Advertisement

Scanning Electron Microscopic Cytochemistry of Leukemic Cells

  • D. Soligo
  • E. Pozzoli
  • G. Lambertenghi-Deliliers
Part of the Developments in Oncology Series book series (DION, volume 14)

Abstract

Scanning electron microscopy (SEM) was widely applied to the study of leukemic cells in the early 1970s [1, 2, 5] (the results of these studies are discussed in chapter 26). It soon became apparent that cell surface morphology can vary widely according to preparation procedures [4], and probably according to a variety of as yet unknown factors such as metabolic or environmental conditions. In fact, although cell surface features are typical enough to permit cell type identification in a very limited number of hematological malignancies [1], in the majority of cases SEM has proved to be of little routine use in the diagnosis of leukemia.

Keywords

Backscatter Electron Imaging Iron Carbonyl Granulocytic Leukemia Iron Carbonyl Particle Acute Monoblastic Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Polliack A. Normal transformed and leukemic leukocytes. Berlin: Springer Verlag, 1977.Google Scholar
  2. 2.
    Polliack A. McKenzie S. Gee T. de Harven E, Clarkson BD. A scanning electron microscopic study of 34 cases of acute granulocytic, myelomonocytic, monoblastic and histiocytic leukemia. Am J Med 59: 308–314, 1975.PubMedCrossRefGoogle Scholar
  3. 3.
    Polliack A, Siegal FP, Clarkson BD, Fu SM, Winchester RJ, Lampen N, Siegal M, de Harven F. A scanning electron microscopy and immunological study of 84 cases of lymphocytic leukemw and related lymphoproliferative disorders. Scand J Haematol 15: 359–376, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    Wetzel B. Cell kinesics: An interpretative review of the significance of the cell surface form. SEM 2: 135–144. 1976Google Scholar
  5. 5.
    Wetzel B. Enkson BW, Lewis WR. The need for positive identification of leukocytes examined by SEM. SEM 1: 535–541, 1973.Google Scholar
  6. 6.
    Albrecht RM, Jordan C, Hong R. Identification of monocytes, granulocytes and lymphocytes: correlation of histological, histochemical and functional properties with surface structure as viewed by scanning electron microscopy. SEM 2: 511–524. 1978Google Scholar
  7. 7.
    Albrecht RM, Wetzel B. Ancillary methods for biological scanning electron microscopy. SEM 3: 203–222, 1979Google Scholar
  8. 8.
    Lytton DG, Yuen E, Rickard KA. Scanning electron and light microscope correlation of individual human bone marrow cells before and alter culture in nutrient agar. J Microsc 115: 35–49, 1979.PubMedCrossRefGoogle Scholar
  9. 9.
    Becker RP. De Bruyn PPH. Backscattered electron imaging of endogenous and exogenous peroxidase activity in rat bone marrow. SEM 2: 171–178. 1976.Google Scholar
  10. 10.
    Becker RP. Sogard M Visualization of subsurface structures in cells and tissue by backscattered electron imaging. SEM 2: 835–870. 1979.Google Scholar
  11. 11.
    Soligo D, de Harven E. Ultrastructural cvtochemical localizations by backscattered electron imaging of white blood cells. J Histochem Cytochem 29: 1071–1079, 1981.Google Scholar
  12. 12.
    Soligo D, de Harven E. Backscattered electron imaging of human leukocytes, SEM 2: 95–103, 1981.Google Scholar
  13. 13.
    Wells OC. Backscattercd electron image (BSI) in the scanning electron microscope (SEM). SEM 1: 747–771. 1977.Google Scholar
  14. 14.
    Watanabe S, Ohishi T. Labelling methods of lymph nodes cells for scanning electron microscopy. In: Takeuchi T. Ogawa K. Fujita S, eds. Histochemistry and cytochemistry, Kyoto: Japan Society of Histochemistry and Cytochemistry, 1972. pp. 167–168.Google Scholar
  15. 15.
    Abraham JL, DeNee PB. Scanning electron microscope histochemistry using backscattered electrons and metal stains. Lancet 1: 1125–1127, 1973.PubMedCrossRefGoogle Scholar
  16. 16.
    Carr KE. McGadeyJ. Staining of biological material for the scanning electron microscope. J Microsc 100: 323–330, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    Tannenbaum M, Tannenbaum S, Carter HW. SEM. BEI and TEM ultrastructural characteristics of normal preneoplastic and neoplastic human transitional epithelia. SEM 2: 949–958, 1978.Google Scholar
  18. 18.
    Barka T. Anderson PJ. Histochemical methods for acid phosphatase using hexazonium pararosaanilina as a coupler. J Histochem Cytochem 10: 741–753. 1962.CrossRefGoogle Scholar
  19. 19.
    Bainton DF, Farquhar MG. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes: 11. Cytochemistry and electron microscopy of bone marrow cells. J Cells Biol 39: 299–317, 1968.CrossRefGoogle Scholar
  20. 20.
    Pozzoli E, Lambertenghi-Deliliers G. Polli N. Annaloro C. Alkaline phosphatase activity in phagocytizing granulocytes A backscattered electron imaging study.) Submicr Cytol, 15: 479–482, 1983.Google Scholar
  21. 21.
    Mayahara H, Hirano H, Saito T, Ogawa K. The new lead citrate medium for the ultracytochemical demonstration of activity of non-specific alkaline phosphatase (or- thophosphoric monoester phosphorylase). Histochemie 11: 88–96. 1967.PubMedCrossRefGoogle Scholar
  22. 22.
    Bainton DF. Sequential degranulation of the two types of polymorphonuclear leukocyte granules during phagocytosis of microorganisms. J Cell Biol 58: 249–264, 1973.PubMedCrossRefGoogle Scholar
  23. 23.
    Graham RC, Karnovsky MJ. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302, 1966.PubMedCrossRefGoogle Scholar
  24. 24.
    Gomori G. A new histochemical test for glycogen and mucin. Am J Clin Pathol 16: 177–179, 1946.Google Scholar
  25. 25.
    Soligo D. de Harven E. Iron Carbonyl, a tracer for phagocytosis in scanning electron microscopy J Reticuloend Soc, 32: 201–207. 1982.Google Scholar
  26. 26.
    Bessis M. Maigné J. Le diagnostic des variétés de leucémies aiguës par la réaction des peroxydase au microscope électronique Son intérêt et ses limites. Rev Eur Etud Clin Biol 15: 691–698. 1970.Google Scholar
  27. 27.
    O’Brien M, Catovsky D, Costcllo C. Ultrastructural cytochemistry of leukaemic cells: Characterization of early and small granules of monoblasts. BrJ Haematol 45: 201–208, 1980.CrossRefGoogle Scholar
  28. 28.
    Catovsky D, Frisch B. Van Noorden S. B, T and “null” cell leukemias: Electron cytochemistry and surface morphology. Blood Cells 1: 115–124. 1975.Google Scholar
  29. 29.
    Palacios JJN. Valdes MD, Montalban Pallares MA, Gomez de Salazar MD, Marcilla AG. Lymphoblastic lymphoma/leukemia of T-cell origin: Ultrastructural, cytochemical and immunological features of ten cases. Cancer 48: 1982–1991, 1981.CrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • D. Soligo
  • E. Pozzoli
  • G. Lambertenghi-Deliliers

There are no affiliations available

Personalised recommendations