Skip to main content

Status of Muon-Number Conservation and Comments on Parity Violation in Atoms

  • Chapter
Book cover New Frontiers in High-Energy Physics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 14))

  • 65 Accesses

Abstract

Last year two of the hottest topics of conversation at this conference were1: 1) the rumor that muon-number violation might have been observed in the μ+→e++γ and 2) the failure of bismuth experiments to detect parity violation at the level predicted by the standard Weinberg-Salam model2. During the intervening time between then and now, several significant theoretical and experimental developments regarding these topics have occurred.

Work supported in part by the U.S. Energy Research and Development Administration under grant number EY-76-C-02-2232B. *000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. TaPei Cheng and C. Bouchiat, Deeper Pathways in High-Energy Physics, edited by Perlmutter and Scott (Plenum Press, New York, 1977) p. 659 and p. 435

    Google Scholar 

  2. S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967); A. Salam in Elementary Particle Physics ed. N. Svartholm (Almquist and Wiksells, Stockholm 1968 ) p. 367.

    Article  Google Scholar 

  3. For a pre-gauge-theory review of these processes, see S. Frankel, in Muon Physics, edited by C. S. Wu and V. W. Hughes (Academic Press, New York, 1975 ), Vol. II, p. 83 and references therein.

    Google Scholar 

  4. P. Depommier et al., Phys. Rev. Lett. 39, 1113 (l977).

    Article  Google Scholar 

  5. H. Povel et al., Phys. Lett. 72B, 83 (1977).

    Article  Google Scholar 

  6. A. Badertscher et al., Phys. Rev. Lett. 39, 1385 (1977).

    Article  Google Scholar 

  7. W. J. Marciano and A. I. Sanda, Phys. Rev. Lett. 38, 1512 (1977); G. Altarelli, L. Baulieu, N. Cabibbo, L. Maiani and R. Petronzio, Nucl. Phys. B125, 285 (1977).

    Article  Google Scholar 

  8. L. L. Lewis et al., Phys. Rev. Lett. 39, 795 (1977); P. Baird et al. ibid 39, 798 (1977).

    Article  Google Scholar 

  9. R. Mohapatra, F. Paige and D. Sidhu, B.N.L. preprint 1977; and R. Mohapatra in his talk at this conference.

    Google Scholar 

  10. C. E. Loving and P. Sandars, Oxford University preprint 1977.

    Google Scholar 

  11. Theoretical background for these effects can be found in: M. A. Bouchiat and C. C. Bouchiat, Phys. Lett. 48B, 111 (l974), Le Journal De Physique 35, 899 (1974); 36, 493 (1975).

    Google Scholar 

  12. G. Feinberg, “Parity Non-Conservation in Atoms”, Columbia University preprint 1977. This paper reviews the status and background of these calculations. It also describes the feasibility of performing similar experiments in other atoms.

    Google Scholar 

  13. W. J. Marciano and A. I. Sanda, “Parity Violation in Atoms Induced by Radiative Corrections” Rockefeller University preprint C00-2232B-142. Submitted by Phys. Rev. D.

    Google Scholar 

  14. S. Parker, H. Anderson and C. Rey, Phys. Rev. 133 B768 (1964).

    Article  Google Scholar 

  15. S. M. Korenchenko et al. Zh. Eksp. Teor. Fiz. 70 3 (1976) [Sov. Phys. JETP 43 1 (1976)].

    Google Scholar 

  16. D. A. Bryman, M. Blecher, K. Gotow and R. J. Powers, Phys. Rev. Lett. 28, 1469 (l972).

    Article  Google Scholar 

  17. A discussion of other muon-number non-conserving processes can be found in Ta-Pei Cheng and Ling-Fong Li, Phys. Rev. D16, 1425 (1977).

    Google Scholar 

  18. The best bounds on the possible decay νμ→νe+γ come from Astrophysics, see M.A.B. Bég, W. J. Marciano and M. Ruderman, to be published in Phys. Rev. D and references therein.

    Google Scholar 

  19. J. D. Bowman, Private communication.

    Google Scholar 

  20. D. Bryman, private communication.

    Google Scholar 

  21. For a review of muon capture which contains many references to the literature, see N. C. Mukhopadhyay, Phys. Reports 30C, 1 (1977).

    Article  Google Scholar 

  22. S. Weinberg and G. Feinberg, Phys. Rev. Lett. 3, 111, 244 ( E) (1959). This paper provides a clear analysis of muon conversion, and formulas which are easily applied to gauge theories.

    Article  Google Scholar 

  23. F. J. Ernst, Phys. Rev. Lett. 5, 478 (1960).

    Article  Google Scholar 

  24. If we discard inelastic processes (which experimentalists would probably not identify as conversions anyway), then the 8 in the donominator of (3.6) becomes ~10 and our numerical predictions are reduced by about a factor of.8 C.f. ref. 22.

    Google Scholar 

  25. T.-P. Cheng and L.-F. Li, Phys. Rev. Lett. 38, 381 (1977); S. M. Bilenky, S. T. Petcov, and B. Pontecorvo, Phys. Lett. 67B, 309 (1977).

    Article  Google Scholar 

  26. J. D. Bjorken, K. Lane, and S. Weinberg, Phys. Rev. D16, 1474 (1977).

    Google Scholar 

  27. B. W. Lee, S. Pakvasa, R. E. Shrock and H. Sugawara, Phys. Rev. Lett. 38, 937, 1230 (E) (1977); B. W. Lee and R. Shrock, Phys. Rev. D16, 1444 (1977).

    Article  Google Scholar 

  28. F. Wilczek and A. Zee, Phys. Rev. Lett. 38, 531 (1977).

    Article  Google Scholar 

  29. S. B. Treiman, F. Wilczek and A. Zee, Phys. Rev. D16, 152 (1977).

    Google Scholar 

  30. S. M. Barr and S. Wandzura, Phys. Rev. D16, 707 (1977).

    Google Scholar 

  31. W. J. Marciano and A. I. Sanda, Phys. Lett. 67B, 303 (1977).

    Article  Google Scholar 

  32. M. A. B. Bég and A. Sirlin, Phys. Rev. Lett. 38, 1113 (1977).

    Article  Google Scholar 

  33. In a model proposed by J. D. Bjorken and S. Weinberg, Phys. Rev. Lett. 38, 622 (1977) muon-number violations result from the Higgs sector of the theory; therefore the magnitude of ReN depends on the quark-Higgs couplings which are essentially free parameters.

    Article  Google Scholar 

  34. The details of these calculations can be found in the appendix of ref. 13.

    Google Scholar 

  35. I have used the value sin2θW≃.24 throughout this talk. C. f. M. Holder et al. “Study of Inclusive Neutral Current Interactions of Neutrinos and Antineutrinos”, CERN preprint 1977.

    Google Scholar 

  36. The box diagrams involving two W exchanges contribute about 4% while the diagrams with two Z’s are almost insignificant for this model.

    Google Scholar 

  37. Q. Shafi and Ch. Wetterich, Phys. Lett. 69B 464 (1977). This paper presents a nice procedure for extracting this leading logarithm.

    Google Scholar 

  38. M.A.B. Bég, R. Budny, R. Mohapatra and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Marciano, W.J. (1978). Status of Muon-Number Conservation and Comments on Parity Violation in Atoms. In: Perlmutter, A., Scott, L.F. (eds) New Frontiers in High-Energy Physics. Studies in the Natural Sciences, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2865-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2865-0_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2867-4

  • Online ISBN: 978-1-4613-2865-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics