Deformation Analysis of Axisymmetric Sheet Metal Forming Processes by the Rigid-Plastic Finite Element Method

  • S. Kobayashi
  • J. H. Kim

Abstract

The paper describes the development of a finite-element model for analyzing the sheet-metal forming processes. Materials are assumed to be rigid-plastic with the view that the usefulness of an analysis method depends largely on solution accuracy and computation efficiency.

First, the variational formulation applicable to sheet metal forming is described by considering solution uniqueness and the effect of geometry change involved in the forming processes. From this variational formulation, a finite-element process model based on the membrane theory is developed. Then, three basic sheet-metal forming processes, namely, the bulging of a sheet subject to the hydrostatic pressure, the stretching of a sheet with a hemispherical head punch, and deep drawing of a sheet with a hemispherical head punch, are solved. The solutions by the rigid- plastic finite-element method are compared with existing numerical solutions and the experimental data. The agreement is generally excellent and it is concluded that the rigid-plastic finite-element method is efficient for analyzing the sheet-metal forming problems with reasonable accuracy.

Keywords

Anisotropy Graphite Ductility Workhardening Flange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. H. Lee and S. Kobayashi, J. Eng. Ind. (Trans. ASME, B), 95 (1973), 865.CrossRefGoogle Scholar
  2. [2]
    C. H. Lee andS. Kobayashi, Proc. North Amer. Metalworking Res. Conf., Hamilton, Canada, 1 (1973), 185.Google Scholar
  3. [3]
    S. N. Shah, C. H. Lee and S. Kobayashi, Proc. Int. Conf. Prod. Engrs., Tokyo (1974), 295.Google Scholar
  4. [4]
    S. N. Shah and S. Kobayashi, Proc. 15th Int. Mach. Tool Design and Res. Conf. (1975), 603.Google Scholar
  5. [5]
    S. H. Lee and S. Kobayashi, Proc. 15th Int. Mach. Tool Design & Res. Conf. (1975), 561.Google Scholar
  6. [6]
    S. N. Shah and S. Kobayashi, J. Engrg. Prod., 1 (1977), 73.Google Scholar
  7. [7]
    S. I. Oh, C. C. Chen and S. Kobayashi, to be published in J. Engrg. Prod. (Trans. ASME, B) (1978).Google Scholar
  8. [8]
    R. Hill, J. Mech. Phys. Solids, 4 (1956), 247.CrossRefGoogle Scholar
  9. [9]
    R. Hill, J. Mech. Phys. Solids, 5 (1956), 1.CrossRefGoogle Scholar
  10. [10]
    R. Hill, J. Mech. Phys. Solids, 5 (1957), 133.Google Scholar
  11. [11]
    R. Hill, J. Mech. Phys. Solids, 5 (1957), 302.CrossRefGoogle Scholar
  12. [12]
    P. Larsen, Ph.D. dissertation, University of California, Berkeley (1971).Google Scholar
  13. [13]
    L. Malvern, Introduction to the Mechanics of a Continuous Medium, Prentice-Hall (1969).Google Scholar
  14. [14]
    A. E. Green and P. M. Naghdi, Arch. Rat. Mech. Anal., 18 (1965) 251.Google Scholar
  15. [15]
    N. M. Wang, Research Publication GMR-1038, General Motors Research Laboratories, Warren, Mich. (1970).Google Scholar
  16. [16]
    R. Hill, The Mathematical Theory of Plasticity, Oxford Press (1950).Google Scholar
  17. [17]
    R. Hill, Philos. Mag., 41 (1950), 1133.Google Scholar
  18. [18]
    D. M. Woo, Int. J. Mech. Sci., 6 (1964), 303.CrossRefGoogle Scholar
  19. [19]
    Y. Yamada and Y. Yokouchi, Manuf. Res., 21 (1969), 26 (in Japanese).Google Scholar
  20. [20]
    N. M. Wang and M. R. Shammamy, J. Mech. Phys. Solids, 17 (1969), 43.CrossRefGoogle Scholar
  21. [21]
    H. Iseki, T. Jimma, and T. Murota, Bull. JSME, 17 (1974).Google Scholar
  22. [22]
    B. Budiansky, J. Appl. Mech. (Trans. ASME, E), 35 (1968), 393.Google Scholar
  23. [23]
    J. Chakrabarty, Int. J. Mech. Sci., 12 (1970), 315.CrossRefGoogle Scholar
  24. [24]
    D. M. Woo, The Engineer, Lond., 220 (1965), 876.Google Scholar
  25. [25]
    N. M. Wang and W. J. Gordon, Research Publication GMR-744, General Motors Research Laboratories, Warren, Mich. (1968).Google Scholar
  26. [26]
    N. M. Wang, Research Publication GMR-862, General Motors Research Laboratories, Warren, Mich. (1969).Google Scholar
  27. [27]
    N. M. Wang, J. Appl. Mech. (Trans. ASME, E), 37 (1970), 431.CrossRefGoogle Scholar
  28. [28]
    A. S. Wifi, Int. J. Mech. Sci., 18 (1976), 23.CrossRefGoogle Scholar
  29. [29]
    C. H. Lee, S. Masaki and S. Kobayashi, Int. J. Mech. Sci., 14 (1972), 417.CrossRefGoogle Scholar
  30. [30]
    J. H. Kim, Ph.D. Dissertation, University of California, Berkeley (1977).Google Scholar
  31. [31]
    S. Y. Chung and H. W. Swift, Inst, of Mech. Engrs. (Lond.), 165 (1951), 199.CrossRefGoogle Scholar
  32. [32]
    D. C. Chiang and S. Kobayashi, J. Eng. Ind. (Trans. ASME, B), 88 (1966), 443.Google Scholar
  33. [33]
    B. Budiansky and N. M. Wang, J. Mech. Phys. Solids, 14 (1966), 357.CrossRefGoogle Scholar
  34. [34]
    J. Chakrabarty and P. B. Mellor, Proc. 5th Biennial Congress, IDDRG; Metall. Ital. (1968), 791.Google Scholar
  35. [35]
    D. M. Woo, J. Mech. Engrs., 6 (1964), 116.Google Scholar
  36. [36]
    D. M. Woo, Int. J. Mech. Sci., 10 (1968), 83.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • S. Kobayashi
    • 1
  • J. H. Kim
    • 1
  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations