Structural Modelling of Polymer Properties

  • Albert J. de Vries

Abstract

It is a favourite and frequently performed exercise for scientists interested in the behaviour of real materials, to imagine and to construct hypothetical, more or less elaborate structural models whose properties may be readily described in terms of a limited number of characteristic parameters. Comparison of the observed properties of the real material with those of the structural model is supposed then to allow certain conclusions about the degree of relevancy of the chosen model in particular when the observed properties are shown to be in fair agreement with the ones calculated from the model. It should be borne in mind, however, that quite different theoretical models may exhibit similar or even identical behaviour depending on the selected parameter values, from which we may conclude that coincidence between observed and calculated properties does not necessarily imply that the essential features of the structural model bear close resemblance to those of the real material. The latter conclusion is corroborated by the well known observation that two real materials of very different structure may show similar or identical properties under appropriate conditions, which may or may not be the same for both materials.

Keywords

Anisotropy Polyethylene Rubber Shrinkage Polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R.G. Treloar, “The Physics of Rubber Elasticity”, Oxford Univ. Press, London (1949).Google Scholar
  2. 2.
    I.V. Yannas and R.R. Luise, J. Macromol. Sci.-Phys. B21 (3), 443 (1982)CrossRefGoogle Scholar
  3. 3.
    J. Meissner, Pure & Appl. Chem. 42, 553 (1975)CrossRefGoogle Scholar
  4. 4.
    H.M. Laun, Colloid and Polymer Sci. 259, 97 (1981)CrossRefGoogle Scholar
  5. 5.
    A.S. Lodge, “Elastic Liquids”, Academic Press,London-NewYork (1964).Google Scholar
  6. 6.
    P.G. de Gennes, J. Chem. Phys. 55, 572 (1971); “Scaling Concepts in Polymer Physics”, Cornell Univ. Press, Ithaca (1979)CrossRefGoogle Scholar
  7. 7.
    M.Doi and S.F.Edwards, J.C.S. Faraday Trans.II 74, 1789,1802, 1818 (1978); 75, 38 (1979).CrossRefGoogle Scholar
  8. 8.
    L.C.E. Struik, Polym.Eng.Sci. 18, 799 (1978)CrossRefGoogle Scholar
  9. 9.
    A.J. de Vries and C.Bonnebat, Polym.Eng.Sci. 16, 93 (1976)CrossRefGoogle Scholar
  10. 10.
    A.J. de Vries, G.Bonnebat and J. Beautemps, J. Polym.Sci., Polymer Symp. 58, 109 (1977).CrossRefGoogle Scholar
  11. 11.
    P.J. Flory, Proc.Roy.Soc.Lond. A351 (1976)Google Scholar
  12. 12.
    P.R. Pinnock and I.M.Ward, Trans. Faraday Soc. 62, 1308 (1966)CrossRefGoogle Scholar
  13. 13.
    W. Kuhn and F. Grün, Kolloid-Z. 101, 248 (1942)CrossRefGoogle Scholar
  14. 14.
    J.L.S. Wales, “The Application of Flow Birefringence to Rheological Studies of Polymer Melts”,Delft Univ.Press (1976)Google Scholar
  15. 15.
    P.J.Flory and Y. Abbe, Macromolecules 2, 335 (1969)CrossRefGoogle Scholar
  16. 16.
    K. Nagai, J. Chem. Phys. 40, 2818 (1964)CrossRefGoogle Scholar
  17. 17.
    R.S. Stein and G.L. Wilkes, “Physico-chemical Approaches to the Measurement of Anisotropy”, Chapter 3 in: “Structure and Properties of Oriented Polymers”, I.M.Ward, Ed., Applied Science Publish. London (1975).Google Scholar
  18. 18.
    A.J. de Vries, Pure & Appl.Chem. 53, 1011 (1981); 54,647(1982)CrossRefGoogle Scholar
  19. 19.
    W.Voigt, “Lehrbuch der Kristallphysik”, Teubner, Leipzin(1910)Google Scholar
  20. 20.
    A. Reuss, Z.Angew.Math.Mech. 9, 49 (1929)CrossRefGoogle Scholar
  21. 21.
    J. Hennig, Kolloid-Z, 196, 136(1964); 200,46(1964); 202,127 (1965) J.Polym.Sci. C16, 2751(1967), Kunststoffe57,385(1967)CrossRefGoogle Scholar
  22. 22.
    I.M.Ward, Proc.Phys.Soc. 80, 1176 (1962)CrossRefGoogle Scholar
  23. 23.
    R.L.McCullough, C.T.Wu, J.C.Seferis and P.H.Lindenmeyer, Polym.Eng.Sci. 16, 371 (1976)CrossRefGoogle Scholar
  24. 24.
    J.C.Seferis and R.J. Samuels, Polym.Eng.Sci. 19, 975 (1979)CrossRefGoogle Scholar
  25. 25.
    J.C.Seferis, Ph.D. Thesis, Univ. of Delaware, Dept. Chem. Eng. (1977)Google Scholar
  26. 26.
    W.Ruland and W.Wiegand, J.Polym.Sci. Polym.Symp.58, 43(1977)CrossRefGoogle Scholar
  27. 27.
    H.C. Biangardi, J.Polym.Sci.Polym.Phys.Ed. 18, 903 (1980)CrossRefGoogle Scholar
  28. 28.
    D.W.Hadley and I.M.Ward, “The Macroscopic Model Approach to Low Strain Properties”, Chapter 8 in “Structure and properties of Oriented Polymers”, I.M.Ward,Ed.,Appl.Sci.Publ.,London (1975)Google Scholar
  29. 29.
    V.B.Gupta and I.M.Ward, J.Macromol Sci.-Phys.B 1, 373 (1967)CrossRefGoogle Scholar
  30. V.B.Gupta, A.Keller and I.M.Ward, J.Macromol.Sci.-Phys. B2, 139 (1968)CrossRefGoogle Scholar
  31. Z.H.Stachurski and I.M.Ward,J.Macromol.Sci.-Phys. B3,427(1969)CrossRefGoogle Scholar
  32. 30.
    Z.Haskin and S.S.Shtrikman, J.Mech.Phys.Solids 10, 343 (1962)CrossRefGoogle Scholar
  33. 31.
    C.T. Wu,Ph D. Thesis, Univ. of Delaware,Dept. of Chem.Eng. (1976)Google Scholar
  34. 32.
    J.C.Halpin and S.W.Tsai, AFML-TR 67, 423 (1969)Google Scholar
  35. 33.
    J.C.Halpin and J.L.Kardos, J.Appl.Phys. 43, 2235 (1972)CrossRefGoogle Scholar
  36. 34.
    R.S.Stein, J. Polym.Sci. A2, 7, 1021 (1969)CrossRefGoogle Scholar
  37. 35.
    S.Nomura, S.Kawabata, H.Kawai, Y.Yamaguchi, A.Fukushima and H. Takahara, J. Polym.Sci.A2, 7, 325 (1969)CrossRefGoogle Scholar
  38. 36.
    C.L.Choy, “Thermal Expansivity of Oriented Polymers”, Chapter 4 in: “Developments in Oriented Polymers”, I.M.Ward,Ed.,Appl. Sci.Publish.,London (1982)Google Scholar
  39. 37.
    H.H. Kausch, J.Appl.Phys. 38, 4213(1967); Kolloid-Z.237, 251 (1969)CrossRefGoogle Scholar
  40. 38.
    V.J.McBrierty and I.M.Ward,Brit.J.Appl.Phys.(2)1, 1529(1968)Google Scholar
  41. 39.
    M.G.Northolt and J.J. van Aartsen, J.Polym.Sci.Polymer Symp. 58, 283 (1977)CrossRefGoogle Scholar
  42. 40.
    M.G.Northolt, Polymer 21, 1199 (1980)CrossRefGoogle Scholar
  43. 41.
    H.M.Morgan, Textile Res.J. 32, 866 (1962)CrossRefGoogle Scholar
  44. 42.
    R.J. Samuels, J.Polym.Sci. A3, 1741 (1965)Google Scholar
  45. 43.
    O. Wiener, Abh.Sachs.Ges.D.Wiss.Math.-Phys.K1. 32, 503 (1912)Google Scholar
  46. 44.
    J.C. Seferis, R.L. McCullough and R.J.Samuels, Polym.Eng. Sci. 16, 334 (1976)CrossRefGoogle Scholar
  47. 45.
    J.R.Dumbleton, J. Polym.Sci.A2, 6, 795 (1968)CrossRefGoogle Scholar
  48. 46.
    C.L.Choy, K.H. Cheng and Bay-Sung Hsu, J.Polym.Sci.Polym. Phys. Ed. 19, 991 (1981)CrossRefGoogle Scholar
  49. 47.
    H.G. Zachmann, Polym.Eng.Sci.19, 966 (1979)CrossRefGoogle Scholar
  50. 48.
    E.W.Fischer, H.Goddar and W. Peisczeck, J.Polym.Sci.C32, 149 (1971)Google Scholar
  51. 49.
    A.G.Gibson, G.R.Davies and I.M.Ward, Polymer 19, 683 (1978)CrossRefGoogle Scholar
  52. 50.
    C.L. Choy, F.C.Chen and E.L.Ong, Polymer 20, 1191 (1979)CrossRefGoogle Scholar
  53. 51.
    A.G.Gibson, D.Greig, M.Sahota, I.M.Ward and C.L.Choy, J. Polym.Sci. Polym.Lett.Ed. 15, 183 (1977)CrossRefGoogle Scholar
  54. 52.
    M. Takayanagi, K. Imada and T. Kajiyama, J. Polym. Sci. C15, 263 (1966)Google Scholar
  55. 53.
    F.C.Chen, C.L. Choy, S.P.Wong and K.Young, J Polym.Sci. Phys. Ed 19, 971 (1981).CrossRefGoogle Scholar
  56. 54.
    C.L. Choy, F.C. Chen and K.Young, J. Polym.Sci. Phys.Ed. 19, 335 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Albert J. de Vries
    • 1
  1. 1.ESPCI-Laboratoire de Physico-chimie Structurale et MacromoléculaireParis Cédex 05France

Personalised recommendations