Skip to main content

Quantum Flavordynamics: A Status Report

  • Chapter
New Frontiers in High-Energy Physics

Part of the book series: Studies in the Natural Sciences ((SNS,volume 14))

  • 65 Accesses

Abstract

The problems posed and the challenges offered by QFD, at this time, are analyzed and discussed. A convenient starting point is afforded by a comparison of the different circumstances of QFD and QCD. Some features of the conventional methodology of QFD, which may be deemed to be questionable, are underlined. The prospects of the standard model are examined in the light of recent experiments, and some theoretical deficiencies of the model are noted. Following a brief comment about the status of some recently proposed models, it is suggested that one search for new physical principles which may be governing the structure of weak interactions in a hitherto unperceived way. Manifest left-right symmetry and time-reversal invariance, realized as symmetries of the Nambu-Goldstone type, are mentioned as possible examples of such principles; additional motivation for these symmetries emerges in a discussion of recent work on the problem of natural suppression of strong T-violation. The report concludes with a brief appraisal of the present state of QFD.

Work supported in part by the U.S. Energy Research and Development Administration under grant number EY-76-C-02-2232B.*000

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For reviews of QFD, written before the discipline was so christened by M. Gell-Mann, see: E.S. Abers and B.W. Lee, Phys. Rep. C9, 1(l973); M.A.B. Bég and A. Sirlin, Ann. Rev. Nucl. Sci. 24, 379 (1974).

    Article  Google Scholar 

  2. For a review of QCD, see: W.J. Marciano and H.R. Pagels, Phys. Rep. C (to be published).

    Google Scholar 

  3. For example, F. Gursey and P. Sikivie, Phys. Rev. Lett. 36, 775 (1976).

    Article  Google Scholar 

  4. F. Gürsey and L.A. Radicati, Phys. Rev. Lett. 13, 173 (l964).

    Article  Google Scholar 

  5. M.A.B. Bég, B.W. Lee and A. Pais, Phys. Rev. Lett. 13, 643 (1964); M.A.B. Bég and V. Singh, Phys. Rev. Lett. 13, 418 (1964).

    Article  Google Scholar 

  6. O. W. Greenberg, Phys. Rev. Lett. 13, 598 (1964).

    Article  Google Scholar 

  7. Symmetry breaking with the conventional Higgs mechanism jeopardizes the status of SU(3)c- as a classification symmetry, as well as the asymptotic freedom property of the theory [Ref. 8, below].

    Google Scholar 

  8. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973); D.J. Gross and F. Wilczek, ibid. 1343 (1973)

    Article  Google Scholar 

  9. V. N. Gribov, Lecture at the 12th Winter School of the Leningrad Nuclear Physics Institute (1977)

    Google Scholar 

  10. A. Sirlin, Rev. Mod. Phys. (to be published).

    Google Scholar 

  11. M.A.B. Bég and A. Sirlin, Ref. 1.

    Google Scholar 

  12. P.W. Anderson, Phys. Rev. 112, 1900 (1958)

    Article  Google Scholar 

  13. M.L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975), and Phys. Lett. 63B, 466 (1976).

    Article  Google Scholar 

  14. S.W. Herb et al., Phys. Rev. Lett. 39, 252 (1977).

    Article  Google Scholar 

  15. T.D. Lee, Phys. Rep. C9, 148 (1974); P. Sikivie, Phys. Lett. 65B, 141 (1976); S. Weinberg, Phys. Rev. Lett. 37, 657 (1976).

    Google Scholar 

  16. P. Wanderer et al., Phys. Rev. D (to be published) and references cited therein.

    Google Scholar 

  17. M. Holder et al., Phys. Lett. 72B, 254 (1977) and references cited therein.

    Google Scholar 

  18. For a recent review of the theoretical and the experimental situation, see W.J. Marciano’s report to “Orbis Scientiae 1978”; for an extensive list of references, see: B. Humpert, “μ → eγ; Why so interesting?”, SLAG Preprint (l977).

    Google Scholar 

  19. A. Benvenuti et al., Phys. Rev. Lett. 38, 1110, 1185 (l977).

    Article  Google Scholar 

  20. K. Kleinknecht, Report to “Orbis Scientiae 1978”; J. Steinberger, Report to the Irvine Conference (1977).

    Google Scholar 

  21. For information about the new super events seen by the HPWF group, I am indebted to V. Barger (Private communication).

    Google Scholar 

  22. K. Kleinknecht, Private Communication.

    Google Scholar 

  23. M. Holder et al., Phys. Rev. Lett. 39, 433 (1977).

    Article  Google Scholar 

  24. See, for example, R.M. Barnett, H. Georgi and H.D. Politzer, Phys. Rev. Lett. 37, 1313 (1976).

    Article  Google Scholar 

  25. M.A. Bouchiat and G.G. Bouchiat, Phys. Lett. 48B, 111 (l974); Le Journal de Physique 35, 899 (1974) and 36, 493 (1975); G. Feinberg and M.Y. Chen, Phys. Rev. D1O, 3789 (1974); M.A.B. Bég and G. Feinberg, Phys. Rev. Lett. 33, 606 (1974); 35, 130 (E) (1975).

    Google Scholar 

  26. L.L. Lewis et al., Phys. Rev. Lett. 39, 795 (1977); P. Baird et al., ibid. 39, 798 (1977).

    Article  Google Scholar 

  27. C.E. Loving and P. Sandars, Oxford University Preprint (1977).

    Google Scholar 

  28. G. Feinberg, “Parity Nonconservation in Atoms”, Columbia University preprint (1977); S. Meshkov amp; S.P.Rosen, unpublished.

    Google Scholar 

  29. R.R. Lewis and W.L. Williams, Phys. Lett. 59B, 70 (1975); R. Cahn and G. Kane, ibid. 71B, 348 (1977).

    Google Scholar 

  30. M.A.B. Bég and G. Feinberg, Ref. 25.

    Google Scholar 

  31. L.D. Faddeev, Dokl. Akad. Nauk SSSR 210, 807 (1973) [English translation: Sov. Phys.-Doklady 18, 382 (1973)].

    Google Scholar 

  32. J.D. Bjorken, SLAG Preprint (1977).

    Google Scholar 

  33. The reader is referred to recent volumes of the standard journals, particularly “Physics Letters” and “Physical Review Letters”, for a reasonably complete bibliography.

    Google Scholar 

  34. M.A.B. Bég, R. Budny, R. Mohapatra and A. Sirlin, Phys. Rev. Lett. 38, 1252 (1977).

    Article  Google Scholar 

  35. M.A.B. Bég, R. Mohapatra, A. Sirlin and H.-S. Tsao, Phys. Rev. Lett. 39, 1054 (1977).

    Article  Google Scholar 

  36. M.A.B. Bég and S.-S. Shei, Phys. Rev. D12, 3092 (l975).

    Google Scholar 

  37. Earlier formulations of left-right symmetry, and suggestions to the effect that parity may be good at high energies, may be found in the following papers (listed in chronological order): E.M. Lipmanov, Yad. Fiz. 6, 541 (1967) [Sov. J. Nucl. Phys. 6, 395 (1968)]; M.A.B. Bég and A. Zee, Phys. Rev. Lett. 30, 675 (1973) and Phys. Rev. D8, 1460 (1973); P. Fayet, Nucl. Phys. B78, 14 (l974); J. Pati and A. Salam, Phys. Rev. D10, 275 (l974); H. Fritzsch and P. Minkowski, Nucl. Phys. B103, 6l (1976); R.N. Mohapatra and D. P. Sidhu, Phys. Rev. Lett. 38, 667 (1977); A. de Rujula, H. Georgi and S.L. Glashow, Harvard Preprint (1977).

    Google Scholar 

  38. The first “vector-like” model was constructed by M.A.B. Bég and A. Zee, Ref. 37; for other references, see the report of H. Georgi in the Proceedings of “Orbis Scientiae, 1977”.

    Google Scholar 

  39. R.N. Mohapatra and D.P. Sidhu, Ref. 37.

    Google Scholar 

  40. R.N. Mohapatra, F.E.Paige and D.P. Sidhu, BNL Preprint (1977). Parity violation effects arising at the one-loop level have been calculated by W.J. Marciano and A.I. Sanda, Rockefeller University Report No. C00-2232B-142. (to be published in Phys. Rev. D)

    Google Scholar 

  41. The first discussion, in the gauge theoretic contest, is that of T.D. Lee Ref. 15.

    Google Scholar 

  42. R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 (l977); Phys. Rev. D16, 1791 (1977). H. Quinn, Report to “Orbis Scientiae 1978”.

    Article  Google Scholar 

  43. If one chooses θ so as to reproduce the correct order of magnitude for KL → 2π, one obtains a value for the electric dipole moment of the neutron which is about six orders of magnitude larger than the experimental upper limit. [See, for example, K. Kleinknecht, Ann. Rev. of Nuc. Sci. 26, 1 (1976) and references cited therein]

    Article  Google Scholar 

  44. This course is favored by M. Gell-Mann (Private communication)

    Google Scholar 

  45. Arguments against mu = 0 [see, for example, S. Weinberg,Ref. 46], based on the application of chiral perturbation theory to the K0−K+ mass difference, are not very convincing.

    Google Scholar 

  46. S. Weinberg, Phys. Rev. Lett. 40 223 (1978); F. Wilczek, ibid. 40, 279 (1977).

    Article  Google Scholar 

  47. C. Baltay, G. Feinberg and M. Goldhaber (Unpublished);G. Feinberg (Private communication).

    Google Scholar 

  48. And corresponding to the same eigenvalues for the Casimir operators of the group. (This qualification is, of course, redundant for representations of low dimensionality).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Bég, M.A.B. (1978). Quantum Flavordynamics: A Status Report. In: Perlmutter, A., Scott, L.F. (eds) New Frontiers in High-Energy Physics. Studies in the Natural Sciences, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2865-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2865-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2867-4

  • Online ISBN: 978-1-4613-2865-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics