Skip to main content

Macrophages, neovascularization, and the growth of vascular cells

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 27))

Abstract

Vascular cells in normal adult mammals, including humans, appear to be relatively quiescent populations with respect to growth. In particular, mitotic figures are rarely seen in the endothelial lining of large and small blood vessels, and the low levels of DNA synthesis detectable by tritiated thymidine autoradiography usually have been attributed to a process of cell replacement. Similarly, the smooth muscle cells that comprise the medial layer of the aorta and its major branches normally show little evidence of turn-over. However, this slow renewal pattern can be increased dramatically, in both vascular endothelium and smooth muscle, by a variety of physiologic and pathologic stimuli. Thus, endothelial proliferation is a prominent feature in such processes as wound healing, the organization of myocardial infarcts and intravascular clots, and the growth of solid tumors (1). In addition, hyperplasia of arterial smooth muscle, in response to intimai injury, is thought to be an early event in the development of atherosclerotic lesions (2, 3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. and Cotran, R. 1976. Relation of Vascular Proliferation to Tumor Growth. Int. Rev. Exper. Pathol. 16: 207–248.

    CAS  Google Scholar 

  2. Ross, R. and Glomset, J.A. 1973. Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  3. Ross, R. and Glomset, J.A. 1976. The pathogenesis of atherosclerosis. New Engl. J. Med. 295: 369–377

    Article  PubMed  CAS  Google Scholar 

  4. Langer, R. and Folkman, J. 1976. Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797–800.

    Article  PubMed  CAS  Google Scholar 

  5. Gross, J., Azizhan, R.G., Biswas, C., Bruns, R.R., Hsieh, D.S.T. and Folkman, J. 1981. Inhibition of tumor growth, vascularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc. Natl. Acad. Sci. USA. 78(2): 1176–1180.

    Article  PubMed  CAS  Google Scholar 

  6. Schwartz, S.M., Gajdusek, C.M. and Seiden, S.C., III. 1981. Vascular Wall Growth Control: The Role of the Endothelium. Arteriosclerosis 1(2): 107–126.

    Article  PubMed  Google Scholar 

  7. Ross, R. and Vogel, A. 1978. The Platelet-Derived Growth Factor. Cell 14: 203–210.

    Article  PubMed  CAS  Google Scholar 

  8. Gospodarowicz, D. and Ill, C. 1980. Extracellular Matrix and Control of Proliferation of Vascular Endothelial Cells. J. Clin. Invest. 65: 1351–1364.

    Article  PubMed  CAS  Google Scholar 

  9. Weinstein, R., Stemerman, M.B. and Maciag, T. 1981. Hormonal Requirements for Growth of Arterial Smooth Muscle Cells in vitro: An Endocrine Approach to Atherosclerosis. Science 212: 818–820.

    Article  PubMed  CAS  Google Scholar 

  10. Gimbrone, M.A., Jr., Leapman, S.B., Cotran, R.S. and Folkman, J. 1972. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136: 261–276.

    Article  PubMed  Google Scholar 

  11. Gimbrone, M.A., Jr., Leapman, S.B., Cotran, R.S. and Folkman, J. 1973. Tumor angiogenesis: Iris neovascularization at a distance from experimental intraocular tumors. J. Nat. Canc. Inst. 50: 219–228.

    Google Scholar 

  12. Gimbrone, M.A., Jr., Cotran, R.S., Leapman, S.B. and Folkman, J. 1974. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Nat. Canc. Inst. 52: 413–427.

    Google Scholar 

  13. Gimbrone, M. A., Jr. and Gullino, P. M. 1976. Neovascularization induced by intraocular xenografts of preneoplastic and neoplastic mammary tissues. J. Nat. Canc. Inst. 56: 305–318.

    Google Scholar 

  14. Gimbrone, M.A., Jr. and Gullino, P.M. 1976. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Canc. Res. 36: 2611–2620.

    Google Scholar 

  15. Gimbrone, M.A., Jr., Cotran, R.S. and Folkman, J. 1973. Endothelial regeneration: Studies with human endothelial cells in culture. Ser. Haemat. VI: 453–455.

    Google Scholar 

  16. Gimbrone, M.A., Jr., Cotran, R.S. and Folkman, J. 1974. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60: 673–684.

    Article  PubMed  CAS  Google Scholar 

  17. Gimbrone, M.A., Jr. and Fareed, G.C. 1976. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 9: 685–693.

    Article  PubMed  Google Scholar 

  18. Sholley, M.M., Gimbrone, M.A., Jr. and Cotran, R.S. 1977. Cellular migration and replication in endothelial regeneration: A study using irradiated endothelial cultures. Lab. Invest. 36: 18–25.

    PubMed  CAS  Google Scholar 

  19. Fareed, G.C., Takemoto, K.K. and Gimbrone, M.A., Jr. 1978. Interaction of Simian Virus 40 and human papovaviruses, BK and JC, with human vascular endothelial cell. Microbiology-1978: 427–431.

    Google Scholar 

  20. Polverini, P.J., Cotran, R.S., Gimbrone, M.A., Jr. and Unanue, E.R. 1977. Activated macrophages induce vascular proliferation. Nature 269(5631): 804–806.

    Article  PubMed  CAS  Google Scholar 

  21. Sholley, M.M., Gimbrone, M.A., Jr. and Cotran, R.S. 1978. The Effects of Leukocyte Depletion on Corneal Neovascularization. Lab. Invest. 38(1): 32–40.

    PubMed  CAS  Google Scholar 

  22. Martin, B.M., Gimbrone, M.A., Jr., Unanue, E.R. and Cotran, R.S. 1981. Stimulation of Nonlymphoid Mesenchymal Cell Proliferation by a Macrophage-Derived Growth Factor. J. Immunol. 126(4): 1510–1515.

    PubMed  CAS  Google Scholar 

  23. Martin, B.M., Gimbrone, M.A. Jr., Unanue, E.R. and Cotran, R.S. 1981s. In: Plasma and Cellular Modulatory Proteins’, Proceedings of the XXVIth Meeting of the Center for Blood Research. Bing, D.H. and Rosenbaum, R.A., eds.). Boston, pp 83-94.

    Google Scholar 

  24. Martin, B.M., Gimbrone, M.A., Jr., Unanue, E.R. and Cotran, R.S. 1981. Macrophage-derived growth factor: Production by cultured human mononuclear blood cells. Fed. Proc. 40(3): 335.

    Google Scholar 

  25. Martin, B.M., Gimbrone, M.A., Jr., Majeau, G.R., Unanue, E.R. and Cotran, R.S. 1981. Monocyte/Macrophage-Derived Growth Factor Production: Modulation by Cold-Insoluble Globulin and Extracellular Matrix. Circulation 64 (IV): 214.

    Google Scholar 

  26. Polverini, P.J., Cotran, R.S. and Sholley, M.M. 1977. Endothelial Proliferation in the Delayed Hypersensitivity Reaction: An Autoradiographic Study. J. Immunol. 118(2): 529–532.

    PubMed  CAS  Google Scholar 

  27. Sholley, M.M., Cavallo, T. and Cotran, R.S. 1977. Endothelial Proliferation in Inflammation. Am. J. Pathol. 89(2): 277–290.

    PubMed  CAS  Google Scholar 

  28. D’Amore, P.A., Glaser, B.M., Brunson, S.K. and Fenselau, A.H. 1981. Angiogenic activity from bovine retina: Partial purification and characterization. Proc. Natl. Acad. Sci. USA 78(5): 3068–3072.

    Article  CAS  Google Scholar 

  29. Sidky, Y.A. and Auerbach, R. 1975. Lymphocyte-induced angiogenesis. A quantitative and sensitive assay of the graft-vs-host reaction. J. Exp. Med. 141: 1084–1100.

    Article  PubMed  CAS  Google Scholar 

  30. Fromer, C.H. and Klintworth, G.K. 1976. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am. J. Pathol 82: 157–170.

    PubMed  CAS  Google Scholar 

  31. Pliskin, M.E., Ginsberg, S.M. and Carp, N. 1980. Induction of Neovascularization by Mitogen-Activated Spleen Cells and Their Supernatants. Transplantation 29(3): 255–258.

    Article  PubMed  CAS  Google Scholar 

  32. Calderon, J., Kiely, J.-M., Lefko, J.L. and Unanue, E.R. 1975. The Modulation of Lymphocyte Functions by Molecules Secreted by Macrophages. I. Description and Partial Biochemical Analysis. J. Exp. Med. 142: 151–164.

    Article  PubMed  CAS  Google Scholar 

  33. Beller, D.I., Kiely, J.-M. and Unanue, E.R. 1980. Regulation of Macrophage Populations. I. Preferential Induction of Ia-Rich Peritoneal Exudates by Immunologic Stimuli. J. Immunol. 124(3): 1426–1432.

    PubMed  CAS  Google Scholar 

  34. Unanue, E.R. 1976. Secretory Function of Mononuclear Phagocytes. Am. J. Pathol. 83: 396–417.

    PubMed  CAS  Google Scholar 

  35. Page, R.C., Davies, P. and Allison, A.C. 1978. The Macrophage as a Secretory Cell. Int. Rev. Cytology 52: 119–157.

    Article  CAS  Google Scholar 

  36. Nathan, C.F., Murray, H.W. and Cohn, Z.A. 1980. Current Concepts. The Macrophage as an Effector Cell. New Engl. J. Med. 303: 622–626.

    Article  PubMed  CAS  Google Scholar 

  37. Leibovich, S.J. and Ross, R. 1976. A Macrophage-Dependent Factor that Stimulates the Proliferation of Fibroblasts In Vitro. Am. J. Pathol. 84(3): 501–513.

    PubMed  CAS  Google Scholar 

  38. Wall, R.T., Harker, L.A., Quadracci, L.J. and Striker, G.E. 1978. Factors influencing endothelial cell proliferation in vitro. J. Cell Physiol. 96: 203–213.

    Article  PubMed  CAS  Google Scholar 

  39. Thakral, K.K., Goodson, W.H., III and Hunt, T.K. 1979. Stimulation of Wound Blood Vessel Growth by Wound Macrophages. J. Surg. Res. 26: 430–436.

    Article  PubMed  CAS  Google Scholar 

  40. Ziats, N.P. and Robertson, A.L., Jr. 1981. Effects of Peripheral Blood Monocytes on Human Vascular Cell Proliferation. Atherosclerosis 38: 401–410.

    Article  PubMed  CAS  Google Scholar 

  41. Glenn, K.C. and Ross, R. 1981. Human Monocyte-Derived Growth Factor(s) for Mesenchymal Cells: Activation of Secretion by Endotoxin and Concanavalin A (Con A). Cell 25: 603–615.

    Article  PubMed  CAS  Google Scholar 

  42. Leibovich, S.J. and Ross, R. 1975. The Role of Macrophage in Wound Repair. A Study with Hydrocortisone and Antimacrophage Serum. Am. J. Pathol. 78: 71–100.

    PubMed  CAS  Google Scholar 

  43. Leibovich, S.J. 1978. Production of Macrophage-Dependent Fibroblast-Stimulating Activity (M-FSA) by Murine Macrophages. Exp. Cell Res. 113: 47–56.

    Article  PubMed  CAS  Google Scholar 

  44. Wahl, S.M., Wahl, L.M., McCarthy, J.B., Chedid, L. and Mergenhagen, S.E. 1979. Macrophage Activation by Mycobacterial Water Soluble Compounds and Synthetic Muramyl Dipeptide. J. Immunol. 122(6): 2226–2231.

    PubMed  CAS  Google Scholar 

  45. DeLustro, F., Sherer, G.K. and LeRoy, E.C. 1980. Human Monocyte Stimulation of Fibroblast Growth by a Soluble Mediator(s). J. Reticuloendothelial Soc. 28(6): 519–532.

    CAS  Google Scholar 

  46. Allison, A.C. 1978. Macrophage Activation and Nonspecific Immunity. Int. Rev. Exper. Pathol. 18: 303–346.

    CAS  Google Scholar 

  47. Clark, R.A., Stone, R.D., Leung, D.Y.K., Silver, I., Hohn, D.C. and Hunt, T.K. 1976. Role of Macrophages in Wound Healing. Surgical Forum 27: 16–18.

    PubMed  CAS  Google Scholar 

  48. Greenburg, G.B. and Hunt, T.K. 1978. The Proliferative Response In Vitro of Vascular Endothelial and Smooth Muscle Cells Exposed to Wound Fluids and Macrophages. J. Cell. Physiol. 97: 353–360.

    Article  PubMed  CAS  Google Scholar 

  49. Schreiner, G.F., Cotran, R.S., Pardo, V. and Unanue, E.R. 1978. A mononuclear cell component in experimental immunological glomerulonephritis. J. Exp. Med. 147: 369–384.

    Article  PubMed  CAS  Google Scholar 

  50. Striker, G.E., Killen, P.D. and Farin, F.M. 1980. Mesangial cell proliferation, role of macrophages and platelets. Fed. Proc. 39: 344.

    Google Scholar 

  51. Schaffner, T., Taylor, K., Bartucci, E.J., Fischer-Dzoga, K., Beeson, J.H., Glagov, S. and Wissler, R.W. 1980. Arterial Foam Cells with Distinctive Immunomorphologic and Histochemical Features of Macrophages. Am. J. Pathol. 100(1): 57–73.

    PubMed  CAS  Google Scholar 

  52. Gerrity, R.G., Naito, H.K., Richardson, M. and Schwartz, C.J. 1979. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am. J. Pathol. 95(3): 775–786.

    PubMed  CAS  Google Scholar 

  53. Gerrity, R.G. 1981. The Role of the Monocyte in Atherogenesis. I. Transition of Blood-Borne Monocytes Into Foam Cells in Fatty Lesions. Am. J. Pathol. 103(2): 181–190.

    PubMed  CAS  Google Scholar 

  54. Norris, D.A., Morris, R.M., Sanderson, R.J. and Kohler, P.F. 1979. Isolation of Functional Subsets of Human Peripheral Blood Monocytes. J. Immunol. 123(1): 166–172.

    PubMed  CAS  Google Scholar 

  55. Arenson, E.B., Jr., Epstein, M.B. and Seeger, R.C. 1980. Volumetric and Functional Heterogeneity of Human Monocytes. J. Clin. Invest. 65: 613–618.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Gimbrone, M.A. (1984). Macrophages, neovascularization, and the growth of vascular cells. In: Jaffe, E.A. (eds) Biology of Endothelial Cells. Developments in Cardiovascular Medicine, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2825-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2825-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9786-4

  • Online ISBN: 978-1-4613-2825-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics