Advertisement

The metabolism of vasoactive peptides by human endothelial cells

  • Alice R. Johnson
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 27)

Abstract

The fate of biologically active peptides in the circulation is determined by several factors, including uptake and metabolism by the vascular endothelium. Because the pulmonary vascular bed is continually exposed to the entire cardiac output, the pulmonary endothelium plays a major role in the processing of vasoactive materials in the lungs (1–3). The pulmonary endothelium is remarkable selective in that it readily metabolizes kinins and angiotensin I, whereas angiotensin II, substance P, oxytocin, vasopressin, and vasoactive intestinal peptide are unaffected by circulation through the lungs (2, 4).

Keywords

Endothelial Cell Converting Enzyme Human Endothelial Cell Vasoactive Peptide Pulmonary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vane, J.R. 1969. The release and fate of vasoactive hormones in the circulation. Brit. J. Pharmacol. 35: 209–242.Google Scholar
  2. 2.
    Bakhle, Y.S. and Vane, J.R. 1974. Pharmacokinetic function of the pulmonary circulation. Physiol. Rev. 54: 1007–1045.PubMedGoogle Scholar
  3. 3.
    Fishman, A.P. and Pietra, G.G. 1974. Handling of bioactive materials by the lung. New Engl. J. Med. 281: 953–959.CrossRefGoogle Scholar
  4. 4.
    Said, S.I., Mutt, V. and Erdös, E.G. 1980. The lung in relation to vasoactive polypeptides. In Metabolic Activities of the Lung, Ciba Found. 78 (new series) 217–237, Excerpta Medica.Google Scholar
  5. 5.
    Jaffe, E.A., Nachman, R.L., Becker, CG. and Minick, R. 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologie criteria. J. Clin. Invest. 52: 2745–2756.PubMedCrossRefGoogle Scholar
  6. 6.
    Gimbrone, M.A., Cotran, R.S. and Folkman, J. 1974. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60: 673–684.PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson, A.R. and Erdös, E.G. 1977. Metabolism of vasoactive peptides by human endothelial cells in culture. Angiotensin I converting enzyme (kininase II) and angiotensinase. J. Clin. Invest. 59: 684–695.PubMedCrossRefGoogle Scholar
  8. 8.
    Jaffe, E.A., Hoyer, L.W. and Nachman, R.L. 1978. Synthesis of anti-hemophillic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2757–2764.CrossRefGoogle Scholar
  9. 9.
    Jaffe, E.A., Hoyer, L.W. and Nachman, R.L. 1974. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc. Natl. Acad. Sci. 71: 1906–1909.PubMedCrossRefGoogle Scholar
  10. 10.
    Loskutoff, D.J. and Edgington, T.S. 1977. Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc. Natl. Acad. Sci. 74: 3903–3907.PubMedCrossRefGoogle Scholar
  11. 11.
    Levin, E.G. and Loskutoff, D.J. 1970. Comparative studies of the fibrinolytic activity of cultured vascular cells. Thromb. Res. 15: 869–878.CrossRefGoogle Scholar
  12. 12.
    Maynard, J.R., Dreyer, B.E., Stemerman, M.B. and Pitlick, F.A. 1977. Tissue factor coagulant activity of cultured human endothelial and smooth muscle cells and fibroblasts. Blood 50: 387–396.PubMedGoogle Scholar
  13. 13.
    Maynard, J.R., Burkholder, D.E. and Pizzuti, D.J. 1978. Comparative pharmacologie effects on tissue factor activity in normal cells and an established cell line. Lab Invest. 38: 14–20.PubMedGoogle Scholar
  14. 14.
    Dosne, A.M., Legrand, C., Bavouis, B., Bodevin, E. and Caen, J.P. 1978. Comparative degradation of adenylnucleotides by cultured endothelial cells and fibroblasts. Biochem. Biophys. Res. Comm. 85: 183–189.PubMedCrossRefGoogle Scholar
  15. 15.
    Glasgow, J.G., Schade, R. and Pitlick, F.A. 1978. Evidence that ADP hydrolysis by human cells is related to thrombogenic potential. Thromb. Res. 13: 255–266.PubMedCrossRefGoogle Scholar
  16. 16.
    Ryan, J.W. and Ryan, U.S. 1977. Pulmonary endothelial cells. Fed. Proc. 36: 2683–2691.PubMedGoogle Scholar
  17. 17.
    Johnson, A. R. 1980. Human pulmonary endothelial cells in culture. Activities of cells from arteries and cells from veins. J. Clin. Invest. 65: 841–850.PubMedCrossRefGoogle Scholar
  18. 18.
    Johnson, A.R., Schulz, W.W., Noguiera, L.A. and Erdös, E.G. 1980. Kinins and angiotensins. Angiotensin I converting enzyme (kininase II) in endothelial cells cultured from human pulmonary arteries and veins. Clin. Exp. Hypert. 2: 659–674.CrossRefGoogle Scholar
  19. 19.
    Kumamoto, K., Stewart, T.A., Johnson, A.R. and Erdös, E.G. 1981. Prolylcarboxypeptidase (angiotensinase C) in human lung and cultured cells. J. Clin. Invest. 67: 210–215.PubMedCrossRefGoogle Scholar
  20. 20.
    Skidgel, R.A., Wickstrom, E., Kumamoto, K. and Erdös, E.G. 1981. Rapid radioimmunoassay for prolylcarboxypeptidase (angiotensinase C). Anal. Biochem. 118: 113–119.PubMedCrossRefGoogle Scholar
  21. 21.
    Yang, H.Y.T., Erdös, E.G. and Levin, Y. 1971. Characterization of a dipeptide hydrolase (kininase II: angiotensin I converting enzyme). J. Pharmacol. Exp. Therap. 177: 200–291.Google Scholar
  22. 22.
    Erdös, E.G. 1977. The angiotensin I converting enzyme. Fed. Proc. 36: 1760–1765.PubMedGoogle Scholar
  23. 23.
    Stewart, T.A., Weare, J.A. and Erdös, E.G. 1981. Purification and characterization of human converting enzyme (kininase II). Peptides 2: 145–152.PubMedCrossRefGoogle Scholar
  24. 24.
    Caldwell, P.R.B., Seegal, B.C., Hsu, K.C., Das, M. and Soffer, R.L. 1976. Angiotensin-converting enzyme: vascular endothelial localization. Science 191: 1050–1051.PubMedCrossRefGoogle Scholar
  25. 25.
    Ward, P.E., Erdös, E.G., Gedney, C.D., Dowben, R.M. and Reynolds, R.C. 1976. Isolation of membrane-bound renal enzymes that metabolize kinins and angiotensins. Biochem. J. 157: 643–650.PubMedGoogle Scholar
  26. 26.
    Ward, P.E., Sheridan, M.A., Hammon, K.J. and Erdös, E.G. 1980. Angiotensin I converting enzyme (kininase II) of the brush border of human and swine intestine. Biochem. Pharmacol. 29: 1525–1529.PubMedCrossRefGoogle Scholar
  27. 27.
    Johnson, A.R., John, M. and Erdös, E.G. 1982. Metabolism of vasoactive peptides by membrane-enriched fractions from human lung tissue, pulmonary arteries and endothelial cells. Ann. N.Y. Acad. Sci. 384: 72–89.PubMedCrossRefGoogle Scholar
  28. 28.
    Igic, R., Erdös, E.G., Yeh, H.S.J., Sorrells, K. and Nakajima, T. 1972. Angiotensin I converting enzyme of the lung. Circ. Res. 30-31. Suppl. II: 51–61.Google Scholar
  29. 29.
    Erdös, E.G., Johnson, A.R. and Boyden, N.T. 1978. Hydrolysis of enkephalin by cultured human endothelial cells and by purified peptidyl dipeptidase. Biochem. Pharmacol. 27: 843–848.PubMedCrossRefGoogle Scholar
  30. 30.
    Swerts, J.P., Perdrisot, R., Malfroy, B. and Schwartz, J.C. 1979. Is ‘enkephalinase’ identical with ‘angiotensinconverting enzyme?’ Europ. J. Pharmacol. 53: 209–210.CrossRefGoogle Scholar
  31. 31.
    Defendini, R., Zimmerman, E.A., Weare, J.A., Alhenc-Gelas, F. and Erdös, E.G. 1982. Hydrolysis of enkephalins by human converting enzyme and localization of the enzyme in neuronal components of the brain. In: Regulatory Peptides: From Molecular Biology to Function. Costa, E. and Trabucchi, M. eds.). New York, Raven Press, pp. 271–280.Google Scholar
  32. 32.
    Skeggs, T., Kahn, J.R. and Shumway, N.P. 1956. The preparation and function of the hypertensin-converting enzyme. J. Exp. Med. 103: 295–299.PubMedCrossRefGoogle Scholar
  33. 33.
    Erdös, E.G. and Yang, H.Y.T. 1967. An enzyme in microsomal fraction of kidney that inactivates bradykinin. Life Sci. 6: 569–574.PubMedCrossRefGoogle Scholar
  34. 34.
    Brunner, H.R., Gavras, H., Waeber, B., Textor, S.C., Turini, G.A. and Wauters, J.P. 1980. Clinical uses of an orally acting converting enzyme inhibitor: captopril. Hypertension 2: 558–567.PubMedGoogle Scholar
  35. 35.
    Rubin, B. and Antonaccio, M.J. 1980. Captopril. In: Pharmacology of Antihypertensive Drugs. Scriabine, A. ed.). New York, Raben Press, pp. 21–42.Google Scholar
  36. 36.
    Laragh, J.H. 1980. The renin system in high blood pressure: converting enzyme blockade for analysis and treatment. In: Topics in Hypertension. sLaragh, J.H. ed.). New York, Yorke Medical Books, pp. 567–576.Google Scholar
  37. 37.
    Ng, K.K.F. and Vane, J.R. 1967. The conversion of angiotensin I to angiotensin II. Nature 216: 762–766.PubMedCrossRefGoogle Scholar
  38. 38.
    Oparil, S., Tregear, G.W., Koerner, T., Barnes, B.A. and Haber, E. 1971. Mechanism of pulmonary conversion of angiotensin I to angiotensin II in the dog. Circ. Res. 29: 682–690.PubMedGoogle Scholar
  39. 39.
    Barrett, J.D. and Sambhi, M.P. 1971. Pulmonary activation and degradation of angiotensin I, a dual enzyme system. Res. Comm. Chem. Pathol. Pharmacol. 2: 128–145.Google Scholar
  40. 40.
    Biron, P. and Campeau, L. 1971. Pulmonary and extrapulmonary fate of angiotensin I. Rev. Can. Biol. 30: 27–34.PubMedGoogle Scholar
  41. 41.
    Biron, P., Campeau, L. and David, P. 1969. Fate of angiotensin I and II in the human pulmonary circulation. Am. J. Cardiol. 24: 544–547.PubMedCrossRefGoogle Scholar
  42. 42.
    Stanley, P. and Biron, P. 1969. Pressor response to angiotensin I during cardiopulmonary bypass. Experientia 25: 46–47.PubMedCrossRefGoogle Scholar
  43. 43.
    Ferreira, S. H. and Vane, J. R. 1967. The disappearance of bradykinin and eledoisin in the circulation and vascular beds of the cat. Brit. J. Pharmacol. Chemother. 30: 417–424.Google Scholar
  44. 44.
    Ryan, J.W., Roblero, L. and Stewart, J.M. 1968. Inactivation of bradykinin in the pulmonary circulation. Biochem. J. 110: 795–797.PubMedGoogle Scholar
  45. 45.
    Ryan, J.W., Roblero, J. and Stewart, J.M. 1970. Inactivation of bradykinin in rat lung. Adv. Exptl. Med. Biol. 8: 263–271.Google Scholar
  46. 46.
    Alabaster, V.A. and Bahkle, Y.S. 1972. The inactivation of bradykinin in the pulmonary circulation of isolated lungs. Brit. J. Pharmacol. 45: 299–309.Google Scholar
  47. 47.
    Ryan, J.W., Ryan, U.S., Schultz, D.R., Whitaker, C. and Chung, A. 1975. Subcellular localization of pulmonary angiotensin-converting enzyme (kininase II). Biochem. J. 146: 497–499.PubMedGoogle Scholar
  48. 48.
    Brecher, P., Tercyak, A., Gavras, H. and Chobanian, A.V. 1978. Peptidyl dipeptidase in rabbit brain microvessels. Biochim. Biophys. Acta 526: 537–546.PubMedGoogle Scholar
  49. 49.
    Ward, P.E., Stewart, T.A., Hammon, K.J., Reynolds, R.C. and Igic, R.P. 1979. Angiotensin I converting enzyme (kininase II) in isolated retinal microvessels. Life Sci. 24: 1419–1424.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson, A.R., Callahan, K.S., Tsai, S.C. and Campbell, W.B. 1981. Prostacyclin and prostaglandin biosynthesis in human pulmonary endothelial cells. Bull. Europ. Physiopath. Resp. (Clin. Resp. Physiol.) 17: 531–551.Google Scholar
  51. 51.
    Zetter, B.R. 1981. The endothelial cells of large and small blood vessels. Diabetes 30, Suppl. 2: 24–28.PubMedGoogle Scholar
  52. 52.
    Davison, P.M., Bensch, K. and Karasek, M.A. 1980. Isolation and growth of endothelial cells from the microvessels of the newborn human foreskin in cell culture. J. Invest. Dermatol. 75: 316–321.PubMedCrossRefGoogle Scholar
  53. 53.
    Wigger, H.J. and Stalcup, S.A. 1978. Distribution and development of angiotensin converting enzyme in the fetal and newborn rabbit. An immunofluorescence study. Lab. Invest. 38: 581–585.PubMedCrossRefGoogle Scholar
  54. 54.
    Stalcup, S.A., Pang, L.M., Lipset, J.S., Odya, C.E., Goodfriend, T.L. and Mellins, R.B. 1978. Gestational changes in pulmonary converting enzyme activity in the fetal rabbit. Circ. Res. 43: 705–711.PubMedGoogle Scholar
  55. 55.
    Erdös, E.G., Yang, H.Y.T., Tague, L.L. and Manning, N. 1967. Carboxypeptidase in blood and other fluids. III. The esterase activity of the enzyme. Biochem. Pharmacol. 16: 1287–1297.PubMedCrossRefGoogle Scholar
  56. 56.
    Erdös, E.G. 1979. Kininases. In: Handbook Exp. Pharm. XXV, Suppl. Bradykinin, Kallidin and Kallikrein. Erdös, E.G. ed.). New York, Springer, pp. 427–487.Google Scholar
  57. 57.
    Bokisch, V.A. and Müller-Eberhard, H.J. 1970. Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49: 2427–2436.PubMedCrossRefGoogle Scholar
  58. 58.
    Denny, J.B. and Johnson, A.R. 1979. Uptake of 125I-labeled C3a by cultured human endothelial cells. Immunology 36: 169–177.Google Scholar
  59. 59.
    Mahler, F., Intaglietta, M., Hugli, T.E. and Johnson, A.R. 1975. Influence of C3a anaphylatoxin compared to other vasoactive agents on the microcirculation of the rabbit omentum. Microvasc. Res. 9: 345–356.PubMedCrossRefGoogle Scholar
  60. 60.
    Bakhle, Y.S., Reynard, A.M. and Vane, J.R. 1969. Metabolism of the angiotensins in isolated perfused tissues. Nature 222: 956–959.PubMedCrossRefGoogle Scholar
  61. 61.
    Ng, K.K.F. and Vane, J.R. 1968. Fate of angiotensin I in the circulation. Nature 218: 144–150.PubMedCrossRefGoogle Scholar
  62. 62.
    Osborne, M.J., d’Auriac, G.A., Meyer, P. and Worcel, M. 1970. Mechanism of extraction of angiotensin II in coronary and renal circulations. Life Sci. 9: 857–569.Google Scholar
  63. 63.
    Osborne, M.J., Pooters, N., d’Auriac, G.A., Epstein, A.N., Worcel, M. and Meyer, P. 1971. Metabolism of tritiated angiotensin II in anesthetized rats. Pfluger’s Arch. 236: 101–114.CrossRefGoogle Scholar
  64. 64.
    Richardson, J. B. and Beaulines, A. 1971. The cellular site of action of angiotensin. J. Cell Biol. 51: 419–432.PubMedCrossRefGoogle Scholar
  65. 65.
    Del Vecchio, P.J., Ryan, J.W., Chung, A. and Ryan, U.S. 1980. Capillaries of the adrenal cortex possess aminopeptidase A and angiotensin-converting enzyme activities. Biochem. J. 186: 605–608.PubMedGoogle Scholar
  66. 66.
    Constandinides, P. and Robinson, M. 1969. Ultrastructural injury of arterial endothelium II. Effects of vasoactive amines. Arch. Pathol. 88: 99–112.Google Scholar
  67. 67.
    Robertson, A.L. and Khairallah, P.A. 1972. Effects of angiotensin II and some analogs on vascular permeability in the rabbit. Circ. Res. 31: 923–931.PubMedGoogle Scholar
  68. 68.
    Robertson, A.L. and Khairallah, P.A. 1974. Effects of angiotensin II on the permeability of the vascular wall. In: Handbook Exp. Pharmacol. XXXVII, Angiotensin. Page, I.H. and Bumpus, F.M. eds.). New York, Springer, pp. 500–510.Google Scholar
  69. 69.
    Leary, W.P. and Ledingham, J.G. 1969. Removal of angiotensin by isolated perfused organs of the rat. Nature 222: 959–960.PubMedCrossRefGoogle Scholar
  70. 70.
    Leary, W.P. and Ledingham, J.G. 1970. Renal and hepatic inactivation of angiotensin in rats. Influence of sodium balance and renal artery compression. Clin. Sci. 38: 573–582.PubMedGoogle Scholar
  71. 71.
    Biron, P., Meyer, P. and Panisset, J.C. 1968. Removal of angiotensins from the systemic circulation. Can. J. Physiol. Pharmacol. 46: 175–178.PubMedCrossRefGoogle Scholar
  72. 72.
    Bailie, M.D. and Oparil, S. 1977. Relation of renal hemodynamics to metabolism of angiotensin II by the canine kidney. Circ. Res. 41: 283–287.PubMedGoogle Scholar
  73. 73.
    Donato, L., Coli, A., Pasqualini, R. and Duce, T. 1972. Metabolic clearance rate of radioiodinated angiotensin II in normal men. Am. J. Physiol. 223: 1250–1256.PubMedGoogle Scholar
  74. 74.
    Glenner, G.G., McMillan, P.H.J. and Folk, L.F. 1962. A mammalian peptidase specific for the hydrolysis of N-terminal L-L glutamyl and aspartyl residues. Nature 194: 867.PubMedCrossRefGoogle Scholar
  75. 75.
    Nagatsu, I., Nagatsu, T., Yamamoto, T., Glenner, G.G. and Mehl, J.W. 1970. Purification of aminopeptidase A in human serum and degradation of angiotensin II by the purified enzyme. Biochim. Biophys. Acta 198: 255–270.PubMedGoogle Scholar
  76. 76.
    Moore, A.F., Gurchinpff, S., Brashear, W., Bumpus, F.M., Chang, R. and Khairallah, P.A. 1977. Angiotensinase activity in red blood cell membranes and intact adrenal cells. Res. Comm. Chem. Path. Pharmacol. 18: 697–707.Google Scholar
  77. 77.
    Yang, H.Y.T., Erdös, E.G., Chiang, T.S., Jenssen, T.A. and Rodgers, J.G. 1970. Characteristics of an enzyme that inactivates angiotensin II (angiotensinase C). Biochem. Pharmacol. 19: 1201–1211.CrossRefGoogle Scholar
  78. 78.
    Odya, C.E., Marinkovic, D.V., Hammon, K.J., Stewart, T.A. and Erdös, E.G. 1978. Purification and properties of prolylcarboxypeptidase (angiotensinase C) from human kidney. J. Biol. Chem. 253: 5927–5931.PubMedGoogle Scholar
  79. 79.
    Stalcup, S.A., Lipset, J.S., Legant, P.M., Leunberger, P.J. and Mellins, R.B. 1979. Inhibition of converting enzyme activity by acute hypoxia in dogs. J. Appl. Physiol.; Respirat. Environ. Exercise Physiol. 46: 227–234.Google Scholar
  80. 80.
    Szidon, P., Bairey, N. and Oparil, S. 1980. Effect of acute hypoxia on the pulmonary conversion of angiotensin I to angiotensin II in dogs. Circ. Res. 46: 221–226.PubMedGoogle Scholar
  81. 81.
    Stalcup, S.A., Lipset, J.S., Woan, J.M., Leuenberger, P. and Mellins, R.B. 1979. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J. Clin. Invest. 63: 966–976.PubMedCrossRefGoogle Scholar
  82. 82.
    Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, L.S., Morgan, B.A. and Morris, H.R. 1975. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579.PubMedCrossRefGoogle Scholar
  83. 83.
    Smith, T., Hughes, J., Kosterlitz, H. and Sosa, R. 1976. Enkephalins: isolation, distribution and function. In: Opiates and Endogenous Opioid Peptides. (Kosterlitz, H.W. ed.). Amsterdam, North Holland Publ. Co., pp. 57–62.Google Scholar
  84. 84.
    Way, E.L. and Glasgow, C.E. 1978. The endorphins: possible physiologic roles and therapeutic applications. Clin. Ther. 1: 371–386.Google Scholar
  85. 85.
    Pasternak, G., Goodman, R. and Synder, S. 1975. An endogenous morphine-like factor in mammalian brain. Life Sci. 16: 13–17.CrossRefGoogle Scholar
  86. 86.
    Knoll, J. 1976. Neuronal peptide (enkephalin) receptors in the ear artery of the rabbit. Eur. J. Pharmacol. 39: 403–407.PubMedCrossRefGoogle Scholar
  87. 87.
    Farsang, C. and Kunos, G. 1978. Naloxone reverses the antihypertensive effect of clonidine. Br. J. Pharmac. 67: 161–164.Google Scholar
  88. 88.
    Kunos, G., Farsang, C. and Ramirez-Gonzales, M.D. 1981. B-endorphin: possible involvement in the antihypertensive effect of central a-receptor activation. Science 211: 82–84.PubMedCrossRefGoogle Scholar
  89. 89.
    Chang, J., Fong, B., Pert, A. and Pert, C. 1976. Opiate receptor affinities and behavioral effects of enkephalin. Structure-activity relationship of ten synthetic peptide analogs. Life Sci. 18: 1473–1482.PubMedCrossRefGoogle Scholar
  90. 90.
    Hambrook, J.M., Morgan, B.A., Rance, M.J. and Smith, C.F.C. 1976. Mode of deactivation of the enke-phalins by rat and human plasma and rat brain homogenates. Nature 262: 782–783.PubMedCrossRefGoogle Scholar
  91. 91.
    Meek, J.L., Yang, H.Y.T. and Costa, E. 1977. Enkephalin catabolism in vitro and in vivo. Neuropharmacology 16: 151–154.PubMedCrossRefGoogle Scholar
  92. 92.
    Marks, N., Grynbau, A. and Neidle, A. 1977. On the degradation of enkephalins and endorphins by rat and mouse brain extracts. Biochem. Biophys. Res. Comm. 74: 1552–1559.PubMedCrossRefGoogle Scholar
  93. 93.
    Malfroy, B., Swerts, J.P., Guyon, A., Roques, B.P. and Schwarz, J.C. 1978. High affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276: 523–526.PubMedCrossRefGoogle Scholar
  94. 94.
    Schnebli, H.P., Phillips, M.A. and Barclay, R.K. 1979. Isolation and characterization of an enkephalin-degrading aminopeptidase from rat brain. Biochim. Biophys. Acta 569: 89–98.PubMedGoogle Scholar
  95. 95.
    Hersh, L. B. 1982. Degradation of enkephalins: the search for an enkephalinase. Mol. Cell. Biochem. 47: 35–43.PubMedCrossRefGoogle Scholar
  96. 96.
    Shaw, S.G. and Cook, W.F. 1978. Localisation and characterisation of aminopeptidases in the CNS and the hydrolysis of enkephalin. Nature 274: 816–817.PubMedCrossRefGoogle Scholar
  97. 97.
    Gorenstein, C. and Synder, S.H. 1980. Enkephalinases. Proc. Roy. Soc. Lond. 210: 123–132.CrossRefGoogle Scholar
  98. 98.
    Gafford, J.T., Skidgel, R.A., Igic, R., Erdös, E.G. and Hersh, L.B. 1983. Inactivation of bradykinin and angiotensin II by homogeneous human ‘enkephalinase’. Fed. Proc. 42: 1022.Google Scholar
  99. 99.
    von Euler, U.S. and Gaddum, J.H. 1931. An unidentified depressor substance in certain tissue extracts. J. Physiol. 72: 74–81.Google Scholar
  100. 100.
    Leeman, S.E. and Hammerschlag, R. 1967. Stimulation of salivary secretion by a factor extracted from hypothalamic tissue. Endocrinology 81: 803–810.PubMedCrossRefGoogle Scholar
  101. 101.
    Leeman, S.E. and Carraway, R. 1977. Discovery of a sialogogic peptide in bovine hypothalamic extracts: its isolation, characterization as substance P, structure and synthesis. In: Substance P. von Euler, U.S. and Pernow, B. eds.). New York, Raven Press, pp. 5–13.Google Scholar
  102. 102.
    Chang, M.M. and Leeman, S.E. 1970. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J. Biol. Chem. 245: 4784–4790.PubMedGoogle Scholar
  103. 103.
    Chang, M.M., Leeman, S.E. and Niall, H.D. 1971. Amino-acid sequence of substance P. Nature 232: 86–87.CrossRefGoogle Scholar
  104. 104.
    Lembeck, F., Gamse, R. and Juan, H. 1977. Substance P and sensory nerve endings. In: Substance P. von Euler, U.S. and Pernow, B. eds.). New York, Raven Press, pp. 169–181.Google Scholar
  105. 105.
    Johnson, A.R. and Erdös, E.G. 1973. Release of histamine from mast cells by vasoactive peptides. Proc. Soc. Exptl. Biol. Med. 142: 1252–1256.Google Scholar
  106. 106.
    Mills, I.H., MacFarlane, N.A.A. and Ward, P.E. 1974. Increase in kallikrein excretion during the natriuresis produced by arterial infusion of substance P. Nature 247: 108–109.PubMedCrossRefGoogle Scholar
  107. 107.
    Ward, P.E. and Johnson, A.R. 1978. Renal inactivation of substance P in the rat. Biochem. J. 171: 143–148.PubMedGoogle Scholar
  108. 108.
    Burcher, E., Atterhög, J.H., Pernow, B. and Rosell, S. 1977. Cardiovascular effects of substance P: effects on the heart and regional blood flow in the dog. In: Substance P. von Euler, U.S. and Pernow, B. New York, Raven Press, pp. 261–268.Google Scholar
  109. 109.
    Claybrook, D.L. and Pfiffner, J.J. 1968. Purification and properties of a substance P-inactivating enzyme from bovine brain. Biochem. Pharmacol. 17: 281–293.CrossRefGoogle Scholar
  110. 110.
    Rosell, S., Björkroth, U., Chang, D., Yamaguchi, I., Wan, Y.P., Rackur, G., Fisher, G. and Folkers, K. 1977. Effects of substance P and analogs on isolated guinea pig ileum. In: Substance P. von Euler, U.S. and Pernow, B. eds.). New York, Raven Press, pp. 83–88.Google Scholar
  111. 111.
    Bury, R.W. and Mashford, M.L. 1976. Biological activity of C-terminal partial sequence of substance P. J. Med. Chem. 19: 854–856.PubMedCrossRefGoogle Scholar
  112. 112.
    Benuck, M. and Marks, N. 1975. Enzymatic inactivation of substance P by a partially purified enzyme from rat brain. Biochem. Biophys. Res. Comm. 65: 153–160.PubMedCrossRefGoogle Scholar
  113. 113.
    Marks, N. and Stern, F. 1974. Enzymatic mechanisms for the inactivation of luteinizing hormone-releasing hormone (LH-RH). Biochem. Biophys. Res. Comm. 61: 1458–1463.PubMedCrossRefGoogle Scholar
  114. 114.
    Marks, N. and Pirotta, M. 1971. Breakdown of bradykinin and its analogs by rat brain neutral proteinase. Brain Res. 33: 565–567.PubMedCrossRefGoogle Scholar
  115. 115.
    Lee, C.M., Arregui, A. and Iversen, L.L. 1979. Substance P degradation by rat brain peptidases: inhibition by SQ 20881. Biochem. Pharmacol. 28: 553–556.PubMedCrossRefGoogle Scholar
  116. 116.
    Johnson, A.R. and Erdös, E.G. 1977. Inactivation of substance P by cultured human endothelial cells. In: Substance P. von Euler, U.S. and Pernow, B. eds.). New York, Raven Press, pp. 253–260.Google Scholar
  117. 117.
    Johnson, A.R. and Boyden, N.T. 1977. Proteases in cultured human endothelial cells. In: Kininogenases, Kallikrein. (Haberland, G.L., Rohen, J.W. and Suzuki, T. eds.). Stuttgart-New York, F.K. Schattauer Verlag, pp. 113–118.Google Scholar
  118. 118.
    Hökfelt, T., Johansson, O., Kellerth, J.O., Ljungdahl, A., Nilsson, G., Nygards, A. and Pernow, Bs. 1977. Immunohistochemical distribution of substance P. In: Substance P. (von Euler, U.S. and Pernow, B. eds.). New York, Raven Press, pp. 117–145.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1984

Authors and Affiliations

  • Alice R. Johnson

There are no affiliations available

Personalised recommendations