Communication with Submicron Structures: Perspectives in the Application of Biomolecules to Computer Technology

  • Albert F. Lawrence
  • Robert R. Birge


That demands on computer technology keep several steps ahead of the hardware is proverbial. The needs of the scientific and engineering communities for numerical modeling and image processing have stimulated an exponential growth in processor speeds and memory capacities. This growth has been sustained by advances in device physics since the early 1950’s. The major portion of these advances may be attributed to a steady decrease in circuit dimensions. The limits to miniaturization in a semiconductor-based technology are now in sight. The breakdown of transport laws in bulk semiconductor samples with dimensions below 0.1 micron precludes use of conventional materials and structures for devices at and below the 0.1 micron scale. In order to sustain further progress, circuit technology must turn to alternative materials.


Josephson Junction Acoustic Phonon Tunneling Electron Josephson Current Monomolecular Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. R. Brewer, ed., “Electron-beam Technology in Microelectronic Fabrication,” Academic Press, New York (1980).Google Scholar
  2. 2.
    A. Barone and G. Paterno, “Physics & Applications of the Josephson Effect),” Wilery-Interscience, New York (1982).CrossRefGoogle Scholar
  3. 3.
    G. Rabbat, ed., “Hardware and Software Concepts in VLSI,” Van Nostrand-Reinhold, New York (1983).Google Scholar
  4. 4.
    A. Laubereau and W. Kaiser, Rev. Mod. Phys., 50: 507 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    R. R. Alfano, ed., “Biological Events Probed by Ultrafast Laser Spectroscopy,” Academic Press, New York (1982)Google Scholar
  6. 6.
    R. R. Birge, Annu. Rev. Biophys., Bioeng, 10: 315 (1981).CrossRefGoogle Scholar
  7. 7.
    A. S. Davydov, Physica Scripta., 20: 387 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    W. P. Su, J. R. Schrieffer and A. J. Heeger, Phys. Rev. B, 22: 2099 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    P. K. Hansma, ed., “Tunneling Spectroscopy,” Plenum Press, New York (1982)Google Scholar
  10. 10.
    A. F. Lawrence, “How Do We Talk to Nanometer Structures”, in Proceedings of the 2nd International Conference in Molecular Electronics, Washington, D.C., ( 1983, To Appear).Google Scholar
  11. 11.
    C. Foster, “Content Addressable Parallel Processors,” VanNostrand-Reinhold, New York (1977).Google Scholar
  12. 12.
    P. A. Benioff, Intl. Jour. Theor. Phys., 21: 177 (1982).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. F. Hameka, “Advanced Quantum Chemistry,” Addison-Wesley, New York (1965).Google Scholar
  14. 14.
    M. Puma and B. S. Deaver, Jr., Appl. Phys. Lett., 19: 539 (1971)ADSCrossRefGoogle Scholar
  15. 15.
    T. W. Barrett, Physics Letters, 91A:139, (1982), Physics Letters, 92A: 3099 ( 1982.ADSGoogle Scholar
  16. 16.
    W. P. Su and J. R. Schrieffer, Proc. Natl. Acad. Sci., USA, 77: 5626 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    D. Baeriswyl, G. Harbeke, H. Keiss, & W. Meyer, Polyacetylene, in “Electronic Properties of Polymers,” J. Mort and G. Pfister, eds., Wiley-Interscience, New York (1982).Google Scholar
  18. 18.
    R. R. Birge and B. M. Pierce, “The Nature of the Primary Photo-chemical Event in Bacteriorhodopsin and Rhodopsin,” in Proceedings of the International Conference on Photochemistry and Photobiology, Alexandria, Egypt, ( 1983 To Appear).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Albert F. Lawrence
    • 1
    • 2
  • Robert R. Birge
    • 1
    • 2
  1. 1.Hughes Aircraft CompanyLong BeachUSA
  2. 2.Chemistry Dept.University of CaliforniaRiversideUSA

Personalised recommendations