Vitamin D pp 343-363 | Cite as

Vitamin D in the Differentiation of Myeloid Leukemia Cells

  • T. Suda
  • E. Abe
  • C. Miyaura
  • H. Tanaka
  • Y. Shiina
  • T. Kuribayashi


It is well established that the biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitarain D3 [1α,25(OH)2D3], exerts its effect in inducing calcium transport activity by binding to a specific cytosol receptor to form a hormone-receptor complex in such target tissues as intestine and bone (1–5). The complex then moves into the nucleus by a temperature-dependent mechanism and binds to the chromatin (2). The binding of the sterol to the chromatin induces an increase in chromatin template activity (6). These results suggest the existence of a mechanism of action of 1α,25(OH)2D3 similar to that proposed for other steroid hormones (7), though the specific gene product(s) responsible for calcium transport has not been conclusively identified.


Phagocytic Activity Human Breast Cancer Cell Line Lysozyme Activity Myeloid Leukemia Cell Human Promyelocytic Leukemia Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brumbaugh PF, Haussler MR: 1α,25-Dihydroxycholecalciferol receptors in intestine. I. Association of 1α,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J. Biol. Chem. 249: 1251–1257, 1974.PubMedGoogle Scholar
  2. 2.
    Brumbaugh PF, Haussler MR: 1α,25-Dihydroxycholecalciferol receptors in intestine. II. Temperature-dependent transfer of the hormone to chromatin via a specific cytosol receptor. J. Biol. Chem. 249: 1258–1262, 1974.PubMedGoogle Scholar
  3. 3.
    Kream BE, Jose M, Yamada S, DeLuca HF: A specific high-affinity binding macroaiolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science 197: 1086–1088, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Wecksler WR, Ross FP, Norman AW: Characterization of the 1α,25-dihydroxyvitamin D3 receptor from rat intestinal cytosol. J. Biol. Chem. 254:9488–9491, 1979.PubMedGoogle Scholar
  5. 5.
    Chen TL, Feldman D: Regulation of 1,25-dihydroxyvitanin D3 receptors in cultured mouse bone cells. Correlation of receptor concentration with the rate of cell division. J. Biol. Chem. 256: 5561–5566, 1981.PubMedGoogle Scholar
  6. 6.
    Zerwekh JE, Lindell TJ, Haussler MR: Increased intestinal chromatin template activity. Influence of 1α,25-dihydroxyvitamin D3 and hormone receptor complexes. J. Biol. Chem. 251: 2388–2394, 1976.PubMedGoogle Scholar
  7. 7.
    Steggles AW, Spelsberg TC, Glasser SR, O’Malley BW: Soluble complexes between steroid hormones and target-tissue receptors bind specifically to target-tissue chromatin. Proc. Natl. Acad. Sci. USA 68: 1479–1482, 1971.PubMedCrossRefGoogle Scholar
  8. 8.
    Hughes MR, Haussler MR: 1,25-Dihydroxyvitamin D3 receptors in parathyroid glands. J. Biol. Chem. 253: 1065–1073, 1978.PubMedGoogle Scholar
  9. 9.
    Chandler JS, Pike JW, Haussler MR: 1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol. Biochem. Biophys. Res. Coomun. 90: 1057–1063, 1979.CrossRefGoogle Scholar
  10. 10.
    Cnristakos S, Norman AW: Studies on the mode of action of calciferol. XXIX. Biochemical characterization of 1,25-dihydroxyvitamin D3 receptors in chick pancreas and kidney cytosol. Biochem. Biophys. Res. Comoun. 89: 56–63, 1979.CrossRefGoogle Scholar
  11. 11.
    Haussler MR, Manolagas SC, Deftos LJ: Evidence for a 1,25-dihydroxy-vitamin D3 receptor-like macromolecule in rat pituitary. J. Biol. Chem. 255: 5007–5010, 1980.PubMedGoogle Scholar
  12. 12.
    Feldman D, Chen T, Hirst M, Colston K, Karasek M, Cone C: Demonstration of 1,25-dihydroxyvitamin D3 rcceptors in human skin biopsies. J. Clin. Endocrinol. Metab. 51: 1463–1465, 1980.PubMedCrossRefGoogle Scholar
  13. 13.
    Simpson RU, DeLuca HF: Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc. Natl. Acad. Sci. USA 77: 5822–5826, 1980.PubMedCrossRefGoogle Scholar
  14. 14.
    Eil C, Marx SJ: Nuclear uptake of 1,25-dihydroxy[3H]cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc. Natl. Acad. Sci. USA 78: 2562–2566, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Reinhardt TA, Horst RL, Littledike ET, Beitz DC: 1,25-Dihydroxy-vitamin D3 receptors in bovine thymus gland. The Proceedings of the Fifth Workshop on Vitamin D (abstract) p 53, 1982.Google Scholar
  16. 16.
    Takahashi N, Abe E, Tanabe R, Suda T: A high-affinity cytosol binding protein for 1α,25-dihydroxycholecalciferol in the uterus of Japanese quail. Biochem. J. 190: 513–518, 1980.PubMedGoogle Scholar
  17. 17.
    Eisman JA, Martin TJ, MacIntyre I, Frampton RJ, Moseley JM, Whitehead R: 1,25-Dihydroxyvitamin D3 receptor in a cultured human breast cancer cell line (MCF 7 cells). Biochem. Biophys. Res. Coramun. 93: 9–15, 1980.CrossRefGoogle Scholar
  18. 18.
    Freake HC, Marcocci C, Iwasaki J, MacIntyre I: 1,25-Dihydroxyvitanin D3 specifically binds to a human breast cancer cell line (T47D) and stimulates growth. Biochem. Biophys. Res. Commun. 101: 1131–1138, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Manolagas SC, Haussler MR, Doftos LJ: 1,25-Dihydroxyvitamin D3 receptor-like macromolecule in rat osteogenic sarcoma cell lines. J. Biol. Chem. 255: 4414–4417, 1980.PubMedGoogle Scholar
  20. 20.
    Freake HC, Spanos E, Eisman JA, Galasko CSB, Martin TJ, MacIntyre I: Specific binding of 1,25-dihydroxyvitaoin D3 in the VX2 carcinoma. Biochem. Biophys. Res. Commun. 97: 1505–1511, 1980.PubMedCrossRefGoogle Scholar
  21. 21.
    Colston K, Colston MJ, Feldman D: 1,25-Dihydroxyvitamin D3 and malignant melanoma: The presence of receptors and inhibition of cell growth in culture. Endocrinology 108: 1083–1086, 1981.PubMedCrossRefGoogle Scholar
  22. 22.
    Gelbard HA, Stern PH, U’Prichard DC: Characteristics of [3H]- 1α,25-(OH)2-D3 binding to nuclear fractions from rat pituitary adenoma GH3 cells. Life Sci. 29: 1051–1056, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, Yoshiki S, Suda T: Differentiation of mouse myeloid leukemia cells induced by 1α,25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 78: 4990–4994, 1981.PubMedCrossRefGoogle Scholar
  24. 24.
    Miyaura C, Abe E, Kuribayashi T, Tanaka H, Konno K, Nishii Y, Suda T: 1α,25-Dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem. Biophys. Res. Coamun. 102: 937–943, 1981.CrossRefGoogle Scholar
  25. 25.
    Tanaka H, Abe E, Miyaura C, Kuribayashi T, Konno K, Nishii Y, Suda T: 1α,25-Dihydroxycholecalciferol and human myeloid leukemia cell line (HL-60): The presence of receptors and induction of differentiation. Biochem. J. 204: 713–719, 1982.PubMedGoogle Scholar
  26. 26.
    Eilon G, Mundy GR: Direct resorption of bone by human breast cancer cells in vitro. Nature 276: 726–728, 1978.PubMedCrossRefGoogle Scholar
  27. 27.
    Galasko CSB, Bennett A: Relationship of bone destruction in skeletal metastases to osteoclast activation and prostaglandins. Nature 263: 508–510, 1976.PubMedCrossRefGoogle Scholar
  28. 28.
    Voelkel EF, Tashjian AH, Franklin R, Wasserman E, Levine L: Hypercalcemia and tumor-prostaglandins: The VX2 carcinoma model in the rabbit. Metabolism 24: 973–986, 1975.PubMedCrossRefGoogle Scholar
  29. 29.
    Seyberth HW, Hubbard WC, Oelz O, Sweetman BJ, Watson JC, Oates JA: Prostaglandin-mediated hypercalcemia in the VX2 carcinoma-bearing rabbit. Prostaglandins 14: 319–331, 1977.PubMedCrossRefGoogle Scholar
  30. 30.
    Galasko CSB: Mechanisms of bone destruction in the development of skeletal metastases. Nature 263: 507–508, 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin TJ, Ingleton PM, Underwood JCE, Michelangeli VP, Hunt NH: Parathyroid hormone-responsive adenylate cyclase in induced transplantable osteogenic rat sarcoma. Nature 260: 436–438, 1976.PubMedCrossRefGoogle Scholar
  32. 32.
    Ichikawa Y: Differentiation of a cell line of myeloid leukemia. J. Cell. Physiol. 74: 223–234, 1969.PubMedCrossRefGoogle Scholar
  33. 33.
    Maeda M, Horiuchi M, Numa S, Ichikawa Y: Characterization of a differentiation-stimulating factor for mouse myeloid leukemia cells. Gann 68: 435–447, 1977.PubMedGoogle Scholar
  34. 34.
    Hozumi M, Sugiyama K, Mura M, Takigawa H, Sugiyama T, Matsushima T, Ichikawa Y: In: Differentiation and Control of Malignancy of Tumor Cells, Nakahara W, Ono T, Sugimura T, Sugano H (eds). University Tokyo Press, Tokyo, 1974, p 471–483.Google Scholar
  35. 35.
    Weiss B, Sachs L: Indirect induction of differentiation in myeloid leukemic cells by lipid A. Proc. Natl. A. ad. Sci. USA 75: 1374–1378, 1978.CrossRefGoogle Scholar
  36. 36.
    Tomida M, Yamamoto Y, Hozumi M: Induction by synthetic polyribonucleotide poly(I) of differentiation of cultured mouse myeloid leukemic cells. Cell Differ. 7: 305–312, 1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Lotera J, Sachs L: Induction of specific changes in the surface membrane of myeloid leukemic cells by steroid hormones. Int. J. Cancer 15: 731–740, 1975.CrossRefGoogle Scholar
  38. 38.
    Honma Y, Kasukabe T, Okabe J, Hozumi M: Glucocorticoid-induced differentiation of cultured mouse myeloid leukemia cells. Gann 68: 241–246, 1977.PubMedGoogle Scholar
  39. 39.
    Kasukabe T, Honma Y, Hozumi M: Induction of lysosomal enzyme activities with glucocorticoids during differentiation of cultured mouse myeloid leukemia cells. Gann 68: 765–773, 1977.PubMedGoogle Scholar
  40. 40.
    Rasmussen H, Bordier P: In: The Physiological and Cellular Basis of Metabolic Bone Disease, Williams & Wilkins, Baltimore, 1974, p 8–70.Google Scholar
  41. 41.
    Fischman DA, Hay ED: Origin of osteoclasts from mononuclear leucocytes in regenerating new limbs. Anat. Rec. 143: 329–337, 1962.PubMedCrossRefGoogle Scholar
  42. 42.
    Ko JS, Bernard GW: Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone. Am. J. Anat. 161: 415–425, 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Collins SJ, Gallo RC, Gallagher RE: Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature 270: 347–349, 1977.PubMedCrossRefGoogle Scholar
  44. 44.
    Lotem J, Sachs L: Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanism of tumor promotion. Proc. Natl. Acad. Sci. USA 76: 5158–5162, 1979.PubMedCrossRefGoogle Scholar
  45. 45.
    Breitman TR, Selonick SE, Collins SJ: Induction of differentiation of the human protnyelocytic leukemia cell line (HL-60) by retinoic acid. Proc. Natl. Acad. Sci. USA 77: 2936–2940, 1980.PubMedCrossRefGoogle Scholar
  46. 46.
    Honma Y, Takenaga K, Kasukabe T, Hozumi M: Induction of differentiation of cultured human promyelocytic leukemia cells by retinoids. Biochem. Biophys. Res. Commun. 95: 507–512, 1980.PubMedCrossRefGoogle Scholar
  47. 47.
    Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC: Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc. Natl. Acad. Sci. USA 75: 2458–2462, 1978.PubMedCrossRefGoogle Scholar
  48. 48.
    Huberman E, Callaham MF: Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc. Natl. Acad. Sci. USA 76: 1293–1297, 1979.PubMedCrossRefGoogle Scholar
  49. 49.
    Honma Y, Fujita J, Okabe J, Kasukabe T, Hozumi M: Induction of differentiation of human promyelocytic leukemia cells (HL-60) by arginase. Cancer Letters 10: 287–289, 1980.PubMedCrossRefGoogle Scholar
  50. 50.
    Nakayasu M, Terada M, Tamura G, Sugimura T: Induction of differentiation of human and murine myeloid leukemia cells in culture by tunicanycin. Proc. Natl. Acad. Sci. USA 77: 409–413, 1980.PubMedCrossRefGoogle Scholar
  51. 51.
    Kream BE, Jose MJL, DeLuca HF: The chick intestinal cytosol binding protein for 1,25-dihydroxyvitamin D3: a study of analog binding. Arch. Biochem. Biophys. 179: 462–468, 1977.PubMedCrossRefGoogle Scholar
  52. 52.
    Ishizuka S, Bannai K, Naruchi T, Hashimoto Y: Studies of the mechanism of action of 1α,24-dihydroxyvitamin D3. II. Specific binding of 1α, 24-dihydroxyvitamin D3 to chick intestinal receptor. Steroids 37: 33–48, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Colston K, Hirst M, Feldman D: Organ distribution of the cytoplasmic 1α,25-dihydroxycholecalciferol receptor in various mouse tissues. Endocrinology 107: 1916–1922, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • T. Suda
  • E. Abe
  • C. Miyaura
  • H. Tanaka
  • Y. Shiina
  • T. Kuribayashi

There are no affiliations available

Personalised recommendations