Advertisement

New (Quark) Flavors

  • C. Quigg
Part of the Studies in the Natural Sciences book series (SNS, volume 14)

Abstract

Some possible characteristics of the new quark suggested by the discovery of Υ(9.4) are surveyed. An inverse scattering approach to the interquark potential is summarized.

Keywords

Harmonic Oscillator Harmonic Oscillator Potential Quark Flavor Short Track Approximate Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Meshkov, these proceedings.Google Scholar
  2. 2.
    An up-to-date summary is given by Martin Perl, in Unification of Elementary Forces and Gauge Theories, edited by D. Cline and F. Mills ( Gordon and Breach, New York, 1978 ), p. 315.Google Scholar
  3. 3.
    Inclusion of the last two distinguished conservative from reactionary. See also M.A.B. Beg, these proceedings.Google Scholar
  4. 4.
    For earlier suggestions, in Deeper Pathways in High Energy Physics, edited by A. Perlmutter and L.F. Scott ( Plenum, New York, 1977 ).Google Scholar
  5. 5.
    S. W. Herb et al., Phys. Rev. Lett. 39, 252 (l977); W. R. Innes et al., ibid., 39, 1240 (l977).CrossRefGoogle Scholar
  6. 6.
    For recent reviews, see J.D. Jackson, invited paper at the 1977 European Conference on Particle Physics, Budapest, CERN Report No. TH. 2351; K. Gottfried, invited paper at the 1977 International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, Cornell Report No. CLNS-376; V.A. Novikov et al., ITEP-42,58,65,79–1977, to appear in Physics Reports.Google Scholar
  7. 7.
    B. J. Bjørken and S. L. Glashow, Phys. Lett. 11, 255 (1964); S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2, 1285 (1970).Google Scholar
  8. 8.
    M. K. Gaillard, B. W. Lee, and J. L. Rosner, Rev. Mod. Phys. 47, 277 (1975); for more recent references, see C. Quigg and J. L. Rosner, Phys. Rev. D17, (1978).CrossRefGoogle Scholar
  9. 9.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos, and S. Rudaz, Nucl. Phys. B131, 285 (1977); R. M. Barnett, invited paper at the 1977 European Conference on Particle Physics, Budapest, SLAC-Pub-1961 and addendum; C. H. Albright, R. E. Shrock, and J. Smith, Fermilab-Pub-77/81-THY.CrossRefGoogle Scholar
  10. 10.
    A. Benvenuti et al., Phys. Rev. Lett. 36, 1478 (1976), 189 (1976).CrossRefGoogle Scholar
  11. 11.
    M. Holder et al., Phys. Rev. Lett. 39, 433 (1977); K. Kleinknecht, these proceedings; P.C. Bosetti et al., Phys. Lett. 70B, 273 (1977).CrossRefGoogle Scholar
  12. 12.
    B. C. Barish et al., Phys. Rev. Lett. 39, 1595 (l977).CrossRefGoogle Scholar
  13. 13.
    For a review of Fermilab 15′ Bubble Chamber results, see F. Nezrick, Fermilab-Conf-77/112-EXP. The Gargamelle results are given by D.H. Perkins, in Proceedings of the 1975 International Symposium on Lepton and Photon Interactions at High Energies, edited by W. T. Kirk (SLAC, Stanford, 1976 ), p. 571.Google Scholar
  14. 14.
    The stable hadron alternative has been discussed by R. N. Cahn, these proceedings, and Phys. Rev. Lett. 40, 80 (1978).CrossRefGoogle Scholar
  15. 15.
    Unconventional color assignments have been discussed by E. Ma, Phys. Lett. 58B, 442 (1975); G. Karl, Phys. Rev. Dl4, 9 (1976); F. Wilczek and A. Zee, Phys. Rev. Dl6, 860 (1977); R. Giles and S.-H. H. Tye, Fermilab-Pub-77/96-THY; S.L. Glashow, remarks at the 1977 Irvine Conference.Google Scholar
  16. 16.
    T. Appelquist, and H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975).CrossRefGoogle Scholar
  17. 17.
    E. Eichten and K. Gottfried, Phys. Lett. 66B, 286 (1977); M. Machacek and Y. Tomozawa, “Leptonic decay of the new resonances and the nature of the confinement potential”, Univ. of Michigan report UM HE 76-16, May, 1976 (unpublished); E. Eichten et al., Phys. Rev. Lett. 34 369 (1975); Phys. Rev. Lett. 36, 500 (1976); J. F. Gunion and R. S. Willey, Phys. Rev. D12, 74 (1975); R. Barbieri, R. Kögerler, R. Gatto and Z. Kunszt, Nucl. Phys. B105, 125 (1976); Howard J. Schnitzer, Phys. Rev. Lett. 35, 1540 (1975); Phys. Rev. D13, 74 (1976); Phys. Lett. 65B 239 (1976); A. B. Henriques, B. H. Kellet, and R. G. Moorhouse, Phys. Lett. 64B, 85 (1976); J. G. Wills, D. B. Lichtenberg and J. T. Kiehl, Phys. Rev. D15, 3358 (1977); D. B. Lichtenberg, J. G. Wills and J. T. Kiehl, Phys. Rev. Lett.39, 1592 (1977); C. Quigg and J. L. Rosner, Phys. Lett. 71B, 153 (1977); T.-M. Yan, Cornell preprint CLNS-368 (1977, unpublished); William Celmaster, Howard Georgi, and Marie Machacek, Harvard University reports HUTP-77/A051 and HUTP-77/A060 (1977, unpublished).Google Scholar
  18. 18.
    F. Feinberg, Phys. Rev. Lett. 39,316 (1977); T. Appelquist, M. Dine, and I. J. Muzinich, Phys. Lett. 69B, 231 (1977); W. Fischler, Nucl. Phys. B129, 157 (l977).CrossRefGoogle Scholar
  19. 19.
    R. Dashen, these proceedings.Google Scholar
  20. 20.
    J. D. Jackson, in Proceedings of the 1976 Summer Institute on Particle Physics, edited by Martha C. Zipf (SLAC, Stanford, California, 1976), p. 147; C. Quigg and Jonathan L. Rosner, “Scaling the Schrödinger Equation,” FERMILAB-Pub-77/90-THY, to appear in Comments on Nuclear and Particle Physics; J. S. Kang and Howard J. Schnitzer, Phys. Rev. D12, 841 (1975); J. Kandaswamy, J. Schechter, and M. Singer, Phys. Rev. Letters 38, 128; 1101(E) (1977).Google Scholar
  21. 21.
    C. Quigg and Jonathan L. Rosner, Phys. Lett. 72B, 462 (1978); M. Krammer and P. Leal Ferreira, Revista Brasileira de Fisica, 6 7 (1976); C. Quigg and Jonathan L. Rosner, “Semiclassical Sum Rules,” Fermilab-Pub-77/106-THY, November, 1977, submitted to Phys. Rev. D; K. Ishikawa and J. J. Sakurai, UCLA preprint, 1978.Google Scholar
  22. 22.
    A. Martin, Phys. Lett. 67B, 330 (1977); Phys. Lett. 70B, 192 (1977); H. Grosse, Phys. Lett. 68B, 343 (1977).Google Scholar
  23. 23.
    H. B. Thacker, C. Quigg, and J. L. Rosner, Fermilab-Pub-77/108, 109-THY, December, 1977, submitted to Phys. Rev. D.Google Scholar
  24. 24.
    F. J. Dyson, in Studies in Mathematical Physics, edited by E. H. Lieb, B. Simon, and A. S. Wightman (Princeton Univ. Press, Princeton, 1976 ), p. 151.Google Scholar
  25. 25.
    By reflectionless we mean a potential for which all phase shifts vanish in the continuum. The spectral function of such a potential consists entirely of bound-state poles. In reconstructing approximately a confining potential, it is natural to consider the reflectionless class.Google Scholar
  26. 26.
    This is most easily constructed using the remarkable connection between soliton solutions to the Korteweg-deVries equation and Schrödinger potentials, as reviewed in the first paper of Ref. 23.Google Scholar
  27. 27.
    R. Van Royen and V. F. Weisskopf, Nuovo Cimento 50, 617 (1967); 51, 583 (1967).CrossRefGoogle Scholar
  28. 28.
    P. A. Rapidis et al., Phys. Rev. Lett. 39, 526 (1977).CrossRefGoogle Scholar
  29. 29.
    G. J. Feldman and M. L. Perl, “Recent Results in Electron-Positron Annihilation above 2 GeV,” SLAC-Pub-1972, submitted to Physics Reports.Google Scholar
  30. 30.
    C. Quigg and J. L. Rosner, Phys. Lett. 72B, 462 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • C. Quigg
    • 1
    • 2
  1. 1.Fermi National Accelerator LaboratoryBataviaUSA
  2. 2.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations