Sheet Necking-II. Time-Independent Behavior

  • J. W. Hutchinson
  • K. W. Neale


Various factors affecting the prediction of limit strains in biaxially-stretched sheets are studied. Time-independent material behavior is assumed, and both the flow theory of plasticity as well as a finite-strain version of deformation theory are considered. A localization-band bifurcation analysis is first carried out. The influence of geometric imperfections is then analyzed using the long-wavelength approximation treated in Part I. We also discuss the predicted forming limit curves and comment on their relation to published experimental data. The main emphasis in this Part, however, is on comparisons between the corresponding predictions of flow theory and deformation theory.


Deformation Theory Bifurcation Analysis Limit Strain Flow Theory Localize Necking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Hill, J. Mech. Phys. Solids, 1 (1952), 19.CrossRefGoogle Scholar
  2. [2]
    Z. Marciniak and K. Kuczynski, Int. J. Mech. Sci., 9 (1967), 609.CrossRefGoogle Scholar
  3. [3]
    R. Sowerby and J. L. Duncan, Int. J. Mech. Sci., 13 (1971), 217.CrossRefGoogle Scholar
  4. [4]
    M. Azrin and W. A. Backofen, Metall. Trans., 1 (1970), 2857.Google Scholar
  5. [5]
    S. Storen and J. R. Rice, J. Mech. Phys. Solids, 23 (1975), 421.CrossRefGoogle Scholar
  6. [6]
    J. W. Hutchinson, Adv. Appl. Mech., 14 (1974), 67.CrossRefGoogle Scholar
  7. [7]
    R. Hill, J. Mech. Phys. Solids, 6 (1958), 236.CrossRefGoogle Scholar
  8. [8]
    J. W. Hutchinson, Numerical Solution of Nonlinear Structural Problems (ed. R. F. Hartung) ASME (1973), 17.Google Scholar
  9. [9]
    R. M. McMeeking and J. R. Rice, Int. J. Solids Struct., 11 (1975), 601.CrossRefGoogle Scholar
  10. [10]
    R. Hill, Proc. R. Soc. Lond. A, 314 (1970), 457. 149Google Scholar
  11. [11]
    R. Hill, J. Mech. Phys. Solids, 16 (1968), 229, 315.CrossRefGoogle Scholar
  12. [12]
    R. W. Ogden, Proc. R. Soc. Lond. A, 326 (1972), 565.CrossRefGoogle Scholar
  13. [13]
    R. Hill and J. W. Hutchinson, J. Mech. Phys. Solids, 23 (1975), 239.CrossRefGoogle Scholar
  14. [14]
    Z. Marciniak, K. Kuczynski and T. Pokora, Int. J. Mech. Sci., 15 (1973), 789.CrossRefGoogle Scholar
  15. [15]
    A. K. Ghosh, Metall. Trans., 5 (1974), 1607.CrossRefGoogle Scholar
  16. [16]
    J. W. Hutchinson and K. W. Neale, Acta Met., 25 (1977), 839.CrossRefGoogle Scholar
  17. [17]
    J. W. Hutchinson and W. T. Koiter, Appl. Mech. Rev., 23 (1970), 1353.Google Scholar
  18. [18]
    A. K. Ghosh and S. S. Hecker, Metall. Trans., 5 (1974), 2161.CrossRefGoogle Scholar
  19. [19]
    S. S. Hecker, Sheet Metal Ind., (1975), 671.Google Scholar
  20. [20]
    S. S. Hecker, J. Eng. Mater. Technol. (Trans. ASME, H), 97 (1975), 66.CrossRefGoogle Scholar
  21. [21]
    M. J. Painter and R. Pearce, J. Phys. D: Appl. Phys., 7 (1974), 992.CrossRefGoogle Scholar
  22. [22]
    R. Venter, W. Johnson and M. C. de Malherbe, Int. J. Mech. Sci., 13 (1971), 299.CrossRefGoogle Scholar
  23. [23]
    A. Needleman, J. Mech. Phys. Solids, 24 (1976), 339.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. W. Hutchinson
    • 1
  • K. W. Neale
    • 2
  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Université de SherbrookeSherbrookeCanada

Personalised recommendations