle Scholar
  100. 100.
    W.H. Miller, Classical limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).CrossRefGoogle Scholar
  101. 101.
    W.H. Miller, The classical S matrix in molecular collisions, Adv. Chem. Phys. 30, 77–136 (1975).CrossRefGoogle Scholar
  102. 102.
    S.I. Chu and A. Dalgarno, Fine structure transitions of C+ in collisions with H2, Chem. Phys. 62, 4009–4015 (1975).Google Scholar
  103. 103.
    M.S. Child, The Condon reflection principle in collision dynamics, Mol. Phys. 35, 759–770 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • M. S. Child
    • 1
  1. 1.Theoretical Chemistry DepartmentUniversity of OxfordEngland

Personalised recommendations