Skip to main content

Solitons in Synthetic and Biological Polymers

  • Chapter
Book cover Nonlinear Electrodynamics in Biological Systems

Abstract

Nonlinear science has, in recent years, begun to receive truly interdisciplinary attention and to involve a supporting interplay of analysis, computation and experiment. Most of the problems being addressed have a long history but are now benefiting from this new interdisciplinary view. The synergistic impact of computers plays an increasingly important role and there are some new concepts —solitons, toplogy, “universal” routes to chaos and its characterization, pattern selection and evolution, etc. Significant advances have occurred in our appreciation for the consequences of strongly nonlinear phenomena and our ability to experimentally detect them. In particular the “soliton paradigm”1 has acquired, in the space of a decade, an astonishing list of applications across the natural sciences. Our focus here is only a small subset of these applications but already vast: namely applications in solid state materials and of those primarily low-dimensional examples (weakly coupled chains or layers). Furthermore, we will not discuss any problems arising in nonlinear diffusion equations, although these are fundamental in their own right for descriptions of reaction-diffusion systems, interface dynamics, nerve-pulse propagation, etc.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Bishop, J. A. Krumhansl and S. E. Trullinger, Physica D 1, 1 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  2. “Nonlinear Problems” Present and Future,” Eds. A. R. Bishop, D. K. Campbell and B. Nicolaenko, North-Holland, Mathematics Studies 61(1982).

    Google Scholar 

  3. G. L. Lamb, Jr., “Elements of Soliton Theory,” Wiley Interscience (1980).

    MATH  Google Scholar 

  4. “Solitons,” Eds. R. K. Bullough and P. J. Caudrey, Springer-Verlag (1980).

    Google Scholar 

  5. R. K. Dodd, et. al., “Solitons and Nonlinear Wave Equations,” Academic Press (1983).

    Google Scholar 

  6. “Solitons and Condensed Matter Physics,” Eds. A. R. Bishop and T. Schneider, Springer-Verlag, Solid-State Sciences 8 (1981).

    Google Scholar 

  7. “Physics in One Dimension,” Eds. J. Bernasconi and T. Schneider, Springer-Verlag, Solid-State Sciences 23 (1981).

    Google Scholar 

  8. “Statics and Dynamics of Nonlinear Systems,” Eds. G. Benedek, H. Bilz and R. Zeyher, Springer-Verlag, Solid-State Sciences 47 (1983).

    Google Scholar 

  9. e. g. S. Aubry, in “Order in Chaos,” Physica D 7 (1983)

    Google Scholar 

  10. P. Bak, Rep. Prog. Phys. 45, 587 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  11. e. g. Journal de Physique, Colloque C3, Supplément au no. 6, Tome 44 (1983).

    Google Scholar 

  12. A. D. Bruce and R. A. Cowley, “Structural Phase Transitions,” Taylor and Francis, Monographs on Physics (1981).

    Google Scholar 

  13. T. R. Koehler, A. R. Bishop, J. A. Krumhansl and J. R. Schrieffer, Solid State Commun. 17, 1515 (1975)

    Article  ADS  Google Scholar 

  14. A. R. Bishop, in “Proceedings of the International Conference on Lattice Dynamics,” Paris 1977, Ed. M. Balkanski, Flammarian Press (Paris) (1978).

    Google Scholar 

  15. S. A. Aubry, J. Chem. Phys. 64, 3392 (1976).

    Article  ADS  Google Scholar 

  16. A. R. Bishop and J. A. Krumhansl, Phys. Rev. B 12, 2824 (1975)

    Article  ADS  Google Scholar 

  17. A. R. Bishop and W. C. Kerr, preprint (1983).

    Google Scholar 

  18. e.g. B. F. Putnam, E. W. Prohofsky and L. L. van Zandt, Biopolymers 21, 885 (1982)

    Article  Google Scholar 

  19. H. Bilz, H. Büttner and H. Fröhlich, Z. Naturforsch 36b, 208 (1981)

    Google Scholar 

  20. J. A. Krumhansl and D. M. Alexander, “Structure and Dynamics: Nucleic Acids and Proteins”, Eds. E. Clementi and R. H. Sarma, Adenine Press (1983), p. 61.

    Google Scholar 

  21. E.G. H. Toyoki, et al., preprint (1983).

    Google Scholar 

  22. D.K. Campbell and A.R. Bishop, Nucl. Phys. B200, 297 (1982); see also refs. 2, 8.

    Article  ADS  Google Scholar 

  23. W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. B22, 2099 (1980).

    Article  ADS  Google Scholar 

  24. S.A. Brazovskii and N.N. Kirova, JETP Lett. 33, 4 (1981); see also ref. 10.

    ADS  Google Scholar 

  25. M.J. Rice and E.J. Mele, Phys. Rev. Lett. 49, 1455 (1982).

    Article  ADS  Google Scholar 

  26. J.C. Scott et al., preprint (1983)

    Google Scholar 

  27. T.C. Chung, et al. preprint (1983).

    Google Scholar 

  28. S. Kivelson, Phys. Rev. B 28, 2653 (1983)

    Article  ADS  Google Scholar 

  29. W.P. Su, preprint (1983)

    Google Scholar 

  30. T.D. Holstein, Annal. Phys. 8, 325 (1959)

    Article  ADS  Google Scholar 

  31. D. Emin and T.D. Holstein, ibid. 539, 439 (1969)

    Article  ADS  Google Scholar 

  32. T.D. Holstein, Mol. Cryst. Liq. Cryst. 77, 235 (1981).

    Article  Google Scholar 

  33. D.K. Campbell, A.R. Bishop and K. Fesser, Phys. Rev. B 26, 6873 (1982).

    ADS  Google Scholar 

  34. A. S. Davydov and N.I. Kislukha, Sov. Phys. JETP 44, 571 (1976)

    ADS  Google Scholar 

  35. A.S. Davydov, “Biology and Quantum Mechanics), Pergamon Press (1982)

    Google Scholar 

  36. A.C. Scott, Phys. Rev. A 26, 578 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  37. G. Careri, et al., Phys. Rev. Lett. 51, 304 (1983); see also A.C. Scott, these proceedings.

    Article  ADS  Google Scholar 

  38. see D.J. Thonless, Phys. Rep. 13, 93 (1973)

    Article  ADS  Google Scholar 

  39. N.F. Mott and E.A. Davis, “Electronic Processes in Non-crystalline Materials,” Oxford University Press (1971).

    Google Scholar 

  40. e.g. P.W. Anderson, Nature (Physical Sciences) 235, 163 (1972)

    ADS  Google Scholar 

  41. D. Emin, Physics Today, June (1982), p. 34.

    Google Scholar 

  42. A.R. Bishop, et al., Phys. Rev. Lett. 52 (in press) and Synmetals (in press).

    Google Scholar 

  43. e.g. G. Wegner, in “Molecular Metals,” Ed. W.A. Hatfield, Plenum Press (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Bishop, A.R. (1984). Solitons in Synthetic and Biological Polymers. In: Adey, W.R., Lawrence, A.F. (eds) Nonlinear Electrodynamics in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2789-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2789-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9720-8

  • Online ISBN: 978-1-4613-2789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics