Skip to main content

Abstract

Living cells are the source of natural ac electrical oscillations, as is shown by several experimental approaches. These include dielectrophoresis, cellular spin resonance, and direct detection. This paper reviews and compares these recent results. The cause and consequences of these natural resonances require clarification.

The natural cellular resonances have been detected in a wide spectrum of cell types, ranging from the primitive bacteria to mammalian cells. They are therefore probably “universal”. In one species where they can be readily compared during various phases of the cell life cycle, as in the yeast, Saccharomyces cerevisiae, the electrical oscillations appear to be a maximum at or near mitosis. This brings up questions as to why, how, and when such oscillations would arise.

To the question, “Do these natural oscillations reflect cellular operations which are necessary or are they a frill?”; one is led to assume that they reflect needed processes, for they have presisted through the long evolutionary path. If, for example, they reflect events necessary in the cell’s reproductive sequence, this implies that there may be an electrical aspect to cellular growth and its control. How this might be related to the phenomnon of “contact” or “density” inhibition of cell growth is discussed. Several mechanisms whereby such natural ac oscillations may arise in cells are suggested and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M. R., and Anders, F., (1977) in RECENT ADVANCES IN CANCER RESEARCH, Vol. I, edited by R. C. Gallo; CRC Press pp. 103–117.

    Google Scholar 

  • Albanese, R. A. (1983) “Radiofrequency radiation and chemical reaction dynamics,” this volume.

    Google Scholar 

  • Arnold, W. M., and Zimmermann, U. (1982a) Naturwissenschaften 69, 297.

    Article  ADS  Google Scholar 

  • Arnold, W. M., and Zimmermann, U. (1982b) Z. Naturforsch. 37c, 908.

    Google Scholar 

  • Berridge, M. J. and Rapp, P. E. (1979) J. Exp. Biol. 81, 217.

    Google Scholar 

  • Chen, C. S. (1973) “On the Nature and Origins of Biological Dielectrophoresis,” Ph.D. Thesis, Oklahoma State University, Stillwater, OK 74078.

    Google Scholar 

  • Davydov, A. S. (1980), Sov. Phys. JETP, 51, 397.

    ADS  Google Scholar 

  • Del Guidice, E., Doglia, S., and Milani, M. (1982) Physica Scripta 26, 232.

    Article  ADS  Google Scholar 

  • Dukhin, S. S., and Shilov, V. N., (1974) DIELECTRIC PHENOMENA AND THE DOUBLE LAYER IN DISPERSE SYSTEMS AND POLYELECTROLYTtS, J. Wiley & Sons, N.Y.

    Google Scholar 

  • Epstein, I. R., Kustin, K., de Kepper, and Orban, M. (1981) J. Amer. Chem. Soc. 103, 2133.

    Article  Google Scholar 

  • Fröhlich, H., (1968) Int. J. Quantum Chem. 2, 641.

    Article  ADS  Google Scholar 

  • Fröhlich, H., (1977) Neurosci. Res. Program Bull. 15, 67.

    Google Scholar 

  • Fröhlich, H., (1980) Adv. Electron. Electron Physics 53, 85.

    Article  Google Scholar 

  • Füredi, A. A. and Valentine, R. C. (1962) Biochem. Biophys. Acta 56, 33.

    Google Scholar 

  • Hartwell, L. H., Culotti, J., Pringle, J. R., and Reid, B. J.; (1974) Science 183, 46.

    Article  ADS  Google Scholar 

  • Hess, B., and Chance, B., (1978), Theo. Chem., 4, 159.

    Google Scholar 

  • Holzapfel, C., Vienken, J. and Zimmermann, U. (1982) J. Membrane Biol. 67, 13.

    Article  Google Scholar 

  • Kaiser, F. (1982) Coll. Phenomena 5, in press; (this Volume, 1983).

    Google Scholar 

  • McCann, F. V., Cole, J. J., Greyre, P. M., and Russell, J. A. G. (1983), Science 219, 991.

    Article  ADS  Google Scholar 

  • Mischel, M. and Lamprecht, I. (1980) Z. Naturforsch. 35c, 1111.

    Google Scholar 

  • Mischel, M., Voss, A., and Pohl, H., (1982) J. Biol. Physics 10, 223.

    Article  Google Scholar 

  • Mischel, M. and Lamprecht, I. (1983) “Rotation of cells in nonuniform rotating alternating fields,” J. Biol. Physics, 11, (in press).

    Google Scholar 

  • Mischel, M. and Pohl, H. (1983) “Cellular spin resonance in rotating fields,” J. Biol. Physics, 11. (in press).

    Google Scholar 

  • Noyes, R. M. and Field, R. J. (1974) Ann. Rev. Phys. Chem. 25, 95.

    Article  ADS  Google Scholar 

  • Noyes, R. M. (1977) Acc. Chem. Res. 10, 214, and 273.

    Article  Google Scholar 

  • Okada, Y., Tsuchiya, W., and Inouye, A. (1979), J. Membrane Biol., 47, 357.

    Article  Google Scholar 

  • Pohl, H. (1951) J. Appl. Phys. 22, 869.

    Article  ADS  Google Scholar 

  • Pohl, H. and Crane, J. S. (1971) Biophys. J. 11, 711.

    Article  Google Scholar 

  • Pohl, H. and Wyhof, (1972) J. Non-Cryst. Solids, 11, 137.

    Article  ADS  Google Scholar 

  • Pohl, H. and Pollak, M. (1977) J. Chem. Phys. 66, 4031.

    Article  ADS  Google Scholar 

  • Pohl, H. (1978) “DIELECTROPHORESIS, The Behavior of Matter in Nonuniform Electric Fields”. Cambridge University Press.

    Google Scholar 

  • Pohl, H. (1980a) “Micro-dielectrophoresis of dividing cells,” in BIOELECTROCHEMISTRY, pp. 273–95, edited by H. Keyzer and F. Gutmann, Plenum Press.

    Google Scholar 

  • Pohl, H. (1980b), Int. J. Quantum Chem. 7, 411.

    Google Scholar 

  • Pohl, H. A., (1980c) J. Biol. Phys. 7, 1.

    Article  ADS  Google Scholar 

  • Pohl, H. (1981a), J. Theor. Biol. 93, 207.

    Article  Google Scholar 

  • Pohl, H. (1981b), J. Bioenerg. Biomembranes 13, 149.

    Article  Google Scholar 

  • Pohl, H. Braden, T., Robinson, S., Piclardi, J., Pohl, D. G., (1981) J. Biol. Phys. 9, 133.

    Article  Google Scholar 

  • Pohl, H. (1982) Int. J. Quantum Chem. 9, 399.

    Google Scholar 

  • Pohl, H. and Braden, T. (1982) J. Biol. Phys. 10, 17.

    Article  Google Scholar 

  • Pohl, H. (1983) “Cellular spinning in pulsed rotating electric fields,” J. Biol. Physics, 11, (in press).

    Google Scholar 

  • Rapp, P. E. (1979), J. Exp. Biol. 81, 281.

    Google Scholar 

  • Rivera, H. (1983) private communication.

    Google Scholar 

  • Rivera, H., Biscar, J. P., and Pohl, H. A., (1983) (private communication).

    Google Scholar 

  • Rowlands, S., Sewchand, L. S., Lovlin, R. E., Beck, J. S., and Enns, E. G., (1981) Phys. Lett. 82A, 436.

    ADS  Google Scholar 

  • Rowlands, S., Sewchand, L. S., Enns, E. G. (1982) Can. J. Physiol. Pharm. 60, 52.

    Article  Google Scholar 

  • Rowlands, S., (1982) J. Biol. Phys. 10, 199.

    Article  Google Scholar 

  • Rowlands, S., Eisenberg, C. P., and Sewchand, L. S. (1983), “Contractils: Quantum mechanical fibrils,” J. Biol. Phys. 11, (in press).

    Google Scholar 

  • Roy, S. C., Braden, T., and Pohl, H., (1981) Phys. Lett. 83A, 142.

    ADS  Google Scholar 

  • Schmidt, S. and Ortoleva, P. (1979), J. Chem. Phys. 71, 1010.

    Article  ADS  Google Scholar 

  • Smith, Cyril W. (1983) (private communication).

    Google Scholar 

  • Teixera-Pinto, A. A., Nejelski, L. L., Cutler, J. L., and Heller, J. H. (1960), Exp. Cell Res. 20, 548.

    Article  Google Scholar 

  • Treherne, J. E., Foster, W. A. and Schofield, P. K. (1979), “Cellular Oscillators” J. Exp. Biol. 81(review volume).

    Google Scholar 

  • Webb, S. J. (1980) Phys. Rep. 60, 201.

    Article  ADS  Google Scholar 

  • Westby, M., and Kirschbaum, F. (1982) J. Compar. Physiol., 145, 399.

    Article  Google Scholar 

  • Yano, J., Okada, Y., Tsuchiya, W., Kinoshita, M., Tominaga, T., and Nishimura, M.; (1981), Acta Obst. Gyn. Japan, 33, 137.

    Google Scholar 

  • Zimmermann, U., Vienken, J. and Pilwat, G. (1981), Z. Naturf orsch. 36c, 173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Pohl, H.A. (1984). Natural AC Electric Fields in and About Cells. In: Adey, W.R., Lawrence, A.F. (eds) Nonlinear Electrodynamics in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2789-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2789-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9720-8

  • Online ISBN: 978-1-4613-2789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics