Skip to main content

Electronic Excitation: Nonadiabatic Transitions

  • Chapter
Atom - Molecule Collision Theory

Abstract

Nonadiabatic transitions are, strictly, those arising from a breakdown of the Born-Oppenheimer approximation, the term adiabatic being reserved for the limit in which the electronic problem is solved with the nuclei fixed. This corresponds to a situation in which, in classical terms, the electrons would pass through many cycles of their periodic or quasiperiodic(1) motion in a time short compared with that required to achieve a significant perturbation to this motion by changing the nuclear geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Goldstein, Classical Mechanics, Addison-Wesley, Reading, Massachusetts (1959).

    Google Scholar 

  2. H.F. Shaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts (1972).

    Google Scholar 

  3. G.A.L. Delvigne and J. Los, The differential cross-sections for chemi-ionization in alkali atom-halogen molecule collisions: Classical interpretation, Physica (Utrecht) 59, 61–76 (1972).

    Article  CAS  Google Scholar 

  4. A.P.M. Baede, Charge transfer between neutrals at hyperthermal energies, Adv. Chem. Phys. 30, 463–535 (1975).

    Article  CAS  Google Scholar 

  5. G.G. Balint-Kurti, Potential energy surfaces for simple chemical reactions: Li + F2→ LiF + F, Mol. Phys. 25, 393–435 (1973).

    Article  CAS  Google Scholar 

  6. C. Nyeland and J. Ross, Estimate of potential surface for K-C1-C1, J. Chem. Phys. 54, 1665–1670 (1971).

    Article  CAS  Google Scholar 

  7. R.K. Preston and J.C. Tully, Effects of surface crossing in chemical reactions: The H3 system, J. Chem. Phys. 54, 4297–4303 (1971).

    Article  CAS  Google Scholar 

  8. J. Krenos, R.K. Preston, R. Wolfgang, and J.C. Tully, Reaction of hydrogen atomic ions with hydrogen molecules, ab initio theory and a conceptual model, Chem. Phys. Lett. 10, 17–21 (1971).

    Article  CAS  Google Scholar 

  9. C.W. Bauschlicher, Jr., S.V. O’Neil, P.K. Preston, and H.F. Shaefer III, Avoided intersection of potential energy surfaces: The (H+ + H2, H + H2) system, J. Chem. Phys. 59, 1286–1291 (1973).

    Article  CAS  Google Scholar 

  10. P.J. Kuntz and A.C. Roach, Ion-molecule reactions of rare gases with hydrogen, J. Chem. Soc. Faraday II 68, 259–280 (1972); Erratum: 69, 926 (1973).

    Article  Google Scholar 

  11. Yu.N. Demkov, Charge transfer at small resonance defects, Sov. Phys. JETP 18, 138–142(1964).

    Google Scholar 

  12. D.S.F. Crothers, A critique of Zwaan-Stückelberg phase integral techniques, Adv. Phys. 20, 405–451 (1971).

    Article  Google Scholar 

  13. D.S.F. Crothers, Perturbed symmetric resonance: An exact formula, J. Phys. B 6, 1418–1425 (1973).

    Article  Google Scholar 

  14. R.K. Preston, C. Sloane, and W.H. Miller, Semi-classical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).

    Article  CAS  Google Scholar 

  15. I.H. Zimmerman and T.F. George, Quantum mechanical study of electronic transitions in collinear atom-molecule collisions, Chem. Phys. 7, 323–335 (1975).

    Article  CAS  Google Scholar 

  16. J.C. Tully, Collisions of F(2P1/2) with H2, J. Chem. Phys. 60, 3042–3050 (1974).

    Article  CAS  Google Scholar 

  17. F.T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179, 111–123 (1969).

    Article  Google Scholar 

  18. M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: Treatment of the three dimensional case, Chem. Phys. 15, 49–57 (1976).

    Article  CAS  Google Scholar 

  19. Z.H. Top and M. Baer, Incorporation of electronically non adiabatic effects into bimolecular reactive systems I. Theory, J. Chem. Phys. 66, 1363–1371 (1975).

    Article  Google Scholar 

  20. E. Bauer, E.R. Fisher, and F.R. Gilmore, De-excitation of electronically excited sodium by nitrogen, J. Chem. Phys. 51, 4173–4181 (1969).

    Article  CAS  Google Scholar 

  21. G.M. Kendall and R. Grice, Vibrational coordinates in the electron jump model, Mol. Phys. 24, 1373–1382 (1972).

    Article  CAS  Google Scholar 

  22. J.C. Tully and R.K. Preston, Trajectory surface hopping approach to non-adiabatic molecular collisions, J. Chem. Phys. 55, 562–572 (1971).

    Article  CAS  Google Scholar 

  23. W.H. Miller and T.F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56, 5637–5652 (1972).

    Google Scholar 

  24. Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: H+ + D2 → HD+ + D, J. Chem. Phys. 60, 4311–4322 (1972).

    Article  Google Scholar 

  25. E.E. Nikitin, Theory of non-adiabatic transitions. Recent development of the Landau-Zener-(Linear) model, in Chemische Elementarprozesse, H. Hartmann, editor, Springer-Verlag, Berlin (1968), pp. 43–77.

    Google Scholar 

  26. E.E. Nikitin, Theory of non-adiabatic transitions: Recent development with exponential models, Adv. Quantum Chem. 5, 135–184 (1970).

    Article  CAS  Google Scholar 

  27. J.B. Delos and W.R. Thorson, Phys. Rev. A 6, 728–745 (1972); Erratum: 9, 1026 (1974).

    Google Scholar 

  28. M.S. Child, Molecular Collision Theory, Academic Press, New York (1973).

    Google Scholar 

  29. M.S. Child, Semiclassical effects in heavy particle collisions, Adv. Atom. Mol. Phys. (to be published).

    Google Scholar 

  30. J.C. Tully, Nonadiabatic processes in molecular collisions, in Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 217–267.

    Google Scholar 

  31. P.K. Janev, Non-adiabatic transitions between ionic and covalent states, Adv. Atom. Mol. Phys. 12, 1–38 (1976).

    Article  CAS  Google Scholar 

  32. W.R. Thorson, Inelastic scattering of atoms I, J. Chem. Phys. 34, 1744–1757 (1961).

    Article  CAS  Google Scholar 

  33. D.J. Vezzetti and S.I. Rubinov, Asymptotic solution of the Schrödinger equation for the three body problem, Ann. Phys. (New York) 35, 373–395 (1965).

    Article  CAS  Google Scholar 

  34. W.H. Miller, Distorted-wave theory for collisions of an atom and a diatomic molecule, Chem. Phys. 49, 2373–2381 (1968).

    CAS  Google Scholar 

  35. R.T. Pack, Space-fixed vs body-fixed axes in atom-diatomic molecule scattering. Sudden approximations, J. Chem. Phys. 60, 633–639 (1974).

    Article  CAS  Google Scholar 

  36. D.R. Bates and D.A. Williams, Low energy collisions between hydrogen atoms and protons, Proc. Phys. Soc. London 83, 425–433 (1964).

    Article  CAS  Google Scholar 

  37. S.K. Knudson and W.R. Thorson, Lyman-α excitation and resonant charge exchange in slow H + -H(ls) collisions, Can. J. Phys. 48, 313–329 (1970).

    Article  CAS  Google Scholar 

  38. W.R. Thorson, Nonadiabatic effects in the high energy scattering of normal helium atoms, J. Chem. Phys. 39, 1431–1441 (1963).

    Article  CAS  Google Scholar 

  39. Kovács, Rotational Structure of the Spectra of Diatomic Molecules (trans. L. Nemes ), Hilger, London (1969).

    Google Scholar 

  40. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand, New York (1950).

    Google Scholar 

  41. R.K. Hinkley, J.A. Hall, T.E.H. Walker, and W.G. Richards,Doubling in 2∏ states of molecules, J. Phys. B. 5, 204–212 (1972).

    Article  CAS  Google Scholar 

  42. Z.H. Top and M. Baer, Incorporation of electronically non-adiabatic effects into reactive systems II. The collinear (H2 + H+,H2+ H) system, Chem. Phys. 25, 1–18 (1977).

    Article  CAS  Google Scholar 

  43. F.O. Ellison, A method of diatomics in molecules I. General theory and application to H20, J. Am. Chem. Soc. 85, 3540–3544 (1963).

    Article  CAS  Google Scholar 

  44. J.C. Tully, Diatomics-in-molecules potential energy surfaces I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).

    Article  CAS  Google Scholar 

  45. M. Baer and J. A. Beswick, Electronic non-adiabatic transitions in the reactive (Ar+ + H2, Ar + H2, ArH+ + H) system: Numerical results for the collinear configuration, Chem. Phys. Lett. 51, 360–364 (1977).

    Article  CAS  Google Scholar 

  46. M. Baer, Electronic non-adiabatic transitions in the reaction Ar+ + H2(vi = 0) → ArH+ + H: A comparison between exact collinear results and a two state model calculation, Mol. Phys. 35, 1637–1648 (1978).

    Article  CAS  Google Scholar 

  47. B.M. Smirnov, Formation and decay of negative ions, Sov. Phys. Dokl. 10, 218–221 (1965).

    Google Scholar 

  48. B.M. Smirnov, Negative ion gas laser, Sov. Phys. Dokl. 12, 242–244 (1967).

    Google Scholar 

  49. R.E. Olson, F.T. Smith, and E. Bauer, Estimation of the coupling matrix elements for one electron transfer systems, Appl. Opt. 10, 1848–1855 (1971).

    Article  CAS  Google Scholar 

  50. R. Grice and D.R. Herschbach, Long-range configuration interaction of ionic and covalent states, Mol. Phys. 27, 159–175 (1974).

    Article  CAS  Google Scholar 

  51. S.A. Adelman and D.R. Herschbach, Asymptotic approximation for ionic-covalent configuration mixing in hydrogen and alkali hydrides, Mol. Phys. 33, 793–809 (1977).

    Article  CAS  Google Scholar 

  52. M.M. Hubers, A.W. Kleyn, and J. Los, Ion pair formation in alkali-halogen collision at high velocities, Chem. Phys. 17, 303–325 (1976).

    Article  CAS  Google Scholar 

  53. J.A. Aten, G.E.H. Lanting, and J. Los, The energy dependence of differential cross- sections for ion-pair formation in Na, K, Cs + I2 collisions, Chem. Phys. 19, 241–251 (1977).

    Article  CAS  Google Scholar 

  54. T.E.H. Walker and W.G. Richards, Molecular spin-orbit coupling constants: The role of core polarization, Chem. Phys. 52, 1311–1314 (1970).

    CAS  Google Scholar 

  55. W.H. Moores and R. McWeeny, The calculation of spin-orbit splitting and g tensors for small molecules and radicals, Proc. R. Soc. London Ser. A 332, 365–384 (1973).

    Article  CAS  Google Scholar 

  56. J.A. Hall, T.E.H. Walker, and W.G. Richards, One-centre matrix elements of the spin-other orbit operator in linear molecules: Diagonal terms, Mol. Phys. 20, 753–759 (1971).

    Google Scholar 

  57. J.C. Tully, Diatomics in molecules potential energy surfaces II. Nonadiabatic and spin- orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).

    Article  CAS  Google Scholar 

  58. F.H. Mies, Molecular theory of atomic collisions: Fine-structure transitions, Phys. Rev. A 7, 942–951 (1973).

    Article  CAS  Google Scholar 

  59. J.S. Cohen and B. Schneider, Ground and excited states of Ne2 and Ne2 I. Potential curves with and without spin-orbit coupling, J. Chem. Phys. 61, 3230–3239 (1974).

    Article  CAS  Google Scholar 

  60. L.D. Landau, Zur Theorie der Energieübertragung II, Phys. Z. Sowjetunion 2, 46–51 (1932).

    CAS  Google Scholar 

  61. C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A 137, 696–702 (1932).

    Article  Google Scholar 

  62. E.C.G. Stückelberg, Theorie der unelastischen Stosse zwischen Atomen, Helv. Phys. Acta 5, 369–422 (1932).

    Google Scholar 

  63. D.R. Bates, Collisions involving the crossing of potential energy curves, Proc. R. Soc. London Ser. A 257, 22–31 (1960).

    Article  CAS  Google Scholar 

  64. L.P. Kotova, Angular distribution in inelastic atomic collisions, Sov. Phys. JETP 28, 719–722 (1969).

    Google Scholar 

  65. M.S. Child, Thermal energy scattering of alkali atoms from halogen atoms and molecules: The effect of curve crossing, Mol. Phys. 16, 313–327 (1969).

    Article  CAS  Google Scholar 

  66. A.D. Bandrauk and M.S. Child, Analytical predissociation line widths from scattering theory, Mol. Phys. 19, 95–111 (1970).

    Article  CAS  Google Scholar 

  67. M.S. Child, Curve crossing and the WKB approximation, Mol. Phys. 20, 171–184 (1971).

    Article  CAS  Google Scholar 

  68. M.S. Child, On the Stückelberg formula for non-adiabatic transitions, Mol. Phys. 28, 495–501 (1974).

    Article  CAS  Google Scholar 

  69. D.S.F. Crothers, Stückelberg curve-crossing phases: The parabolic model, J. Phys. B. 8, L442–L446 (1975).

    Article  Google Scholar 

  70. W.H. Miller, Uniform semiclassical approximations for elastic scattering and eigenvalue problems, J. Chem. Phys. 48, 464–467 (1968).

    Article  Google Scholar 

  71. M.S. Child, A uniform approximation for one-dimensional matrix elements, Mol. Phys. 29, 1421–1429 (1975).

    Article  CAS  Google Scholar 

  72. M.B. Faist and R.D. Levine, Collisional ionization and elastic scattering in alkalihalogen atom collisions, J. Chem. Phys. 64, 2953–2970 (1976).

    Article  CAS  Google Scholar 

  73. J. Grosser and A.E. de Vries, Single path transition probabilities in curve-crossing phenomena II. Phase shift, Chem. Phys. 10, 229–233 (1975).

    Article  Google Scholar 

  74. K.W. Ford and J.A. Wheeler, Semiclassical description of scattering, Ann. Phys. (N.Y.) 7, 259–286 (1959).

    Article  Google Scholar 

  75. K.W. Ford and J.A. Wheeler, Application of semiclassical analysis, Ann. Phys. (N.Y.) 7, 286–322 (1959).

    Google Scholar 

  76. R.E. Olson and F.T. Smith, Collision spectroscopy IV. Semiclassical theory of inelastic scattering with application to He+ + Ne, Phys. Rev. A 3, 1607–1617 (1971).

    Article  Google Scholar 

  77. G.A.L. Delvigne and J. Los, Rainbow, Stückelberg oscillations and rotational coupling on the differential cross-section of Na + I→ Na+ + I¯, Physica (Utrecht) 67, 166–196(1973).

    Google Scholar 

  78. M.S. Child and R.B. Gerber, Inversion of the Stückelberg oscillations in atom-atom scattering (to be published).

    Google Scholar 

  79. J.B. Delos, Studies of the potential-curve-crossing problem III. Collisional spectroscopy of close crossings, Phys. Rev. A 9, 1626–1634 (1974).

    Article  CAS  Google Scholar 

  80. M.B. Faist and R.B. Bernstein, Computational study of elastic and electronically inelastic scattering of Br by ground state I atoms: Role of potential curve crossing, J. Chem. Phys. 64, 2971–2984 (1976).

    CAS  Google Scholar 

  81. R.E. Olson, Two-state Stiickelberg-Landau-Zener theory applied to oscillatory inelastic total cross-sections, Phys. Rev. A 2, 121–126 (1970).

    Article  Google Scholar 

  82. J.R. Laing, T.F. George, I.H. Zimmerman, and Y.W. Lin, The vibronic representation for collinear atom-diatom collisions: Two state semiclassical model, J. Chem. Phys. 63, 842–851 (1975).

    Article  CAS  Google Scholar 

  83. A.C. Allison, The numerical solution of coupled differential equations arising from the Schrodinger equation, J. Comput. Phys. 6, 378–391 (1970).

    Article  Google Scholar 

  84. W.A. Lester Jr. and R.B. Bernstein, Computational procedure for the close coupled rotational excitation problem, J. Chem. Phys. 48, 4896–4904 (1968).

    Article  CAS  Google Scholar 

  85. R.G. Gordon, Quantum scattering using piecewise analytic solutions, Methods Comput. Phys. 10, 81–110 (1971).

    CAS  Google Scholar 

  86. W.N. Sams and D.J. Kouri, Noniterative solutions of integral equations of scattering II. Coupled channels, Chem. Phys. 51, 4815–4819 (1969).

    CAS  Google Scholar 

  87. B.R. Johnson and D. Secrest, The solution of the non-relativistic quantum scattering problem without exchange, J. Math. Phys. (N.Y.) 7, 2187–2195 (1966).

    Article  CAS  Google Scholar 

  88. B.R. Johnson, The multichannel log-derivative method for scattering calculations, J. Comput. Phys. 13, 445–449 (1973).

    Article  Google Scholar 

  89. A.M. Wooley, Semiclassical scattering theory and total cross sections for systems with many crossing points, Mol. Phys. 22, 607–618 (1971).

    Article  Google Scholar 

  90. M.S. Child, Semi-classical theory of tunnelling and curve-crossing problems: A diagrammatic approach, J. Mol. Spectrosc. 53, 280–296 (1974).

    Article  CAS  Google Scholar 

  91. M.S. Child, Franck-Condon transitions in multi-curve crossing processes, Faraday Discuss. Chem. Soc. 55, 30–33 (1973).

    CAS  Google Scholar 

  92. A.P.M. Baede and J. Los, Total cross-sections for charge transfer and production of free electrons by collisions between alkali atoms and some molecules, Physica (Utrecht) 52, 422–440 (1971).

    Article  CAS  Google Scholar 

  93. A.M.C. Moutinho, A.P.M. Baede, and J. Los, Charge transfer between alkali atoms and oxygen molecules, Physica (Utrecht) 51, 432–445 (1970).

    Article  Google Scholar 

  94. K. Lacmann and D.R. Herschbach, Collisional excitation and ionization of K atoms by diatomic molecules: Role of ion pair states, Chem. Phys. Lett. 6, 106–110 (1970).

    Article  CAS  Google Scholar 

  95. A.W. Kleyn, M.M. Hubers, J.A. Aten, and J. Los (to be published).

    Google Scholar 

  96. Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of charge exchange at low energies: Collinear H+ + H2 collisions, J. Phys. B 8, 265–272 (1975).

    Article  CAS  Google Scholar 

  97. Y.W. Lin, T.F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Three-dimensional H+ + D2 HD+ + D, Chem. Phys. Lett. 30, 49–53 (1975).

    Article  CAS  Google Scholar 

  98. A.Komornicki, T.F. George, and K. Morokuma, Decoupling scheme for a semi-classical treatment of electronic transitions in atom-diatom collisions: Real-valued trajectories and local analytic continuation, J. Chem. Phys. 65, 48–54 (1976).

    Article  Google Scholar 

  99. R. K. Preston, C. Sloane, and W.H. Miller, Semiclassical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).

    Article  CAS  Google Scholar 

  100. W.H. Miller, Classical limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).

    Article  Google Scholar 

  101. W.H. Miller, The classical S matrix in molecular collisions, Adv. Chem. Phys. 30, 77–136 (1975).

    Article  CAS  Google Scholar 

  102. S.I. Chu and A. Dalgarno, Fine structure transitions of C+ in collisions with H2, Chem. Phys. 62, 4009–4015 (1975).

    CAS  Google Scholar 

  103. M.S. Child, The Condon reflection principle in collision dynamics, Mol. Phys. 35, 759–770 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Child, M.S. (1979). Electronic Excitation: Nonadiabatic Transitions. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics