Skip to main content

Vibrational Excitation II: Classical and Semiclassical Methods

  • Chapter
Atom - Molecule Collision Theory

Abstract

In this chapter we consider methods for calculating cross sections or rates for vibrational energy transfer in which at least one degree of freedom in the collision system is treated classically. We ignore cases in which electronic transitions or electronically nonadiabatic effects play an important role, but we do include methods for treating simultaneous vibrational and rotational transitions, since the two are often coupled strongly in real systems. The literature on classical and semiclassical treatments of vibrational energy transfer is immense. Because of the special nature of this volume as a “consumers handbook” designed to be of practical rather than of pedagogical value, no attempt has been made here to be comprehensive in scope or historical in perspective.* Instead we focus on those aspects of the theory which at present appear to be the most useful in the interpretation of modern experimental data. Our chief criterion for usefulness is the degree of success with which a given method has actually been applied to the interpretation of experimental results. However, in some cases the lack of appropriate data precludes comparison with experiment, and the value of a given approach must be judged by the available comparisons with other theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Rapp and T. Kassal, The theory of vibrational energy transfer between simple molecules in nonreactive collisions, Chem. Rev. 69, 61–102 (1969).

    CAS  Google Scholar 

  2. D. Secrest, Theory of rotational and vibrational energy transfer in molecules, Ann. Rev. Phys. Chem. 24, 379–406 (1973).

    CAS  Google Scholar 

  3. J.P. Toennies, The calculation and measurement of cross sections for rotational and vibrational excitation, Ann. Rev. Phys. Chem. 27, 225–260 (1976).

    CAS  Google Scholar 

  4. W.H. Miller, Classical S-matrix for rotational excitation; quenching of quantum effects in molecular collisions, J. Chem. Phys. 54, 5386–5397 (1971).

    CAS  Google Scholar 

  5. R.G. Gordon, Rational selection of methods for molecular scattering calculations, Faraday Discuss. Chem. Soc. 55, 22–29 (1973).

    CAS  Google Scholar 

  6. G.D. Barg, G.M. Kendall, and J.P. Toennies, Quasi-classical calculations of elastic and rotationally and vibrationally inelastic differential cross sections for Li+ -H2, Chem. Phys. 16, 243–268 (1976).

    CAS  Google Scholar 

  7. P. Pechukas and M.S. Child, Is semiclassical scattering theory accurate for transitions from low-lying vibrational states?, Mol. Phys. 31, 973–987 (1976).

    CAS  Google Scholar 

  8. H.K. Shin, in Dynamics of Molecular Collisions, Part A, W.H. Miller, editor, Plenum Press, New York (1976), pp. 131–210.

    Google Scholar 

  9. M.H. Alexander, Inaccuracy of an approximate dynamical treatment of He-H2 vibra¬tional energy transfer, Chem. Phys. Lett. 39, 485–487 (1976).

    CAS  Google Scholar 

  10. D.L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).

    CAS  Google Scholar 

  11. J.N.L. Connor, Theory of molecular collisions and reactive scattering, Ann. Rep. A. Chem. Soc. 70, 5–30 (1973).

    CAS  Google Scholar 

  12. R.N. Porter, Molecular trajectory calculations, Ann. Rev. Phys. Chem. 25, 317–355 (1974).

    CAS  Google Scholar 

  13. R.N. Porter and L.M. Raff, in Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), pp. 1–52.

    Google Scholar 

  14. V.B. Cheng, H.H. Suzukawa, and M. Wolfsberg, Investigations of a nonrandom numerical method for multidimensional integration, J. Chem. Phys. 59, 3992–3999 (1973).

    CAS  Google Scholar 

  15. H.H. Suzukawa, D.L. Thompson, V.B. Cheng, and M. Wolfsberg, Empirical testing of the suitability of a nonrandom integration method for classical trajectory calculations: Comparison with Monte Carlo techniques, J. Chem. Phys. 59, 4000–4008 (1973).

    CAS  Google Scholar 

  16. D.L. Thompson, Monte Carlo trajectory calculation of the rates of F-atom vibrational relaxation of HF and DF, J. Chem. Phys. 57, 4164–4169 (1972).

    CAS  Google Scholar 

  17. D.L. Thompson, Monte Carlo trajectory calculation of the rates of H- and D-atom vibrational relaxation of HF and DF, J. Chem. Phys. 57, 4170–4173 (1972).

    CAS  Google Scholar 

  18. M.K. Matzen and G.A. Fisk, A classical trajectory study of inelastic collisions between highly vibrationally excited KBr and Ar, J. Chem. Phys. 66, 1514–1522 (1977).

    CAS  Google Scholar 

  19. J.D. Kelley and R.L. Thommarson, Vibrational deactivation and atom exchange in O(3P) + CO(X1Ʃ) collisions, J. Chem. Phys. 66, 1953–1959 (1977).

    CAS  Google Scholar 

  20. R.A. LaBudde and R.B. Bernstein, Classical study of rotational excitation of a rigid rotor: Li+ + H2. II. Correspondence with quantal results, J. Chem. Phys. 59, 3687–3691 (1973).

    CAS  Google Scholar 

  21. N.C. Blais and D.G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. I. Potential energy surface and cross sections for dissociation, recombination and inelastic scattering, J. Chem. Phys. 65, 5335–5356 (1976).

    CAS  Google Scholar 

  22. D.G. Truhlar and J.W. Duff, Classical probability matrix: prediction of quantum state distributions by a moment analysis of classical trajectories, Chem. Phys. Lett. 36, 551–554 (1975).

    CAS  Google Scholar 

  23. D.G. Truhlar, Quasiclassical predictions of final vibrational state distributions in reactive and nonreactive collisions, Int. J. Quantum Chem. Symp. 10, 239–250 (1976).

    CAS  Google Scholar 

  24. R.J. Gordon, A comparison of exact classical and quantum mechanical calculations of vibrational energy transfer, J. Chem. Phys. 65, 4945–4957 (1976).

    CAS  Google Scholar 

  25. J.M. Bowman and S.C. Leasure, An improved quasiclassical histogram method, J. Chem. Phys. 66, 1756–1757 (1977).

    CAS  Google Scholar 

  26. S. Chapman and S. Green, Rotational excitation of linear molecules by collisions with atoms: Comparison of classical and quantum methods, J. Chem. Phys. 67, 2317–2331 (1977).

    CAS  Google Scholar 

  27. J.W. Duff and D.G. Truhlar, Tests of semiclassical treatments of vibrational-translational energy transfer in collinear collisions of helium with hydrogen molecules, Chem. Phys. 9, 243–273 (1975).

    CAS  Google Scholar 

  28. M. Rubinson, B. Garetz, and J.I. Steinfeld, Energy transfer processes in monochromatically excited iodine. IX. Classical trajectory and semiclassical calculations of vibrationally and rotationally inelastic cross sections, J. Chem. Phys. 60, 3082–3097 (1974).

    CAS  Google Scholar 

  29. D.L. Thompson, Quasiclassical trajectory studies of reactive energy transfer, Accts. Chem. Res. 9, 338–344 (1976).

    CAS  Google Scholar 

  30. M. Sathyamurthy and L.M. Raff, Inelastic scattering calculations in polyatomic systems using an ab initio potential energy surface: The CO (0,0,l,0) + H2(D2)→ CO2 (0,0,0,0) + H2(D2) systems, J. Chem. Phys. 66, 2191–2211 (1977).

    CAS  Google Scholar 

  31. H.E. Bass and D.L. Thompson, Vibrational relaxation of Cl2 by HCl and DCl and self-relaxation of HCl and DCl: A Monte Carlo quasiclassical trajectory study, J. Chem. Phys. 66, 2545–2553 (1977).

    CAS  Google Scholar 

  32. D.J. Locker and D.J. Wilson, Exact semiclassical transition probabilities for collinear collisions, J. Chem. Phys. 52, 271–278 (1970).

    CAS  Google Scholar 

  33. R.L. McKenzie, Vibration-translation energy transfer in anharmonic diatomic molecules. I. A comparative evaluation of the semiclassical approximation, J. Chem. Phys. 63, 1655–1662 (1975).

    CAS  Google Scholar 

  34. R.L. McKenzie, Vibration-translation energy transfer in anharmonic diatomic molecules. II. The vibrational quantum number dependence, J. Chem. Phys. 64, 1498–1508 (1976).

    CAS  Google Scholar 

  35. M.A. Wartell and R.J. Cross, Semiclassical theory of vibrationally inelastic collisions, J. Chem. Phys. 55, 4983–4991 (1971).

    CAS  Google Scholar 

  36. M.A. Wartell, Sudden approximation applied to vibrational inelastic scattering: He- HD, J. Chem. Phys. 58, 4700–4701 (1973).

    CAS  Google Scholar 

  37. J.R. Stallcop, Inelastic scattering in atom-diatomic molecule collisions. II. Effect of rotation on vibrational transitions, J. Chem. Phys. 62, 690–695 (1975).

    CAS  Google Scholar 

  38. F.S. Collins and R.J. Cross, Vibrationally inelastic scattering at high energies: H+ + H2, J. Chem. Phys. 65, 644–652 (1976).

    CAS  Google Scholar 

  39. H. Krüger and R. Schinke, Impact parameter approach to three-dimensional vibrationally inelastic ion(atom)-molecule collisions: Application to H+ + H2, J. Chem. Phys. 66, 5087–5092 (1977).

    Google Scholar 

  40. R. Schinke, H. Krüger, V. Hermann, H. Schmidt, and F. Linder, Vibrational excitation in H+ + H2 collisions: Comparison between experiment and rotationally sudden impact parameter calculations, J. Chem. Phys. 67, 1187–1190 (1977).

    CAS  Google Scholar 

  41. R.J. Gordon and A. Kuppermann, String-plucking model for vibrational excitation of molecules, J. Chem. Phys. 58, 5776–5785 (1973).

    CAS  Google Scholar 

  42. D. Storm and E. Thiele, Collision of an atom and a diatomic: A semiadiabatic approximation, J. Chem. Phys. 59, 5102–5108 (1973).

    CAS  Google Scholar 

  43. W.A. Cady, Semiclassical treatment of vibrational-translational energy transfer in the near-adiabatic approximation, J. Chem. Phys. 61, 1214–1220 (1974).

    CAS  Google Scholar 

  44. W.A. Cady, A.P. Clark, and A.S. Dickinson, Comment on “Semiclassical treatment of vibrational-translational energy transfer in the near-adiabatic approximation,” J. Chem. Phys. 63, 5505–5506 (1975).

    CAS  Google Scholar 

  45. B. Ritchie, Theory of small-energy-transfer collisions in dominant long-ranged forces: H+ + H2 and - H2 vibrational excitation, Phys. Rev. A 6, 1456–1460 (1972); Erratum: Phys. Rev. A 7, 828 (1973).

    Google Scholar 

  46. T.A. Dillon and J.C. Stephenson, Multiquantum vibrational-energy exchange, Phys. Rev. A 6, 1460–1468 (1972).

    CAS  Google Scholar 

  47. R.L. McKenzie, The influence of molecular rotation on vibration-translation energy transfer, J. Chem. Phys. 66, 1457–1474 (1977).

    CAS  Google Scholar 

  48. G.D. Billing Sorenson, Semiclassical three-dimensional model for vibrational relaxation, J. Chem. Phys. 57, 5241–5250 (1972).

    Google Scholar 

  49. H. Rabitz, Effective potentials in molecular collisions, J. Chem. Phys. 57, 1718–1725 (1972).

    CAS  Google Scholar 

  50. H. Rabitz, in Dynamics of Molecular Collisions, Part A, W.H. Miller, editor, Plenum, New York (1976), pp. 33–80.

    Google Scholar 

  51. G. Billing Sorenson, Semiclassical three-dimensional scattering theory, J. Chem. Phys. 61, 3340–3343 (1974).

    Google Scholar 

  52. G.D. Billing, Semiclassical three-dimensional model for vibrational relaxation. II, J. Chem. Phys. 62, 1480–1487 (1975).

    Google Scholar 

  53. G.D. Billing, Semi-classical calculations of rotational/vibrational transitions in He- H2, Chem. Phys. 9, 359–369 (1975).

    CAS  Google Scholar 

  54. G.D. Billing, Semiclassical calculations of rotational-vibrational transitions in Li+ — H2, Chem. Phys. 14, 267–273 (1976).

    CAS  Google Scholar 

  55. G.D. Billing, The semiclassical coupled states method, J. Chem. Phys. 65, 1–6 (1976).

    CAS  Google Scholar 

  56. D.J. Wilson and D.J. Locker, Quantum vibrational transition probabilities in atom-diatomic molecule collisions. A tractable three-dimensional model, J. Chem. Phys. 57, 5393–5402 (1972).

    CAS  Google Scholar 

  57. R.T. Pack, Close coupling test of classical and semiclassical cross sections for rotationally inelastic Ar + N2 collisions, J. Chem. Phys. 62, 3143–3148 (1975).

    CAS  Google Scholar 

  58. T.A. Dillon and J.C. Stephenson, Calculation of vibrational and rotational energy transfer between HF, DF, HCl and CO2, J. Chem. Phys. 58, 2056–2064 (1973).

    CAS  Google Scholar 

  59. J. Schaefer and W.A. Lester, Effect of rotation on vibrational excitation of H2 by Li+ impact, Chem. Phys. Lett. 20, 575–580 (1973).

    CAS  Google Scholar 

  60. C.F. Giese and W.R. Gentry, Classical trajectory treatment of inelastic scattering in collisions of H+ with H2, HD and D2, Phys. Rev. A 10, 2156–2173 (1974).

    CAS  Google Scholar 

  61. W.R. Gentry and C.F. Giese, Vibrational excitation in the DECENT approximation: The large-angle scattering of Li+ from H2, J. Chem. Phys. 62, 1364–1371 (1975).

    CAS  Google Scholar 

  62. L.A. Collins and N.F. Lane, Quantum-mechanical calculations of rotational excitation cross sections for HCl, DCl, DF and HF in slow collisions with He, Phys. Rev. A 14, 1358–1367 (1976).

    CAS  Google Scholar 

  63. A.S. Dickinson and D. Richards, A semiclassical study of the body-fixed approximation for rotational excitation in atom-molecule collisions, J. Phys. B 10, 323–343 (1977).

    CAS  Google Scholar 

  64. M.H. Alexander, Effective potential study of rotationally-vibrationally inelastic collisions between He and H2, J. Chem. Phys. 61, 5167–5181 (1974).

    CAS  Google Scholar 

  65. H. Rabitz and G. Zarur, Vibration-rotation inelasticity in He-H2, J. Chem. Phys. 61, 5076–5084 (1974).

    Google Scholar 

  66. J. Schaefer and W.A. Lester, Theoretical study of inelastic scattering of H2 by Li+ on SCF and CI potential energy surfaces, J. Chem. Phys. 62, 1913–1924 (1975).

    CAS  Google Scholar 

  67. G. Billing Sorenson, Semiclassical three-dimensional model for vibrational energy transfer in diatomic molecules, Chem. Phys. 5, 244–254 (1974).

    Google Scholar 

  68. G.D. Billing and E.R. Fischer, W and VT rate coefficients in H2 by a quantum-classical model, Chem. Phys. 18, 225–232 (1976).

    CAS  Google Scholar 

  69. G.D. Billing, Rotational and vibrational relaxation of hydrogen and deuterium, Chem. Phys. 20, 35–42 (1977).

    CAS  Google Scholar 

  70. H. Udseth, C.F. Giese, and W.R. Gentry, Transition probabilities and differential cross sections for vibrational excitation in collisions of H+ with H2, HD and D2, Phys. Rev. A 8, 2483–2493 (1973).

    CAS  Google Scholar 

  71. H. Schmidt, V. Hermann, and F. Linder, Spectroscopy of low-energy H+ + H2 collisions: Rotational and vibrational excitation of H2, Chem. Phys. Lett. 41, 365–369 (1976).

    CAS  Google Scholar 

  72. R.T. Skodje, W.R. Gentry, and C.F. Giese, On the use of the sudden approximation for vibrational excitation in high-energy collisions, and the sensitivity of the result to the choice of potential energy surface, J. Chem. Phys. 65, 5532–5533 (1976).

    CAS  Google Scholar 

  73. F.A. Herrero and J.P. Doering, Vibrational excitation of H2 by proton impact, Phys. Rev. A 5, 702–712 (1972).

    Google Scholar 

  74. W.H. Miller, Classical-limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).

    Google Scholar 

  75. W.H. Miller, The classical S-matrix in molecular collisions, Adv. Chem. Phys. 30, 77–136 (1975).

    CAS  Google Scholar 

  76. W.H. Miller, Classical S-matrix: Numerical application to inelastic collisions, J. Chem. Phys. 53, 3578–3587 (1970).

    CAS  Google Scholar 

  77. R.A. Marcus, Theory of semiclassical transition probabilities for inelastic and reactive collisions. V. Uniform approximation in multidimensional systems, J. Chem. Phys. 57, 4903–4909 (1972).

    CAS  Google Scholar 

  78. J.N.L. Connor and H.R. Mayne, Semiclassical theory of molecular collisions: Collinear atom harmonic oscillator collisions with attractive interactions, Mol. Phys. 32, 1123–1135 (1976).

    CAS  Google Scholar 

  79. W. Eastes and J.D. Doll, Semiclassical calculation of the harmonic oscillator transition probability for a collinear hard sphere collision, J. Chem. Phys. 60, 297–302 (1974).

    CAS  Google Scholar 

  80. J.W. Duff and D.G. Truhlar, Classical S-matrix: Application to classically forbidden vibrational excitation for He + HBr and H + Br2, Chem. Phys. 17, 249–254 (1976).

    CAS  Google Scholar 

  81. R.J. Cross, Sudden and semiclassical approximations in inelastic and reactive scattering, J. Chem. Phys. 58, 5178–5179 (1973).

    CAS  Google Scholar 

  82. J.D. Doll and W.H. Miller, Classical S-matrix for vibrational excitation of H2 by collision with He in three dimensions, J. Chem. Phys. 57, 5019–5026 (1972).

    CAS  Google Scholar 

  83. W.H. Miller and A.W. Raczkowski, Partial averaging in classical S-matrix theory, Faraday Discuss. Chem. Soc. 55, 45–50 (1973).

    CAS  Google Scholar 

  84. A.W. Raczdowski and W.H. Miller, Classical S-matrix calculation for vibrationally inelastic transitions in three-dimensional collisions of Li+ with H2, J. Chem. Phys. 61, 5413–5420 (1974).

    Google Scholar 

  85. D.Rapp, Quantum Mechanics, Holt, Rinehart, and Winston, New York (1971).

    Google Scholar 

  86. L.P. Presnyakov and A.M. Urnov, Quantum transitions between highly excited atomic levels induced by external time-dependent forces, J. Phys. B 3, 1267–1271 (1970).

    CAS  Google Scholar 

  87. A.P. Clark and I.C. Percival, Vibrational excitation and the Feynman correspondence identity, J. Phys. B 8, 1939–1952 (1975).

    Google Scholar 

  88. E.J.Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys. 62, 1544–1555 (1975).

    Google Scholar 

  89. E.J. Heller, Time-dependent variational approach to semiclassical dynamics, J. Chem. Phys. 64, 63–73 (1976).

    CAS  Google Scholar 

  90. E.J. Heller, Classical S-matrix limit of semiclassical dynamics, J. Chem. Phys. 65, 4979–4989 (1976).

    CAS  Google Scholar 

  91. W.R. Gentry and C.F. Giese, Application of a classical trajectory model to vibrational excitation in high-energy H+ + H2 collisions, Phys. Rev. A 11, 90–96 (1975)

    CAS  Google Scholar 

  92. W.R. Gentry and C.F. Giese, Quantum vibrational transition probabilities from real classical trajectories: Collinear atom-diatom collisions, J. Chem. Phys. 63, 3144–3155 (1975).

    CAS  Google Scholar 

  93. J.W. Duff and D.G. Truhlar, Use of semiclassical collision theory to compare analytic fits to the interaction potential for vibrational excitation of H2 by He, J. Chem. Phys. 63, 4418–4429 (1975).

    CAS  Google Scholar 

  94. R.B. Walker and R.K. Preston, Quantum versus classical dynamics in the treatment of multiple photon excitation of the anharmonic oscillator, J. Chem. Phys. 67, 2017–2028 (1977).

    CAS  Google Scholar 

  95. R.T. Skodje, W.R. Gentry, and C.F. Giese, Quantum vibrational transition probabilities from real classical trajectories: Symmetric diatom-diatom collisions, J. Chem. Phys. 66, 160–168 (1977).

    CAS  Google Scholar 

  96. P. McGuire, K. Rudolph, and J.P. Toennies, Comparison of quantum and experimental rotational transition probabilities for H+ + H2 collisions at 3.7. eV, J. Chem. Phys. 65, 5522–5523 (1976).

    CAS  Google Scholar 

  97. P. McGuire, H. Schmidt, V. Hermann, and F. Linder, Quantum oscillations in the transition probability for rotational excitation of H2 by H+ impact at 4.67 eV, J. Chem. Phys. 66, 4243–4244 (1977).

    CAS  Google Scholar 

  98. J.D. Kelley, Vibrational energy transfer processes in collisions between diatomic molecules, J. Chem. Phys. 56, 6108–6117 (1972).

    CAS  Google Scholar 

  99. R.T. Skodje, W.R. Gentry, and C.F. Giese, Quantum vibrational transition probabilities from real classical trajectories: Asymmetric diatom-diatom collisions, J. Chem. Phys. in press (1979).

    Google Scholar 

  100. I.C. Percival and D. Richards, A correspondence principle for strongly coupled states, J. Phys. B 3, 1035–1046 (1970).

    Google Scholar 

  101. A.P. Clark and A.S. Dickinson, Correspondence principle methods applied to a forced harmonic oscillator, J. Phys. B 4, L112–L116 (1971).

    CAS  Google Scholar 

  102. A.P. Clark, A.S. Dickinson, and D. Richards, The correspondence principle in heavy- particle collisions, Adv. Chem. Phys. 36, 63–139 (1977).

    CAS  Google Scholar 

  103. A.P. Clark, Simultaneous rotational and vibrational transitions in He + H2 collisions, J. Phys. B 10, L389–L394 (1977).

    CAS  Google Scholar 

  104. A.P. Clark, A modified correspondence principle for strongly coupled states, J. Phys. B 6, 1153–1164 (1973).

    Google Scholar 

  105. W.R. Gentry, Ion-dipole scattering in classical perturbation theory, J. Chem. Phys. 60, 2547–2553 (1974).

    CAS  Google Scholar 

  106. H. Udseth, C.F. Giese, and W.R. Gentry, Rotational excitation in the small-angle scattering of protons from diatomic molecules, J. Chem. Phys. 60, 3051–3056 (1974).

    CAS  Google Scholar 

  107. F.H. Heidrich, K.R. Wilson, and D. Rapp, Collinear collisions of an atom and harmonic oscillator, J. Chem. Phys. 54, 3885–3897 (1971).

    CAS  Google Scholar 

  108. B.H. Mahan, Refined impulse approximation for the collisional excitation of the classical anharmonic oscillator, J. Chem. Phys. 52, 5221–5225 (1970).

    CAS  Google Scholar 

  109. J.D. Kelley and M. Wolfsberg, Comparison of approximate translational-vibrational energy-transfer formulas with exact classical calculations, J. Chem. Phys. 44, 324–338 (1966).

    CAS  Google Scholar 

  110. R.I. Morse, Collisions of an atom with a harmonic oscillator, J. Chem. Phys. 54, 4138–4139 (1971).

    CAS  Google Scholar 

  111. R.I. Morse and R.J. LaBreque, Collinear collisions of an atom and a Morse oscillator: An approximate semiclassical approach, J. Chem. Phys. 55, 1522–1530 (1971).

    CAS  Google Scholar 

  112. A. Zelechow, D. Rapp, and T.E. Sharp, Vibrational-vibrational-translational energy transfer between two diatomic molecules, J. Chem. Phys. 49, 286–299 (1968).

    CAS  Google Scholar 

  113. K. Shobatake, S.A. Rice, and Y.T. Lee, ITFITS model for vibration-translation energy partitioning in atom-polyatomic molecule collisions, J. Chem. Phys. 59, 2483–2489 (1973).

    CAS  Google Scholar 

  114. J.N. Bass, Translation to vibration energy transfer in O + NH3 and O + CO2 collisions, J. Chem. Phys. 60, 2913–2921 (1974).

    CAS  Google Scholar 

  115. M.H. Cheng, M.H. Chiang, E.A. Gislason, B.H. Mahan, C.W. Tsao, and A.S. Werner, Collisional excitation of small molecular ions, J. Chem. Phys. 52, 6150–6156 (1970).

    CAS  Google Scholar 

  116. R.D. Sharma, Deactivation of bending mode of CO2 by hydrogen and deuterium, J. Chem. Phys. 50, 919–923 (1969).

    CAS  Google Scholar 

  117. R.D. Sharma, Transfer of vibrational energy from asymmetric stretch of CO2 to v 3 of N20, Phys. Rev. A 2, 173–187 (1970).

    Google Scholar 

  118. R.D. Sharma and C.A. Brau, Energy transfer in near-resonant molecular collisions due to long-range forces with application to transfer of vibrational energy from v 3 mode of CO2 to N2, J. Chem. Phys. 50, 924–930 (1969).

    CAS  Google Scholar 

  119. L.-Y. C. Chiu, Vibrational and rotational energy transfer upon molecular collisions, Chem. Phys. 16, 269–279 (1976).

    CAS  Google Scholar 

  120. J. Krutein and F. Linder, Differential scattering experiments on vibrational excitation in low-energy H+ + CO2 collisions, J. Phys. B 10, 1363–1375 (1977).

    CAS  Google Scholar 

  121. P. Eckelt, H.J. Korsch, and V. Phillip, Energy loss spectra for vibrorotational molecular excitation in an impulsive spectator moldel, J. Phys. B 7, 1649–1665 (1974).

    CAS  Google Scholar 

  122. H.J. Korsch and V. Phillip, Quantum mechanical impulse approximation for vibro-rotational excitation in atom-diatom collisions, Phys. Rev. A 13, 497–499 (1976).

    CAS  Google Scholar 

  123. T.A. Dillon and J.C. Stephenson, Effect of the straight path approximation and ex¬change forces on vibrational energy transfer, J. Chem. Phys. 58, 3849–3854 (1973).

    CAS  Google Scholar 

  124. J.D. Kelley and M. Wolfsberg, Simple expression for “steric factor” in translational- vibrational energy transfer, J. Chem. Phys. 50, 1894–1896 (1969).

    CAS  Google Scholar 

  125. J.D. Kelley and M. Wolfsberg, Exact classical calculations on collisional energy transfer to diatomic molecules with a rotational and a vibrational degree of freedom, J. Chem. Phys. 53, 2967–2977 (1970).

    CAS  Google Scholar 

  126. D.J. Kouri and C.A. Wells, Comparisons of Morse and harmonic oscillator models for vibration-rotation excitation of H2 by Li+, J. Chem. Phys. 60, 2296–2304 (1974).

    CAS  Google Scholar 

  127. P. McGuire and J.P. Toennies, A priori low temperature vibrational relaxation rates for He-H2, J. Chem. Phys. 62, 4623–4627 (1975).

    CAS  Google Scholar 

  128. H.J. Korsch and V. Phillip, Collision-induced molecular excitation: Comparison of the collinear model with three-dimensional calculations, Chem. Phys. Lett. 31, 296–300 (1975).

    CAS  Google Scholar 

  129. M. Faubel and J.P. Toennies, Energy transfer in classical collinear and perpendicular collisions of a structureless atom with a Morse oscillator, Chem. Phys. 4, 36–44 (1974).

    CAS  Google Scholar 

  130. M.R. Verter and H. Rabitz, Theoretical evaluation of vibrational transition rates and relaxation in CO-He, J. Chem. Phys. 64, 2939–2952 (1976).

    CAS  Google Scholar 

  131. A.P. Clark and A.S. Dickinson, Collinear collision of an atom and a Morse oscillator: Exact quantum mechanical results, J. Phys. B 6, 164–180 (1973).

    CAS  Google Scholar 

  132. G.W.F. Drake and C.S. Lin, Semiclassical study of the vibrational excitation of H2 in collision with He, J. Phys. B 7, 398–405 (1974); Corrigendum: J. Phys. B 7, 2440 (1974).

    Google Scholar 

  133. R. Schinke and J.P. Toennies, Semiclassical calculations of vibrational energy trans¬fer: Comparison of the harmonic and the Morse oscillator in collinear and perpendicular collisions with a structureless atom, J. Chem. Phys. 62, 4871–4879 (1975).

    CAS  Google Scholar 

  134. M.H. Alexander and E.V. Berard, Potential energy surface dependence of vibrationally inelastic collisions between He and H2, J. Chem. Phys. 60, 3950–3957 (1974).

    CAS  Google Scholar 

  135. R.A. White and E.F. Hayes, A model potential for vibrational excitation of diatomic molecules, Chem. Phys. Lett. 98–102 (1972).

    Google Scholar 

  136. H.K. Shin, Vibrational transitions in atom-diatomic systems. Use of the Lennard- Jones potential, J. Phys. Chem. 77, 1666–1673 (1973).

    CAS  Google Scholar 

  137. H.K. Shin, Vibrational relaxation of hydrogen fluorides: HF(v = 1) + F→ HF(v = 0) + F, Chem. Phys. Lett. 43, 4–10 (1976).

    CAS  Google Scholar 

  138. A. Bogan, Impulse approximation for three-dimensional inelastic atom-diatomic molecule collisions, Phys. Rev. A 9, 1230–1241 (1974).

    CAS  Google Scholar 

  139. R.L. Thommarson, G.C. Berend, and S.W. Benson, Molecular relaxation processes in triatomic molecules. I. T-V transition probabilities in the CO2-He syste, J. Chem. Phys. 54, 1313–1316 (1971).

    CAS  Google Scholar 

  140. J.W. Ioup and A. Russek, Vibrational-rotational excitation in atom-diatomic molecule collisions, Phys. Rev. A 8, 2898–2914 (1973).

    CAS  Google Scholar 

  141. W.L. Dimpfl and B.H. Mahan, Large-angle inelastic scattering of Na+ by D2, J. Chem. Phys. 60, 3238–3250 (1974).

    CAS  Google Scholar 

  142. W.R. Gentry, H. Udseth, and C.F. Giese, Evidence for vibrational excitation in H+ + CH4, CD4 collisions by means of a surface-hopping mechanism, Chem. Phys. Lett. 36, 671–673 (1975).

    CAS  Google Scholar 

  143. D.J. Kouri, T.G. Heil, and Y. Shimoni, Sufficiency conditions for the validity of the j z-conserving coupled states approximation, J. Chem. Phys. 65, 1462–1473 (1976).

    CAS  Google Scholar 

  144. L.L. Poulsen, P.L. Houston, and J.I. Steinfeld, Near-resonant vibration ↔ rotation energy transfer, J. Chem. Phys. 58, 3381–3388 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Gentry, W.R. (1979). Vibrational Excitation II: Classical and Semiclassical Methods. In: Bernstein, R.B. (eds) Atom - Molecule Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2913-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2913-8_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2915-2

  • Online ISBN: 978-1-4613-2913-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics