Advertisement

Macrophages, neovascularization, and the growth of vascular cells

  • Michael A. GimbroneJr.
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 27)

Abstract

Vascular cells in normal adult mammals, including humans, appear to be relatively quiescent populations with respect to growth. In particular, mitotic figures are rarely seen in the endothelial lining of large and small blood vessels, and the low levels of DNA synthesis detectable by tritiated thymidine autoradiography usually have been attributed to a process of cell replacement. Similarly, the smooth muscle cells that comprise the medial layer of the aorta and its major branches normally show little evidence of turn-over. However, this slow renewal pattern can be increased dramatically, in both vascular endothelium and smooth muscle, by a variety of physiologic and pathologic stimuli. Thus, endothelial proliferation is a prominent feature in such processes as wound healing, the organization of myocardial infarcts and intravascular clots, and the growth of solid tumors (1). In addition, hyperplasia of arterial smooth muscle, in response to intimai injury, is thought to be an early event in the development of atherosclerotic lesions (2, 3).

Keywords

Peritoneal Macrophage Latex Particle Mononuclear Phagocyte Peritoneal Exudate Corneal Stroma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folkman, J. and Cotran, R. 1976. Relation of Vascular Proliferation to Tumor Growth. Int. Rev. Exper. Pathol. 16: 207–248.Google Scholar
  2. 2.
    Ross, R. and Glomset, J.A. 1973. Atherosclerosis and the arterial smooth muscle cell. Science 180: 1332–1339.PubMedCrossRefGoogle Scholar
  3. 3.
    Ross, R. and Glomset, J.A. 1976. The pathogenesis of atherosclerosis. New Engl. J. Med. 295: 369–377PubMedCrossRefGoogle Scholar
  4. 4.
    Langer, R. and Folkman, J. 1976. Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797–800.PubMedCrossRefGoogle Scholar
  5. 5.
    Gross, J., Azizhan, R.G., Biswas, C., Bruns, R.R., Hsieh, D.S.T. and Folkman, J. 1981. Inhibition of tumor growth, vascularization, and collagenolysis in the rabbit cornea by medroxyprogesterone. Proc. Natl. Acad. Sci. USA. 78(2): 1176–1180.PubMedCrossRefGoogle Scholar
  6. 6.
    Schwartz, S.M., Gajdusek, C.M. and Seiden, S.C., III. 1981. Vascular Wall Growth Control: The Role of the Endothelium. Arteriosclerosis 1(2): 107–126.PubMedCrossRefGoogle Scholar
  7. 7.
    Ross, R. and Vogel, A. 1978. The Platelet-Derived Growth Factor. Cell 14: 203–210.PubMedCrossRefGoogle Scholar
  8. 8.
    Gospodarowicz, D. and Ill, C. 1980. Extracellular Matrix and Control of Proliferation of Vascular Endothelial Cells. J. Clin. Invest. 65: 1351–1364.PubMedCrossRefGoogle Scholar
  9. 9.
    Weinstein, R., Stemerman, M.B. and Maciag, T. 1981. Hormonal Requirements for Growth of Arterial Smooth Muscle Cells in vitro: An Endocrine Approach to Atherosclerosis. Science 212: 818–820.PubMedCrossRefGoogle Scholar
  10. 10.
    Gimbrone, M.A., Jr., Leapman, S.B., Cotran, R.S. and Folkman, J. 1972. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136: 261–276.PubMedCrossRefGoogle Scholar
  11. 11.
    Gimbrone, M.A., Jr., Leapman, S.B., Cotran, R.S. and Folkman, J. 1973. Tumor angiogenesis: Iris neovascularization at a distance from experimental intraocular tumors. J. Nat. Canc. Inst. 50: 219–228.Google Scholar
  12. 12.
    Gimbrone, M.A., Jr., Cotran, R.S., Leapman, S.B. and Folkman, J. 1974. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Nat. Canc. Inst. 52: 413–427.Google Scholar
  13. 13.
    Gimbrone, M. A., Jr. and Gullino, P. M. 1976. Neovascularization induced by intraocular xenografts of preneoplastic and neoplastic mammary tissues. J. Nat. Canc. Inst. 56: 305–318.Google Scholar
  14. 14.
    Gimbrone, M.A., Jr. and Gullino, P.M. 1976. Angiogenic capacity of preneoplastic lesions of the murine mammary gland as a marker of neoplastic transformation. Canc. Res. 36: 2611–2620.Google Scholar
  15. 15.
    Gimbrone, M.A., Jr., Cotran, R.S. and Folkman, J. 1973. Endothelial regeneration: Studies with human endothelial cells in culture. Ser. Haemat. VI: 453–455.Google Scholar
  16. 16.
    Gimbrone, M.A., Jr., Cotran, R.S. and Folkman, J. 1974. Human vascular endothelial cells in culture. Growth and DNA synthesis. J. Cell Biol. 60: 673–684.PubMedCrossRefGoogle Scholar
  17. 17.
    Gimbrone, M.A., Jr. and Fareed, G.C. 1976. Transformation of cultured human vascular endothelium by SV40 DNA. Cell 9: 685–693.PubMedCrossRefGoogle Scholar
  18. 18.
    Sholley, M.M., Gimbrone, M.A., Jr. and Cotran, R.S. 1977. Cellular migration and replication in endothelial regeneration: A study using irradiated endothelial cultures. Lab. Invest. 36: 18–25.PubMedGoogle Scholar
  19. 19.
    Fareed, G.C., Takemoto, K.K. and Gimbrone, M.A., Jr. 1978. Interaction of Simian Virus 40 and human papovaviruses, BK and JC, with human vascular endothelial cell. Microbiology-1978: 427–431.Google Scholar
  20. 20.
    Polverini, P.J., Cotran, R.S., Gimbrone, M.A., Jr. and Unanue, E.R. 1977. Activated macrophages induce vascular proliferation. Nature 269(5631): 804–806.PubMedCrossRefGoogle Scholar
  21. 21.
    Sholley, M.M., Gimbrone, M.A., Jr. and Cotran, R.S. 1978. The Effects of Leukocyte Depletion on Corneal Neovascularization. Lab. Invest. 38(1): 32–40.PubMedGoogle Scholar
  22. 22.
    Martin, B.M., Gimbrone, M.A., Jr., Unanue, E.R. and Cotran, R.S. 1981. Stimulation of Nonlymphoid Mesenchymal Cell Proliferation by a Macrophage-Derived Growth Factor. J. Immunol. 126(4): 1510–1515.PubMedGoogle Scholar
  23. 23.
    Martin, B.M., Gimbrone, M.A. Jr., Unanue, E.R. and Cotran, R.S. 1981s. In: Plasma and Cellular Modulatory Proteins’, Proceedings of the XXVIth Meeting of the Center for Blood Research. Bing, D.H. and Rosenbaum, R.A., eds.). Boston, pp 83-94.Google Scholar
  24. 24.
    Martin, B.M., Gimbrone, M.A., Jr., Unanue, E.R. and Cotran, R.S. 1981. Macrophage-derived growth factor: Production by cultured human mononuclear blood cells. Fed. Proc. 40(3): 335.Google Scholar
  25. 25.
    Martin, B.M., Gimbrone, M.A., Jr., Majeau, G.R., Unanue, E.R. and Cotran, R.S. 1981. Monocyte/Macrophage-Derived Growth Factor Production: Modulation by Cold-Insoluble Globulin and Extracellular Matrix. Circulation 64 (IV): 214.Google Scholar
  26. 26.
    Polverini, P.J., Cotran, R.S. and Sholley, M.M. 1977. Endothelial Proliferation in the Delayed Hypersensitivity Reaction: An Autoradiographic Study. J. Immunol. 118(2): 529–532.PubMedGoogle Scholar
  27. 27.
    Sholley, M.M., Cavallo, T. and Cotran, R.S. 1977. Endothelial Proliferation in Inflammation. Am. J. Pathol. 89(2): 277–290.PubMedGoogle Scholar
  28. 28.
    D’Amore, P.A., Glaser, B.M., Brunson, S.K. and Fenselau, A.H. 1981. Angiogenic activity from bovine retina: Partial purification and characterization. Proc. Natl. Acad. Sci. USA 78(5): 3068–3072.CrossRefGoogle Scholar
  29. 29.
    Sidky, Y.A. and Auerbach, R. 1975. Lymphocyte-induced angiogenesis. A quantitative and sensitive assay of the graft-vs-host reaction. J. Exp. Med. 141: 1084–1100.PubMedCrossRefGoogle Scholar
  30. 30.
    Fromer, C.H. and Klintworth, G.K. 1976. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am. J. Pathol 82: 157–170.PubMedGoogle Scholar
  31. 31.
    Pliskin, M.E., Ginsberg, S.M. and Carp, N. 1980. Induction of Neovascularization by Mitogen-Activated Spleen Cells and Their Supernatants. Transplantation 29(3): 255–258.PubMedCrossRefGoogle Scholar
  32. 32.
    Calderon, J., Kiely, J.-M., Lefko, J.L. and Unanue, E.R. 1975. The Modulation of Lymphocyte Functions by Molecules Secreted by Macrophages. I. Description and Partial Biochemical Analysis. J. Exp. Med. 142: 151–164.PubMedCrossRefGoogle Scholar
  33. 33.
    Beller, D.I., Kiely, J.-M. and Unanue, E.R. 1980. Regulation of Macrophage Populations. I. Preferential Induction of Ia-Rich Peritoneal Exudates by Immunologic Stimuli. J. Immunol. 124(3): 1426–1432.PubMedGoogle Scholar
  34. 34.
    Unanue, E.R. 1976. Secretory Function of Mononuclear Phagocytes. Am. J. Pathol. 83: 396–417.PubMedGoogle Scholar
  35. 35.
    Page, R.C., Davies, P. and Allison, A.C. 1978. The Macrophage as a Secretory Cell. Int. Rev. Cytology 52: 119–157.CrossRefGoogle Scholar
  36. 36.
    Nathan, C.F., Murray, H.W. and Cohn, Z.A. 1980. Current Concepts. The Macrophage as an Effector Cell. New Engl. J. Med. 303: 622–626.PubMedCrossRefGoogle Scholar
  37. 37.
    Leibovich, S.J. and Ross, R. 1976. A Macrophage-Dependent Factor that Stimulates the Proliferation of Fibroblasts In Vitro. Am. J. Pathol. 84(3): 501–513.PubMedGoogle Scholar
  38. 38.
    Wall, R.T., Harker, L.A., Quadracci, L.J. and Striker, G.E. 1978. Factors influencing endothelial cell proliferation in vitro. J. Cell Physiol. 96: 203–213.PubMedCrossRefGoogle Scholar
  39. 39.
    Thakral, K.K., Goodson, W.H., III and Hunt, T.K. 1979. Stimulation of Wound Blood Vessel Growth by Wound Macrophages. J. Surg. Res. 26: 430–436.PubMedCrossRefGoogle Scholar
  40. 40.
    Ziats, N.P. and Robertson, A.L., Jr. 1981. Effects of Peripheral Blood Monocytes on Human Vascular Cell Proliferation. Atherosclerosis 38: 401–410.PubMedCrossRefGoogle Scholar
  41. 41.
    Glenn, K.C. and Ross, R. 1981. Human Monocyte-Derived Growth Factor(s) for Mesenchymal Cells: Activation of Secretion by Endotoxin and Concanavalin A (Con A). Cell 25: 603–615.PubMedCrossRefGoogle Scholar
  42. 42.
    Leibovich, S.J. and Ross, R. 1975. The Role of Macrophage in Wound Repair. A Study with Hydrocortisone and Antimacrophage Serum. Am. J. Pathol. 78: 71–100.PubMedGoogle Scholar
  43. 43.
    Leibovich, S.J. 1978. Production of Macrophage-Dependent Fibroblast-Stimulating Activity (M-FSA) by Murine Macrophages. Exp. Cell Res. 113: 47–56.PubMedCrossRefGoogle Scholar
  44. 44.
    Wahl, S.M., Wahl, L.M., McCarthy, J.B., Chedid, L. and Mergenhagen, S.E. 1979. Macrophage Activation by Mycobacterial Water Soluble Compounds and Synthetic Muramyl Dipeptide. J. Immunol. 122(6): 2226–2231.PubMedGoogle Scholar
  45. 45.
    DeLustro, F., Sherer, G.K. and LeRoy, E.C. 1980. Human Monocyte Stimulation of Fibroblast Growth by a Soluble Mediator(s). J. Reticuloendothelial Soc. 28(6): 519–532.Google Scholar
  46. 46.
    Allison, A.C. 1978. Macrophage Activation and Nonspecific Immunity. Int. Rev. Exper. Pathol. 18: 303–346.Google Scholar
  47. 47.
    Clark, R.A., Stone, R.D., Leung, D.Y.K., Silver, I., Hohn, D.C. and Hunt, T.K. 1976. Role of Macrophages in Wound Healing. Surgical Forum 27: 16–18.PubMedGoogle Scholar
  48. 48.
    Greenburg, G.B. and Hunt, T.K. 1978. The Proliferative Response In Vitro of Vascular Endothelial and Smooth Muscle Cells Exposed to Wound Fluids and Macrophages. J. Cell. Physiol. 97: 353–360.PubMedCrossRefGoogle Scholar
  49. 49.
    Schreiner, G.F., Cotran, R.S., Pardo, V. and Unanue, E.R. 1978. A mononuclear cell component in experimental immunological glomerulonephritis. J. Exp. Med. 147: 369–384.PubMedCrossRefGoogle Scholar
  50. 50.
    Striker, G.E., Killen, P.D. and Farin, F.M. 1980. Mesangial cell proliferation, role of macrophages and platelets. Fed. Proc. 39: 344.Google Scholar
  51. 51.
    Schaffner, T., Taylor, K., Bartucci, E.J., Fischer-Dzoga, K., Beeson, J.H., Glagov, S. and Wissler, R.W. 1980. Arterial Foam Cells with Distinctive Immunomorphologic and Histochemical Features of Macrophages. Am. J. Pathol. 100(1): 57–73.PubMedGoogle Scholar
  52. 52.
    Gerrity, R.G., Naito, H.K., Richardson, M. and Schwartz, C.J. 1979. Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am. J. Pathol. 95(3): 775–786.PubMedGoogle Scholar
  53. 53.
    Gerrity, R.G. 1981. The Role of the Monocyte in Atherogenesis. I. Transition of Blood-Borne Monocytes Into Foam Cells in Fatty Lesions. Am. J. Pathol. 103(2): 181–190.PubMedGoogle Scholar
  54. 54.
    Norris, D.A., Morris, R.M., Sanderson, R.J. and Kohler, P.F. 1979. Isolation of Functional Subsets of Human Peripheral Blood Monocytes. J. Immunol. 123(1): 166–172.PubMedGoogle Scholar
  55. 55.
    Arenson, E.B., Jr., Epstein, M.B. and Seeger, R.C. 1980. Volumetric and Functional Heterogeneity of Human Monocytes. J. Clin. Invest. 65: 613–618.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1984

Authors and Affiliations

  • Michael A. GimbroneJr.

There are no affiliations available

Personalised recommendations