Advertisement

Vitamin D pp 721-745 | Cite as

Resistance to Vitamin D

  • Stephen J. Marx

Abstract

The recognition and isolation of vitamin D and the prevention of vitamin D nutritional deficiency was an early and major accomplishment in the field of public health. As a result, in many nations rickets and osteomalacia are now uncommon medical problems. In 1937 Fuller Albright and his coworkers reported a patient with rickets (in the absence of renal failure or malabsorption) that was not cured by supraphysiologic doses of vitamin D (1). They recognized that the patient showed resistance to vitamin D; this was the first published report of disease caused by resistance to a vitamin or hormone in man. Albright’s patient with vitamin D resistant rickets probably suffered from x-linked hypophosphatemia (2,3); while hypophosphatemia was persistent, this patient never exhibited the hypocalcemia that is typical of vitamin D deficiency.

Keywords

Secondary Hyperparathyroidism Dependency Type Culture Skin Fibroblast Autosomal Recessive Transmission Resistant Rickets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albright F, Butler AM, Bloomberg E: Rickets resistant to vitamin D therapy. Am. J. Dis. Child. 54: 531–547, 1937.Google Scholar
  2. 2.
    Scriver CR, Fraser D, Kooh SW: Hereditary rickets. In: Calcium Disorders, Heath DA, Marx SJ (eds), Boston, Butterworth Scientific, 1982, p 1–46.Google Scholar
  3. 2.
    Scriver CR, Fraser D, Kooh SW: Hereditary rickets. In: Calcium Disorders, Heath DA, Marx SJ (eds), Boston, Butterworth Scientific, 1982, p 1–46.Google Scholar
  4. 4.
    Prader VA, Illig R, Heidi E: Eine besondere form der primaren vitamin-D-resintenten rachitis mit hypocalcemie und autosomal-domin- antem erbgang: die hereditäre pseudo-mangelrachitis. Helv. Paed. Acta 5 /6: 452–468, 1961.Google Scholar
  5. 5.
    van Creveld S, Arons P: Transitory renal osteoporosis with aminoaciduria and development of a hypersensitivity to vitamin D. Annales Paediatrici 173: 299–313, 1949.Google Scholar
  6. 6.
    van Creveld S, Arons P: Further experiences in a special case of renal osteoporosis with aminoaciduria, treated with dihydrotachysterol. Annales Paeditrici 182: 191–202, 1954.Google Scholar
  7. 7.
    Wilkinson R: Absorption of calcium, phosphorus, and magnesium. In: Calcium, Phosphate, and Magnesium Metabolism: Clinical Physiology and Diagnostic Procedures, Nordin BEC (ed), New York, Churchill Livingstone, 1976, p 36–112.Google Scholar
  8. 8.
    Wong GL, Luben RA, Cohn DV: 1,25-Dihydroxycholecalciferol and parathormone: effects on isolated osteoclast-like and osteoblast- like cells. Science 197: 663–665, 1977.PubMedCrossRefGoogle Scholar
  9. 9.
    Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS: 1,25-Dihydroxy- cholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 108: 2293–2301, 1981.PubMedCrossRefGoogle Scholar
  10. 10.
    Rowe DW, Kream BE: Regulation of collagen synthesis in fetal rat calvaria by 1,25-dihydroxyvitamin D3. J. Biol. Chem. 257: 8009–8015, 1982.PubMedGoogle Scholar
  11. 11.
    Corvol MT, Dumontier MF, Carabedian M, Rapaport R: Vitamin D and cartilage. II. Biological activity of 25-hydroxycholecalciferol and 24,25- and 1,25-dihydroxycholecalciferols on cultured growth plate chondrocytes. Endocrinology 102: 1269–1274, 1978.CrossRefGoogle Scholar
  12. 12.
    Endo H, Kiyoki M, Kawashima K, Naruchi T, Hashimoto Y: Vitamin D3 metabolites and PTH synergistica1ly stimulate bone formation of chick embryonic femur in vitro. Nature 286: 262–264, 1980.PubMedCrossRefGoogle Scholar
  13. 13.
    Stumpf WE, Sar M, DeLuca HF: Sites of action of l,25(OH)2 vitamin D3 identified by thaw-mount autoradiography. In: Hormonal Control of Calcium Metabolism, Cohn DV, Talmage RV, Matthews JL (eds), Princeton, Excerpta Medica, 1981, p 222–229.Google Scholar
  14. 14.
    Colston K, Hirst M, Feldman D: Organ distribution of the cytoplasmic 1,25-dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology 107: 1916–1922, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Pike JW, Gooze LL, Haussler MR: Biochemical evidence for 1,25- dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary, and placental tissues. Life Sci. 26: 407–414, 1980.PubMedCrossRefGoogle Scholar
  16. 16.
    Christakos S, Friedlander EJ, Frandsen BR, Norman AW: Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution. Endocrinology 104: 1495–1503, 1979.PubMedCrossRefGoogle Scholar
  17. 17.
    Roth J, Baetens D, Norman AW, Careia-Seguar L-H: Specific neurons in chick central nervous system stain with an antibody against chick intestinal vitamin D-dependent calcium-binding protein. Brain Res. 222: 452–457, 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Roth J, Bonner-Weir S, Norman AW, Orci L: Immunocytochemistry of vitamin D-dependent calcium binding protein in chick pancreas: exclusive localization in B-cells. Endocrinology 110: 2216–2218, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Thomasset M, Desplan C, Parkes 0: Duodenal, renal and cerebellar vitamin D-dependenc calcium-binding proteins in the rat. Specificity and acellular biosynthesis. In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 197–202.Google Scholar
  20. 20.
    Saurat JH, Didierjean L, Pavlovitch JH, Laouri D, Balsan S: Skin calcium binding protein is localized in the cytoplasm of the basal layer of the epidermis. J. Inv. Dermatol. 76: 221–230, 1981.CrossRefGoogle Scholar
  21. 21.
    Somjen D, Somjen GJ, Harell A, Mechanic GL, Binderman I: Partial characterization of a specific high affinity binding nacromolecule for 24R,25-dihydroxyvitamin D3 in differentiating skeletal mesenchyme. Biochem. Biophys. Res. Commun. 106: 644–651, 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Somjen D, Somjen GJ, Weisman Y, Binderman I: Evidence for 24,25- dihydroxycholecalciferol receptors in long bones of newborn rats. Biochem. J. 204: 31–36, 1982.PubMedGoogle Scholar
  23. 23.
    Bonjour JP, Preston C, Fleisch H: Effect of 1,25-dihydroxyvitamin D3 on the renal handling of Pi in thyroparathyroidectomized rats. J. Clin. Invest. 60: 1419–1428, 1977.PubMedCrossRefGoogle Scholar
  24. 24.
    Trechsel U, Bonjour JP, Fleisch H: Regulation of the metabolism of 25-hydroxyvitamin D3 in primary cultures of chick kidney cells. J. Clin. Invest. 64: 206–217, 1979.PubMedCrossRefGoogle Scholar
  25. 25.
    Omdahl JL, Hunsaker LA, Evan AP, Torrez P: In vitro regulation of kidney 25-hydroxyvitamin Dj-hydroxyläse enzyme activities by vitamin D3 metabolites: molecular specificity and mechanism of action. J. Biol. Chem. 255: 7460–7466, 1980.PubMedGoogle Scholar
  26. 26.
    Haussler MR, Pike JW, Dokoh S, Chandler JS, Chandler SK, Donaldson CA, Marion SL: I,25-Dihydroxyvitamin D receptor in cultured cell lines: occurrence, subcellular distribution and relationship to bio-responses. In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 109–113.Google Scholar
  27. 27.
    Esvelt RP, DeLuca HF, Wichman JK, Yoshikawa S, Zürcher J, Sar M, Stumpf W: 1,25-Dihydroxyvitaoin D3 stimulated increase of 7,8- didehydrocholesterol levels in rat skin. Biochemistry 19: 6158–6161, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Miravet L, Gueris J, Redel J, Norman A, Ryckcwaert A: Action of vitamin D metabolites on PTH secretion in man. Calcif. Tiss. Int. 33: 191–194, 1981.CrossRefGoogle Scholar
  29. 29.
    Clark SA, Stumpf WE, Sar M: Effect of 1,25-dihydroxyvitamin D3 on insulin secretion. Diabetes 30: 382–386, 1981.PubMedCrossRefGoogle Scholar
  30. 30.
    Murdoch GH, Rosenfeld MG: Regulation of pituitary function and prolactin production in the GH4 cell Line by vitamin D. J. Biol. Chem. 256: 4050–4055, 1981.PubMedGoogle Scholar
  31. 30a.
    Wark JD, Tashjian AH: Vitamin D stimulates prolactin synthesis by GH4C1 cells incubated in chemically defined medium. Endocrinology 111: 1755–1757, 1982.PubMedCrossRefGoogle Scholar
  32. 31.
    Eisman JA, Frampton RJ, Sher E, Suva LJ, Martin TJ: Biochemistry of 1,25-dihydroxyvitamin D3 receptors in human cancer cells. In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 65–71.Google Scholar
  33. 32.
    Abe E, Miyaura C, Sakagami H, TakedaM, KonnoK, Yamazaki T, Yoshikawa S, Suda T: Differentiation of mouse myeloid leukemia cells induced by 1,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. 78: 4990–4994, 1981.PubMedCrossRefGoogle Scholar
  34. 33.
    Kahn CR: Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 27 (Suppl 2): 1893–1902, 1978.PubMedCrossRefGoogle Scholar
  35. 33.
    Kahn CR: Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 27 (Suppl 2): 1893–1902, 1978.PubMedCrossRefGoogle Scholar
  36. 35.
    Eicher EM, Southard JL, Scriver CR, Glorieux PH: Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc. Natl. Acad. Sci. 73: 4667–4671, 1976.PubMedCrossRefGoogle Scholar
  37. 36.
    Arnaud C, Maijer R, Reade T, Scriver CR, Whelan DT: Vitamin D dependency: an inherited postnatal syndrome with secondary hyperparathyroidism. Pediatrics 46: 871–879, 1970.PubMedGoogle Scholar
  38. 37.
    Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF: Pathogenesis of hereditary vitamin-D-dependent rickets: an inborn error of vitamin D metabolism involving defective conversion of 25-hydroxy-vitamin D to 1-0,25-dihydroxyvitamin D. N. Engl. J. Med. 289: 817–822, 1973.PubMedCrossRefGoogle Scholar
  39. 38.
    Prader A, Kind HP, DeLuca HF: Pseudo vitamin D deficiency (vitamin D dependency). In: Inborn Errors of Calcium and Bone Metabolism. Bickel H, Stern J (eds), Baltimore, University Park Press, 1976, p 115–123.Google Scholar
  40. 39.
    Reade TM, Scriver CR, Glorieux FH, Nogrady B, Delvin E, Poirier R, Holick MF: Response to crystalline la-hydroxyvitamin Dj in vitamin D dependency. Pediat. Res. 9: 593–599, 1975.PubMedCrossRefGoogle Scholar
  41. 40.
    Dommergues J-P, Carabedian, Gueris J, Le Deunff M-J, Creignou L, Courtecuisse V, Balsan S: Effects des principaux derives de la vitamine D. Arch. Franc. Pediat. 35: 1050–1062, 1978.Google Scholar
  42. 41.
    Scriver CR, Reade TM, DeLuca HF, Hamstra AJ: Serum 1,25-dihydroxy-vitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N. Engl. J. Med. 299: 976–979, 1978.PubMedCrossRefGoogle Scholar
  43. 42.
    Delvin EE, Glorieux FH, Marie PJ, Pettifor JM: Vitamin D dependency: replacement therapy with calcitriol. J. Pediatr. 99: 26–34, 1981.PubMedCrossRefGoogle Scholar
  44. 43.
    Harmeyer J, Grabe CV, Martens H: Effects of metabolites and analogues of vitamin D3 in hereditary pseudo-vitamin D deficiency of pigs. In: Vitamin D: Biochemical, Chemical and Clinical Aspects Related to Calcium Metabolism, Norman AW, Schaefer K, Coburn JW, DeLuca HF, Fraser D, Grigoleit H-G, Herrath Dv (eds), New York, Walter de Gruyter, 1977, p 785–788.Google Scholar
  45. 44.
    Marx SJ, Speigel AM, Brown EM, Gardner DG, Pouns RW Jr, Affie M, Hamstra AJ, DeLuca HF: A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab. 47: 1303–1310, 1978.PubMedCrossRefGoogle Scholar
  46. 45.
    Adans JS, Wahl TO, Moore WV, Horton WA, Lukert BP: Familial vitamin- D-dependent rickets: further evidence for end organ resistance to active vitamin D metabolites. Program and Abstracts, 61st Annual Meeting of the Endocrine Society, 1979, 767 (abstract).Google Scholar
  47. 46.
    Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, Hamstra AJ, DeLuca HF: Vitamin-D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N. Engl. J. Med. 298: 996–999, 1978.PubMedCrossRefGoogle Scholar
  48. 47.
    Zerwekh JE, Glass K, Jowsey J, Pak CYC: An unique form of osteomalacia associated with end organ refractoriness to 1,25-dihydroxyvitamin D and apparent defective synthesis of 25-hydroxyvitarain D. J. Clin. Endocrinol. Metab. 49: 171–175, 1979.PubMedCrossRefGoogle Scholar
  49. 48.
    Fujita T, Nomura M, Okajima S, Furuya H: Adult-onset vitamin D- resistant osteomalacia with the unresponsiveness to parathyroid hormone. J. Clin. Endocrinol. Metab. 50: 927–931, 1980.PubMedCrossRefGoogle Scholar
  50. 49.
    Kudoh T, Kumagai T, Uetsuji N, Tsugawa S, Oyanagi K, Chiba Y, Minaoi R, Nakao T: Vitamin D dependent rickets: decreased sensitivity to 1,25-dihydroxyvitamin D. Eur. J. Pediatr. 137: 307–311, 1981.PubMedCrossRefGoogle Scholar
  51. 50.
    Yoshikawa S, Nakamura T, Nishii Y: Vitamin D dependent rickets with limited response to laOHD3 and high serum l,25(OH)2D levels - long term followup. In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 1001–1003.Google Scholar
  52. 51.
    Rosen JF, Fleischman AR, Finbcrg L, Hamstra A, DeLuca HF: Rickets with alopecia: an inborn error of vitamin D metabolism. J. Pediatr. 94: 729–735, 1979.PubMedCrossRefGoogle Scholar
  53. 52.
    Balsan S, Garabedian M, Lieberherr M, Gueris J, Ulmann A: Serum 1,25-dihydroxyvitamin D concentration in two different types of pseudo-deficiency rickets. In: Vitamin D: Basic Research and Its Clinical Application, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T (eds), New York, Walter de Gruyter, 1979, p 1143–1148.Google Scholar
  54. 53.
    Liberman UA, Samuel R, Halabe A, Kauli R, Edelstein S, Weisman Y, Papapoulos S, Clemens TL, Fraher LJ, O’Riordan JLH: End-organ resistance to 1,25-dihydroxycholecalciferol. Lancet 1: 504–507, 1980.PubMedCrossRefGoogle Scholar
  55. 54.
    Tsuchiya Y, Matsuo N, Cho H, Kumagai M, Yasaka M, Suda T, Orimo H, Shiraki M: An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J. Clin. Endocrinol. Metab. 51: 685–690, 1980.PubMedCrossRefGoogle Scholar
  56. 55.
    Feldman D, Chen T, Cone C, Hirst M, Shani S, Benderli A, Hochberg Z: Vitamin D resistant rickets with alopecia: cultured skin fibroblasts exhibit defective cytoplasmic receptors and unresponsiveness to l,25(OH)2D3. J. Clin. Endocrinol. 55: 1020–1022, 1982.CrossRefGoogle Scholar
  57. 56.
    Sockalosky JJ, Ulstrom RA, DeLuca HF, Brown DM: Vitamin D-resistant rickets: end-organ unresponsiveness to l,25(OH)2D3. J. Pediatr. 96: 701–703, 1980.PubMedCrossRefGoogle Scholar
  58. 57.
    Beer S, Tieder M, Kohelet D, Liberman VA, Vure E, Bar-Joseph G, Gabizon D, Borochowitz V, Varon M, Modai D: Vitamin-D-resistant rickets with alopecia: a form of end organ resistance to 1,25 dihydroxy vitamin D. Clin. Endocrinol. 14: 395–402, 1981.CrossRefGoogle Scholar
  59. 58.
    Griffin JE, Chandler JS, Haussler MR, Zerwekh JE: Rcceptor-positive resistance to 1,25-dihydroxyvitamin D3: a new cause of osteomalacia associated with impaired induction of 24-hydroxyläse in fibroblasts. Clin. Res. 30: 524A, 1982.Google Scholar
  60. 59.
    Chen T, Hochberg Z, Benderli A, Stanford S, Cone C, Feldman D: Vitamin D resistant rickets with alopecia: defective cytoplasmic receptors for 1,25(OH)2D3 in cultured skin fibroblasts. Abstracts of the Fourth Annual Meeting of the American Society for Bone and Mineral Research, 1982, S-49.Google Scholar
  61. 60.
    Liberman UA, Balsan S, Marx SJ: True resistance to 1,25-dihydroxyvitamin D - cellular basis and implication of a new congenital syndrome. Abstracts of the 64th Annual Meeting of the Endocrine Society, 1982, p 214.Google Scholar
  62. 61.
    Halloran BO, DeLuca HF, Barthell E, Yamada S, Ohmori M, Takayama H: An examination of the importance of 24-hydroxylation to the function of vitamin D daring early development. Endocrinology 108: 2067–2071, 1981.PubMedCrossRefGoogle Scholar
  63. 62.
    Eil C, Marx SJ: Nuclear uptake of 1,25-dihydroxy [3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc. Natl. Acad. Sci. 78: 2562–2566, 1981.PubMedCrossRefGoogle Scholar
  64. 63.
    Feldman D, Chen T, Hirst M, Colston K, Karasek K, Cone C: Demonstration of 1,25-dihydroxyvitamin D3 receptors in human skin biopsies. J. Clin. Endocrinol. Metab. 51: 1463–1465, 1980.PubMedCrossRefGoogle Scholar
  65. 64.
    Eil C, Liberman UA, Rosen JF, Marx SJ: A cellular defect in hereditary vitamin-D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N. Engl. J. Med. 304: 1588–1591, 1981.PubMedCrossRefGoogle Scholar
  66. 65.
    Holick MF, Adams JS, Clemens TL, MacLaughlin J, Horiuchi N, Smith E, Holick SA, Nolan J, Hannifan N: Photoendocrinology of vitamin D: the past present and future. In: Vitamin D: Chemical, Biochemical, and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 1151–1156.Google Scholar
  67. 65.
    Holick MF, Adams JS, Clemens TL, MacLaughlin J, Horiuchi N, Smith E, Holick SA, Nolan J, Hannifan N: Photoendocrinology of vitamin D: the past present and future. In: Vitamin D: Chemical, Biochemical, and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), New York, Walter de Gruyter, 1982, p 1151–1156.Google Scholar
  68. 67.
    Rinaldi ML, Haiech J, Pavlovich J, Rizk M, Ferraz C, Derancourt J, Demaille JG: Isolation and characterization of a rat skin parvalbu- min-like calcium-binding protein. Biochemistry 21: 4805–4810, 1982.PubMedCrossRefGoogle Scholar
  69. 68.
    Papapoulos SE, Clemens TJ, Fraher LJ, Gleed J, O’Riordan JLH: Metabolites of vitamin D in human vitamin-D deficiency: effect of vitamin D3 or 1,25-dihydroxycholecalciferol. Lancet 11: 612–615, 1980.CrossRefGoogle Scholar
  70. 69.
    Stanbury SW, Taylor CM, Lumb GA, Mawer EB, Berry J, Hann J, Wallace J: Formation of vitamin D metabolites following correction of human vitamin D deficiency. Min. Elect. Metab. 5: 215–227, 1981.Google Scholar
  71. 70.
    Pettifor JM, Ross FP, Travers R, Glorieux FH, DeLuca HF: Dietary calcium deficiency: a syndrome associated with bone deformities and elevated serum 1,25-dihydroxyvitamin D concentrations. Metab. Bone Dis. Rel. Res. 2: 301–305, 1981.CrossRefGoogle Scholar
  72. 71.
    Chesney RW, Hamstra AJ, DeLuca HF: Rickets of prematurity: supranormal levels of serum 1,25-dihydroxyvitamin D. Am. J. Ds. Child. 135: 34–37, 1981.Google Scholar
  73. 72.
    Steichen JJ, Tsang RC, Greer FR, Ho M, Hug G: Elevated serum 1,25- dihydroxy vitamin D concentrations in rickets of very low-birth-weight infants. J. Pediatr. 99: 293–297, 1981.PubMedCrossRefGoogle Scholar
  74. 73.
    Halloran BP, DeLuca HF: Appearance of the intestinal cytosolic receptor for 1,25-dihydroxyvitamin D3 during neonatal development in the rat. J. Biol. Chem. 256: 7338–7342, 1981.PubMedGoogle Scholar
  75. 74.
    Marx SJ, Swart EG Jr, Hamstra AJ, DeLuca HF: Normal intrauterine development of the fetus of a woman receiving extraordinarily high doses of 1,25-dihydroxyvitamin D3. J. Clin. Endocrinol. Metab. 51: 1138–1142, 1980.PubMedCrossRefGoogle Scholar
  76. 75.
    Brooks MH, Stern PH, Bell NH: Vitamin D-dependent rickets type II (letter to the editor) N. Engl. J. Med. 302: 810, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Stephen J. Marx

There are no affiliations available

Personalised recommendations