Skip to main content

Significance of Improved Cytochemical Methods for Hemoprotein Enzymes in Diagnosis and Classification of Leukemia

  • Chapter
Human Leukemias

Abstract

Success in achieving remissions of acute myelogenous leukemia (AML) since the 1950s, and especially since the mid-1970s, has developed a need for greater attention on the part of physicians to improved methods for diagnosing and classifying the leukemias. The majority of AML patients can achieve first remissions, some (5–10%) lasting several years; these prolonged survivors are presumably cured of their leukemia. Many AML patients, however, are still not receiving the benefits of improved diagnostic methods and intensive therapeutic regimens. Of the latter group 80% are dead within a year of diagnosis [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Powles R, McElwain T. Introduction: Leukemia and lymphoma. Semin Hematol 19 (3) 153–154, 1982.

    PubMed  CAS  Google Scholar 

  2. Lister TA, Rohatiner A7.S. The treatment of acute myelogenous leukemia in adults. Semin Hematol 19 (3): 172–192, 1982.

    PubMed  CAS  Google Scholar 

  3. Hanker JS. Ambrose WW, James CJ. Mandelkorn J, Yates PE, Gall SA, Bossen EH, Fay JW, Laszlo J, Moore JO. Facilitated light microscopic cytochemical diagnosis of acute myelogenous leukemia. Cancer Res. 39: 1635–1639. 1979.

    PubMed  CAS  Google Scholar 

  4. de Salvo Cardullo L, Morilla R, Catovsky D. Significance ot phi bodies in acute leukemia. J Clin Pathol 34: 153–157, 1981.

    Article  Google Scholar 

  5. Catovsky D, de Salvo Cardullo L, O’Brien M, Morilla R. Costello C, Galton D, Ganeshaguru K, Hoffbrand V. Cytochemical markers of differentiation in acute leukemia. Cancer Res. 41 (11): 4824–4832, 1981.

    PubMed  CAS  Google Scholar 

  6. Catovsky D. Crockard AD, Matutes E, O’Brien M. Cytochemistry of leukemic cells. In: Stoward PJ. Polak JM, eds. Histochemistry: The widening horizons of its applications in the biomedical sciences. Chichester, England: John Wiley & Sons, 1981, pp. 67–88.

    Google Scholar 

  7. Jansson S-E, Gripenberg J, Vuopio P, Teerenhovi I., Andersson LC. Classification of acutc leukaemia by light and electron microscope cytochemistrv. Scand J Haematol 25: 412–416, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Tricot G, Broeckaert-van Orshoven A, Van Hoof A, Verwilghen RL. Sudan black B positivity in acute lymphoblastic leukaemia. Br J Haematol 51 (4): 615–621, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Hanker JS, Romanovicz DK. Phi bodies: Peroxidase particles that produce crystal-loidal cellular inclusions. Science 197: 895–898, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Youness E, Trujillo JM, Ahearn MJ, McCredie KB, Cork A. Acute unclassified leukemia: A clinicoparhologic study with 44 diagnostic implications of electron microscopy. Am J Hematol 9: 79–88, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Reiffers J, Broustct A. Acutc myeloblasts leukemia masquerading as null-cell acute lymphoblastic leukemia. New Engl J Med 304: 1238–1239, 1981.

    PubMed  CAS  Google Scholar 

  12. McCarty, Jr KS, Wortman J, Daly J, Rundies RW, Hanker JS. Chloroma (granulocytic sarcoma) without evidence of leukemia: Facilitated light microscopic diagnosis. Blood 56 (1): 104–108, 1980.

    PubMed  Google Scholar 

  13. Hanker JS. Yates PE, Met?. CB, Rustioni A. A new specific, sensitive and noncar- cinogenic reagent for the demonstration of horseradish peroxidase. Histochcm J 9:789–792, I9?7.

    Google Scholar 

  14. Hanker JS, Giammara BL. Hemo-proteinopathy: molecular aggregation accompanying malignancy. Med Hypoth 7: 77–83, 1981.

    Article  CAS  Google Scholar 

  15. Hanker JS, Giammara BL. Hematology: Some advances and insights from histocytochemical and molecular biological studies of haemoproteins. In: Stoward PJ, Polak JM, eds. Histochemistry: The widening horizons of its applications in the biomedical sciences. Chichester, England: John Wiley & Sons. pp. 89–108. 1981.

    Google Scholar 

  16. Hanker JS, Laszlo J, Moore JO. The light microscopic demonstration of hydroperoxidasc-positive phi bodies and rods in leukocytes in acute myeloid leukemia. Histochemistry 58: 241–252, 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Carovsky D. Symposium: classification of leukemia: I. The classification of acute leukaemia. Pathology 14: 277–281, 1982.

    Article  Google Scholar 

  18. Bainton DF, Farquhar MG. Differences in enzyme Content of azurophil and specific granules of polymorphonuclear leukocytes: I. Histochemical staining of bone marrow smears. J Ceil Biol 39: 286–298. 1968.

    Article  CAS  Google Scholar 

  19. Graham RC Jr, Karnovsky MJ. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302. 1966.

    Article  PubMed  CAS  Google Scholar 

  20. Hanker JS, Ellis, LC, Jr, Rustioni A. Carson KA. Reiner A. Eldred W, Karten HJ. The ultrastructural demonstration of the retrograde axonal transport of horseradish peroxidase in nervous tissues by transmis¬sion and high voltage electron microscopy. In: Johnson JE, Jr ed. Current trends inc morphological research, vol. 1 Boca Raton. La.: CRC Press, 1981, pp. 55–91.

    Google Scholar 

  21. Tubbs RR, Sheibani K, Deodhar SD, Hawk WA. Enzyme immunohistochemistry: Review of technical aspects and diagnostic applications. Cleveland Clin Q 48 (2): 245–28l, 1981.

    CAS  Google Scholar 

  22. Sheibani K. Tubbs RR. Gephardt GN,.McMahon JT, Valenzuela R. Comparison of alternative chromogens for renal immunohistochemistry. Human Pathol 12: 349–354, 1981.

    Article  CAS  Google Scholar 

  23. Tubbs RR, Sheibani K. Chromogens for immunohistochemistry. Arch Pathol Lab Med 106 (4): 205, 1982.

    PubMed  CAS  Google Scholar 

  24. Cabrillat H, Fontamiere B. Paraphenvl- enediamine-pyrocatechol: An alternative substrate to diaminobenzidine for the demonstration of endogenous peroxidase of mammalian leucocytes. Histochem J 12: 488–491, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Sheibani K, Lucas FV. Tubbs RO. Savage RA, Hoeltge GA. Alternate chromogens as substitutes for benzidine for myeloperoxidase cytochemistry. Am J Clin Pathol 75: 367–370, 1981.

    PubMed  CAS  Google Scholar 

  26. Lison L. Sur de nouveaux colorants histologiques spécifiques des lipides. C R Soc Biol 115: 202–205, 1934.

    Google Scholar 

  27. Lison L. Sur la recherche histochemique des oxydases par le reaction du bleu d’in-dophenol. Bull Soc Chim Biol 18: 185–189, 1936.

    CAS  Google Scholar 

  28. Ullie RD, Burtner HJ. Stable sudanophilia of human neutrophil leucocytes in relation to peroxidase and oxidase. J Histochem Cytochem 1: 8–25, 1953.

    Article  Google Scholar 

  29. Sheehan HL, Storey GW. An improved method of staining leukocyte granules with Sudan black B. J Pathol Bact 59 336. 1947.

    Article  CAS  Google Scholar 

  30. Mandelkorn J, Silverman MS, Harrison JE. Hanker JS. Immunofluorescent demonstration of myeloperoxidase of phi bodies and rods in leukaemic leucocytes. Histochem J 12: 449–456. 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Hanker JS. Chandross RJ. Solic JJ. Weath- erly NF, Laszlo J, Moore JO, Ottolenghi A. Medusa cells: Cytostructure and cyto¬chemistry of amoeboid eosinophils with pseudopod-like processes. Histochem J 13: 905–919. 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Hanker JS. Chandross RJ. Weatherly NF. Laszlo J. Moore JO. Buckley RH, Ottolenghi A. Medusa cells: The morphology and 3. cytochemistry of common amoeboid variations of eosinophils. Histochem J 12: 701–707, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Hanker JS, Silverman MS, Romanovicz DK. Catalase in salivary gland striated and excretory duct cells: II. Ф body, an ellipsoidal peroxisomal organelle with crystalloid axial projections. Histochem J. 9: 7 29–744. 1977.

    Google Scholar 

  34. Yamada M, Mori M, Sugimura T. Purification and characterization of small molecular weight myeloperoxidase from human promyelocyte leukemia HL-60 cells. Biochemistry 20: 766–771, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Stass SA. Holloway ML, Peterson V, Creegan WJ. Gallivan M, Schumacher 11R. Cytoplasmic fragments causing spurious platelet counts in the leukemic phase of poorly differentiated lymphocytic Ivmphoma. Am J Clin Pathol 71125–128, 1979-

    Google Scholar 

  36. Stass SA. Holloway ML, Slease RB. Schumacher HR. Spurious platelet counts in hairy cell leukemia. Am J Clin Pathol 68: 350–351, 1977.

    Google Scholar 

  37. Conjalka M, Rajdev N, Tavassoli M. Lymphoreticular fragments: The Cellular debris of acute lymphosarcoma cell leukemia. Cancer 44: 2124–2126. 1979.

    Article  PubMed  CAS  Google Scholar 

  38. Armitage JO. Goeken JA, Feagler JR Spurious elevation of the platelet count in acute leukemia, J Am Med Assn 239: 433–434. 1978.

    Article  CAS  Google Scholar 

  39. Hanker JS, Giammara BL. Neutrophil pseudoplatelets: Their discrimination by myeloperoxidase demonstration. Science 220: 415–417, 1983.

    Google Scholar 

  40. Hanker JS. Ambrose WW. Yates PE.. Moore JO. Arnn ET, Giammara BL. Neutrophil pseudoplatelets: Elucidation and identification by myeloperoxidase demonstration. Submitted to Histochem J.

    Google Scholar 

  41. Breton-Gorius J, Reyes F, Duhamel G. Najman A, Gorin AC. Megakaryoblascic acute leukemia: Identification by the ultra- structural demonstration of platelet peroxidase. Blood 51: 45–60. 1978.

    PubMed  CAS  Google Scholar 

  42. Edelson PJ. Cohn ZA. Peroxidasc- mediated mammalian cell cytotoxicity. J Exp Med 138:318–323, 197 3.

    Google Scholar 

  43. Clark RA, Klebanoff SJ. Neutrophil- mediated tumor cell toxicity: Role of the peroxidase system. J Exp Med 141: 1442–1447, 1975.

    Article  PubMed  CAS  Google Scholar 

  44. Clark RA. Szot R The myeloperoxidase- hydrogen peroxide-halide system as effector of neutrophil-mediated tumor cell cytotoxicity..J Immunol 126: 1295–1301. 1981.

    PubMed  CAS  Google Scholar 

  45. Clark RA, Olsson I, Klebanoff SJ Cytotoxicity for tumor cells of canonic proteins from human neutrophil granules. J Cell Biol 70: 719–723, 1976.

    Article  PubMed  CAS  Google Scholar 

  46. Nathan C. Cohn Z. Role of oxygen-dependent mechanisms in antibody-induced lysis of tumor cells by activated macrophages. J Exp Med 152: 198–208. 1980.

    Article  PubMed  CAS  Google Scholar 

  47. Maldonado JF. The ultrastructure of the platelets in refractory anemia (“preleukemia”) and myelomonocytic leukemia. Ser Hematol 8: 101–125. 1975.

    CAS  Google Scholar 

  48. Maldonado JE. Platelet granulopathy. A new morphologic feature in preleukemia and myelomonocytic leukemia: Light microscopy and ultrastruaural morphology and cytochemistry. Mayo Clin Proc 51: 452–462. 1976.

    Google Scholar 

  49. Lichtman MA. Cellular deformability dur¬ing maturation of the myeloblast: Possible- role in marrow egress. New Engl J Med 283: 943–948. 1970.

    Article  PubMed  CAS  Google Scholar 

  50. Merz, B. Newly identified particle may explain spuriously elevated platelet count. J Am Med Assn 239: 3146–5147, 1983.

    Google Scholar 

  51. Gill GW. Frost JK, Miller KA. A new formula for a half-oxidized hematoxylin solution that neither overstains nor requires differentiation. Acta Cytol 18: 300–311. 1974.

    Google Scholar 

  52. Yam LT. Li CY. Crosby WH. Cytochem- ical identification of monocytes and granulocytes. Am J Clin Path 55: 28 3–290. 1971.

    Google Scholar 

  53. Berman EL, Carter HW. Ambrose WW. Hanker JS. Studies of eosinophil medusa cells by electron imaging modes. Scanning Electron Microscopy pp. 311–321, 1983.

    Google Scholar 

  54. Sigma Technical Bulletin no. 390. Sigma Chemical Co., P.O. Box 14508. St. Louis. MO 63178.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster

About this chapter

Cite this chapter

Hanker, J.S. et al. (1984). Significance of Improved Cytochemical Methods for Hemoprotein Enzymes in Diagnosis and Classification of Leukemia. In: Polliack, A. (eds) Human Leukemias. Developments in Oncology Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2823-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2823-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9785-7

  • Online ISBN: 978-1-4613-2823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics