Skip to main content

Limits to Ductility Set by Plastic Flow Localization

  • Chapter
Mechanics of Sheet Metal Forming

Abstract

The theory of strain localization is reviewed with reference both to local necking in sheet metal forming processes and to more general three dimensional shear band localizations that sometimes mark the onset of ductile rupture. Both bifurcation behavior and the growth of initial imperfections are considered. In addition to analyses based on classical Mises-like constitutive laws, we discuss approaches to localization based on constitutive models that may more accurately model processes of slip and progressive rupturing on the microscale in structural alloys. Among these non-classical constitutive features are the destabilizing roles of yield surface vertices and of non-normality effects, arising, for example, from slight pressure sensitivity of yield. We also discuss analyses based on a constitutive model of a progressively cavitating dila- tional plastic material which is intended to model the process of ductile void growth in metals. A variety of numerical results are presented. In the context of the three dimensional theory of localization, we show that a simple vertex model predicts ratios of ductility in plane strain tension to ductility in axisymmetric tension qualitatively consistent with experiment.. We also illustrate the destabilizing influence of a hydrostatic stress dependent void nucleation criterion. In the sheet necking context, and focussing on positive biaxial stretching, it is shown that forming limit curves based on a simple vertex model and those based on a simple void growth model are qualitatively in accord, although attributing instability to very different physical mechanisms. These forming limit curves are compared with those obtained from the Mises material model and employing various material and geometric imperfections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Hill, The Mathematical Theory of Plasticity, Oxford Press (1950).

    Google Scholar 

  2. J. W. Rudnicki and J. R. Rice, J. Mech. Phys. Solids, 23 (1975), 371.

    Article  Google Scholar 

  3. J. R. Rice, Theoretical and Applied Mechanics, Proc. 14thInt. U. Theor. Appl. Mech. Cong, (ed., W. T. Koiter), North-Holland, 1 (1976), 207.

    Google Scholar 

  4. R. Hill, J. Mech. Phys. Solids, 15 (1967), 79.

    Article  CAS  Google Scholar 

  5. T. H. Lin, Adv. Appl. Mech., 11 (1971), 255.

    Article  Google Scholar 

  6. J. W. Hutchinson, Proc. Roy. Soc. Lond. A, 139 (1970), 247.

    Google Scholar 

  7. S. Stören and J. R. Rice, J. Mech. Phys. Solids, 23 (1975), 421.

    Article  Google Scholar 

  8. JL. Sanders, Proc. 2nd U.S. Nat. Congress Appl. Mech. (1954), 455.

    Google Scholar 

  9. J. W. Hutchinson and K. W. Neale, “Sheet necking-II. Time-independent behavior,” this volume.

    Google Scholar 

  10. W. A. Spitzig, R. J. Sober and O. Richmond, Acta Met., 23 (1975), 885.

    Article  CAS  Google Scholar 

  11. W. A. Spitzig, R. J. Sober and O. Richmond, Metall. Trans. 7A (1976), 1703.

    Google Scholar 

  12. A. L. Gurson, Ph.D. Dissertation, Brown University (1975).

    Google Scholar 

  13. A. L. Gurson, J. Engr. Mater. Technol. (Trans. ASME, H), 99 (1977), 2.

    Article  Google Scholar 

  14. F. A. McClintock, J. Appl. Mech. (Trans. ASME, E), 55 (1968), 363.

    Google Scholar 

  15. J. F. W. Bishop and R. Hill, Philos. Mag., 42 (1951), 414.

    CAS  Google Scholar 

  16. C. A. Berg, Inelastic Behavior of Solids (eds., M. F. Kanninen et al.), McGraw-Hill (1970), 171.

    Google Scholar 

  17. A. L. Gurson, Fracture 1977, (ed. D. M. R. Taplin), Univ. Waterloo Press, 2 (1977), 357.

    Google Scholar 

  18. J. Gurland, Acta. Met., 20 (1972), 735.

    Article  CAS  Google Scholar 

  19. A. S. Argon, J. Im and A. Needleman, Metall. Trans., 6A (1975), 815.

    CAS  Google Scholar 

  20. A. S. Argon and J. Im, Metall. Trans., 6A (1975), 839.

    CAS  Google Scholar 

  21. A. S. Argon, J. Im and R. Safoglu, Metall. Trans., 6A (1975), 825.

    CAS  Google Scholar 

  22. J. R. Rice and M. A. Johnson, Inelastic Behavior of Solids (eds., M. F. Kanninen et al.), McGraw-Hill (1970), 641.

    Google Scholar 

  23. A. Needleman and V. Tvergaard, J. Mech. Phys. Solids, 25 (1977), 159.

    Article  Google Scholar 

  24. A. Marciniak and K. Kuczynski, Int. J. Mech. Sci., 9 (1967), 609.

    Article  Google Scholar 

  25. J. Hadamard, Lecons sur la Propagation des Ondes et les Equations de L’Hydrodynamique, Paris, Chp. 6 (1903).

    Google Scholar 

  26. R. Hill, J. Mech. Phys. Solids, 10 (1962), 1.

    Article  Google Scholar 

  27. J. Mandel, Rheology and Soil Mechanics (eds., J. Kravtchenko and P. M. Sirieys ), Springer- Verlag (1966), 58.

    Google Scholar 

  28. R. Hill and J. W. Hutchinson, J. Mech. Phys. Solids, 23 (1975), 239.

    Article  Google Scholar 

  29. D. P. Clausing, Int. J. Fract. Mech., 6 (1970), 71.

    Google Scholar 

  30. R. J. Asaro and J. R. Rice, J. Mech. Phys. Solids, 25 (1977), 309.

    Article  Google Scholar 

  31. H. Yamamoto, Int. J. Fract. (in press).

    Google Scholar 

  32. R. Hill, J. Mech. Phys. Solids, 1 (1952), 19.

    Article  Google Scholar 

  33. S. P. Keeler, Machinery, 74, Nos. 6-11, February-July (1968).

    Google Scholar 

  34. S. S. Hecker, Sheet Metal Ind. (1975), 671.

    Google Scholar 

  35. S. S. Hecker, J. Eng. Mater. Technol. (Trans. ASME, H), 97 (1975), 66.

    Article  CAS  Google Scholar 

  36. M. Arzin and W. A. Backofen, Metall. Trans., 1 (1970), 2857.

    Google Scholar 

  37. A. K. Ghosh and S. S. Hecker, Metall. Trans., 5 (1974), 2161.

    Article  CAS  Google Scholar 

  38. A. K. Ghosh and S. S. Hecker, Metall. Trans., 6A (1975), 1065.

    CAS  Google Scholar 

  39. M. J. Painter and R. Pearce, J. Phys. D: Appl. Phys., 7 (1974), 992.

    Article  CAS  Google Scholar 

  40. A. Needleman and N. Triantafyllidis, J. Eng. Mater. Technol. (Trans. ASME, H) (in press).

    Google Scholar 

  41. A. Needleman, J. Mech. Phys. Solids, 24 (1976), 339.

    Article  Google Scholar 

  42. J. W. Hutchinson, K. W. Neale and A. Needleman, “Sheet necking-I. Validity of plane stress assumptions of the long-wavelength approximation,” this volume.

    Google Scholar 

  43. E. J. Appleby and O. Richmond, to be published.

    Google Scholar 

  44. T. Y. Thomas, Plastic flow and fracture in solids, Academic Press (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Needleman, A., Rice, J.R. (1978). Limits to Ductility Set by Plastic Flow Localization. In: Koistinen, D.P., Wang, NM. (eds) Mechanics of Sheet Metal Forming. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2880-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2880-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2882-7

  • Online ISBN: 978-1-4613-2880-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics