Skip to main content

Principles of the Freeze-Fracture Technique and Implications in Studies of Normal and CLL Lymphocytes

  • Chapter

Part of the book series: Developments in Oncology Series ((DION,volume 14))

Abstract

Functional Impairment of Membranes from CLL Lymphocytes. Investigations of the composition, structure, and function of the membrane of normal cells have been accompanied by examination of abnormalities in the plasma membranes of malignant cells. In chronic lymphocytic leukemia, diverse membrane-related functions of lymphocytes have been characterized as abnormal [1]. There is a decrease in the number of surface receptors for PHA [2] and concanavalin A [3] and decreased response to mitogens [4, 5]. Cells are unable to form caps with β2-microglobulin [6] concanavalin A [7], and antibodies to surface immunoglobulins [8], and exhibit impaired mobility in comparison to normal lymphocytes [9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kornfeld S. Decreased phytohemagglutinin receptor sites in chronic lymphocytic leukemia. Biochim Biophys Acta 192: 542–545, 1969.

    PubMed  CAS  Google Scholar 

  2. Bentwich Z, Polliack A, Douglas SD: Surface markers and other characteristics of the lymphocyte in chronic lymphocytic leukemia. Isr J Med Sci 12: 304–324, 1976.

    PubMed  CAS  Google Scholar 

  3. Novogrodsky A, Biniaminov B, Ramot B, Katcholski E. Binding of concanavalin A to rat, normal human and chronic lymphocytic leukemia lymphocytes. Blood 40: 311–316, 1972.

    PubMed  CAS  Google Scholar 

  4. Smith JI., Cawling DC, Barker CR. Response of lymphocytes in chronic lymphocytic leukemia to plant mitogens. Lancet 1: 229–233, 1972.

    Article  PubMed  CAS  Google Scholar 

  5. Cohnen, G, Douglas SD, Konig E, Brittinger G. Poke weed mitogen response of lymphocytes in chronic lymphocytic leukemia: A fine structural study. Blood 42: 591–600, 1973.

    CAS  Google Scholar 

  6. Godal J. Henrikson A. Iversen J, Landaas TO, Lindmo T. Altered membrane-associated functions in chronic lymphocytic leukemia cells. Int J Cancer 21: 561–569, 1978.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Bassar H, Goldblum N, Manny N, Sachs L. Mobility of concanavalin A receptors on the surface membrane of lymphocytes from normal persons and patients with chronic lymphocytic leukemia. Int J Cancer 14: 367–371, 1974.

    Article  Google Scholar 

  8. Cohen HJ. Human lymphocyte surface immunoglobulin capping: Normal characteristics and anomalous behavior of chronic lymphocytic leukemia lymphocytes. J Clin Invest 55: 84–93, 1975.

    Article  PubMed  CAS  Google Scholar 

  9. Jarvis SC, Snyderman R, Cohen HJ. Human lymphocyte motility: Normal characteristics and anomalous behavior of chronic lymphocvtic leukemia cells. Blood 48: 717–729, 1976.

    PubMed  CAS  Google Scholar 

  10. Gottfried EL. Lipid patterns of human leukocyte: Relation to cell type. J Lipid Res 8: 321–327, 1967.

    PubMed  CAS  Google Scholar 

  11. Inbar M, Shinitzky M, Sachs L. Microviscosity in the surface membrane lipid layer of intact normal lymphocytes and leukaemic cells. FFBS Lett 38: 268–270, 1974.

    Article  CAS  Google Scholar 

  12. Inbar M, Shinitzky M. Cholesterol as a bioregulator in the development and inhibition of leukemia. Proc Natl Acad Sci USA 71: 4229–4231, 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Peel WE, Thomson AF.R. Cholesterol content and fluidity of normal human and chronic lymphocytic leukaemia lymphocytes in relation to scrum cholesterol level. Leuk Res 4: 601–609, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson SM, Kramers M. Membrane microviscosity differences in normal and leukaemic lymphocytes. Biochem Biophys Res Commun 80: 451–157. 1978.

    Article  PubMed  CAS  Google Scholar 

  15. Van Hoeven RP. Van Blitterswijk WJ, Emmelot P. Fluorescence polarization measurements on normal and tumour cells and their corresponding plasma membranes. Biochem Biophvs Acta 55: 44–54, 1979.

    Google Scholar 

  16. Liebes LF. Peele E. Zucker-Franklin D. Silber R. Comparison of lipid composition and 1, 6 diphenyl-1, 2, 5-hexatriene fluorescence polarization measurements of hairy cells with monocytes and lymphocytes from normal subjects and patients with chronic lymphocytic leukemia. Cancer Res 41: 4050–4055. 1981.

    PubMed  CAS  Google Scholar 

  17. Johnson SB. Robinson R The composition and fluidity of normal and leukaemic or lymphomatous lymphocyte plasma membranes in mouse and man. Biochim Biophys Acta 558: 282–295, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Pratt HPM. Saxon A. Graham ML Membrane lipid changes associated with malignant transformation and normal maturation of human lymphocytes. Leuk Res 2: 1–10, 1978.

    Article  CAS  Google Scholar 

  19. Cornell BA, Sacre MM. Peel WE. Chapman D. The modulation of lipid bilayer fluidity bv intrinsic polypeptides and proteins. FEBS Lett 90:29–35, 197 8.

    Google Scholar 

  20. Andersson L, Gahmberg CG. Membrane glycoprotein parterns of normal and malignant human leukocytes. Adv Fxp Med and Biol 114:623–628, 1979.

    Google Scholar 

  21. Hall CE. A low temperature replica method for electron microscopy. J Appl Physiol 21: 61–64, 1950.

    Article  CAS  Google Scholar 

  22. Meryman HT, Kafig E. The study of frozen specimens, ice crystals, and ice crystal growth by electron microscopy. Res Rep Naval Med Res Inst, Nat Naval Med Ctr 13: 527–533. 1955.

    Google Scholar 

  23. Moor H. Muhlethaler K. Fine structure in frozen-etched yeast cells. J Cell Biol 17: 609–628. 1963.

    Article  PubMed  CAS  Google Scholar 

  24. Steere RS. Preparation of high-resolution freeze-etch, frozen-surface and freeze-dried replicas in a single freeze-etch module, and the use of stereoelectron microscopy to obtain maximum information from them. In: Benedetti EL, Favard P. eds. Freeze-etching techniques and application. Paris: Sociéte Français de Microscopic Electronique, 1973, pp. 232–234.

    Google Scholar 

  25. Bachmann I., Schmitt WM. Improved cryohxation applicable to freeze-etching. Proc Nat Acad Sci USA 68: 2149–2152, 1971.

    Article  PubMed  CAS  Google Scholar 

  26. Heuser JE. Reese TS. Dennis MJ, Jan Y, Jan L, Evan L. Synaptic vesicle exocytosis captured by quick-freezing and correlated with quantal transmitter release. J Cell Biol 81. 275–300, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Pinto da Silva P, Branton D Membrane splitting in freeze-etching. I Cell Biol 45: 598–605, 1970.

    Article  CAS  Google Scholar 

  28. Branton D. Bulhvant S, Gilula NB, Karnovsky MJ, Moor H, Muhlethaler K. Northcote DH. Packer L. Satir B, Satir P. Speth V. Stachlin LA, Steeve RL. Weinstein RS. Freeze-etching nomenclature. Science 190: 54–56, 1975.

    Article  PubMed  CAS  Google Scholar 

  29. Singer SJ. Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720–731. 1972.

    Article  PubMed  CAS  Google Scholar 

  30. Pinto da Silva P, Marcinez-Palomo A. Induced redistribution of membrane particles, anionic sites and con A receptors in Entamoeba histolytica. Nature 249: 170–171, 1974.

    Article  CAS  Google Scholar 

  31. Staehelin LA. Reversible particle movements associated with unstacking and restacking of choloroplast membranes in vitro. J Cell Biol 71: 136–58, 1976.

    Article  PubMed  CAS  Google Scholar 

  32. Douglas SD. Alterations in intramembranous particle distribution during interaction of erythrocyte-bound ligands with immunoprotein receptors. J Immunol 12: 151–157. 1978.

    Google Scholar 

  33. Parish GR. Changes in particle frequency in freeze-etched erythrocyte membranes after fixation. J Micros 104: 245–256, 1975.

    Article  CAS  Google Scholar 

  34. Pricam C, Fisher KA. Friend DS. Intramembranous particle distribution in human erthythrocytes: Effect of lysis, glutaraldehyde, and poly-L-lysine. Anat Rec 189: 595–607, 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Scott RE, Marchesi V. Structural changes in membranes of transformed lymphocytes demonstrated by freeze-etching. Cellular Immunol 3: 301–317. 1972.

    Article  CAS  Google Scholar 

  36. Douglas SD. Ooka MP, Zuckerman SH. Effect of cholera toxin or intramembranous particles of a murine lymphoid cell line. Exp Cell Res 101: 111–121, 1976.

    Article  PubMed  CAS  Google Scholar 

  37. Branton D. Membrane structure. Ann Rev Plant Physiol 20: 209–251, 1969.

    Article  CAS  Google Scholar 

  38. Edwards HH. Mueller TJ. Morrison M Distribution of transmembrane polypeptides in freeze-fracture. Science 203: 1343–1345, 1979.

    Article  PubMed  CAS  Google Scholar 

  39. Pinto da Silva P, Douglas SD, Branton D. Location of A antigen sites on human erythrocyte ghosts. Nature 232: 194–195, 1971.

    Article  PubMed  CAS  Google Scholar 

  40. Tillack TW, Scott RE, Marchesi VT. The structure of erythrocyte membranes studied by freeze-etching: II. Localization of receptors for phytohemagglutimn and influenza virus to the intramembranous particles. J Exp Med 135: 1209–1227, 1972.

    Article  PubMed  CAS  Google Scholar 

  41. Pinto da Silva P. Nicolson G. Freeze-etch localization concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes Biochim Biophys Acta 363: 311–319, 1974.

    CAS  Google Scholar 

  42. Matter A. Bonnet C. Effect of capping on the distribution of membrane particles in thymocyte membranes. Eur J Immunol 4: 704–707, 1974.

    Article  PubMed  CAS  Google Scholar 

  43. Karnovsky MJ, Unanue ER. Mapping and migration of lymphocyte surface macromolecules. Fed Proc 32: 55–59, 1973.

    PubMed  CAS  Google Scholar 

  44. Kuby JM. Wofsy L. Intramcmbrane particles and the organzation of lymphocyte membrane proteins. J Cell Biol 88: 591–597, 1981.

    Article  PubMed  CAS  Google Scholar 

  45. Mclntyre JA, Karnovsky MJ, Gilula NB. Intramembranous particle aggregation in lymphoid cells. Nature 245: 147–148, 1973.

    Article  Google Scholar 

  46. Martinez-Palomo A, Pinto da Silva P., Chavez B. Membrane structure of Entamoeba histolytica: Fine structure of freeze-fractured membranes. J Ultras Res 54: 148–158. 1976.

    Article  CAS  Google Scholar 

  47. Nicolson GL. Transmembrane control of the receptors on normal and tumor cells: I. Cytoplasmic influence over cell surface components. Biochim Biophys Acta 457: 57–108. 1976.

    Google Scholar 

  48. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH dependent reversible aggregation. J Cell Biol 53: 777–787, 1972.

    Article  PubMed  CAS  Google Scholar 

  49. Hackenbrock Cr. Hochh M, Chau RM. Calorimetrie and freeze-fracture analysis of lipid phase transitions and lateral translational motion of intramembrane particles in mitochondrial membranes. Biochim Biophys Acta 455:466–484. 1976.

    Article  PubMed  CAS  Google Scholar 

  50. James R, Branton D. Lipid and temperature dependent structural changes in Acholeplasma laidlwii. cell membranes. Biochim Biophys Acta 323: 878–890. 1973.

    Google Scholar 

  51. Wunderlich F. Wallace DFH. Speth V. Fischer 11. Differential effects of temperature on the nuclear and plasma membranes of lymphoid cells: A study by freeze-etch electron microscopy. Biochim Biophvs Acta 373: 34–43. 1974.

    Article  Google Scholar 

  52. Montsama R. Perrelet A. Vassalli P, Orci L. Absence of filipin-sterol complexes from large coated pits on the surface of culture cells. Proc Natl Acad Sci USA 76: 6391–6395, 1979.

    Article  Google Scholar 

  53. Flias PM, Gocrckc J, Friend DS. Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes. J Cell Biol 78: 577–596. 1978.

    Article  Google Scholar 

  54. Branda RF. Ackerman SK. Handwerger BS. Howe RB. Douglas SD. Lymphocyte studies in familial chronic lymphocytic leukemia Am J. Med 64: 508–514. 1978.

    Article  PubMed  CAS  Google Scholar 

  55. Zucker-Franklin D. Liebes L. Silber R. Differences in the behavior of the membrane and membrane-associated filamentous structures in normal and chronic lymphocytic leukemia (CLL) lymphocytes J Immunol 122: 97–106. 1979.

    CAS  Google Scholar 

  56. Gilula NB. Eger RR. Ritkin DB. Plasma membrane alteration associated with malignant transformation in culture. Proc Natl Acad Sci USA 72:3594–3598. 19?5.

    Google Scholar 

  57. Karnovsky MJ. Kleinfeld RM. Hoover RL. Klausner RD. Concept of lipid domains in membranes. J Cell Biol 94: 1–6. 1982.

    Article  PubMed  CAS  Google Scholar 

  58. Douglas SD, Zuckerman SM. Cody CS. Alterations in intramembranous particle distribution during interaction of erythrocyte-bound ligands with immunoprotein receptors: II Effects of rhc membrane mobility agent A2C on immunologic and nonimmunologic ligand binding. J Retic Soc 28: 91–101. 1980.

    CAS  Google Scholar 

  59. Schlessinger J. Axelrod D. Koppel DE. Webb WW. Elson EL. Lateral transport of a lipid probe and labeled proteins on a cell membrane. Science 195: 307–308. 1977.

    Article  PubMed  CAS  Google Scholar 

  60. Susi H. Sampugna J. Hampson JW. Ard JS. Laser-raman investigation of phospholipid-polypeptide interactions in model membranes. Biochem 18: 297–301. 1979.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster

About this chapter

Cite this chapter

Cody, C.S., Douglas, S.D. (1984). Principles of the Freeze-Fracture Technique and Implications in Studies of Normal and CLL Lymphocytes. In: Polliack, A. (eds) Human Leukemias. Developments in Oncology Series, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2823-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2823-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9785-7

  • Online ISBN: 978-1-4613-2823-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics