Inverse Solutions for Multiple Scattering in Inhomogeneous Acoustic Media

  • J. M. Blackledge
  • L. Zapalowski
Part of the Acoustical Imaging book series (ACIM, volume 13)

Abstract

Recent advances in the theory of quantitative acoustic scatter imaging have been made under the assumption that:(i) the acoustic continuum has uniform, frequency dependent absorption characteristics and (ii) the scattering of acoustic radiation from material inhomogeneities is weak enough for the first Born or Rytov approximations to hold. These scatter imaging techniques all depend on extensive computation with aquired data bases in order to generate the final image. Jones et al. (1982) have demonstrated that the final result and hence, image fidelity, is highly dependant on the physical model assumed for the propogation and scattering of acoustic waves in the material under investigation. The possibility that even high resolution data aquisition and computational methods will lead to manifestly inaccurate and semi-quantitative images has been called image ‘fuzziness’.

Keywords

Entropy Attenuation Compressibility Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, J., Johnson, S. A. and Stanger, F. 1979, Explicit inversion of the Helmholtz equasion for ultrasound insonification and spherical detection, Acoust. Im., 9:451, Plenum Press.Google Scholar
  2. Blackledge, J. M., Fiddy, M. A., Leernan, S. and Zapalowski, L., 1982, Three dimensional imaging of soft tissue with dispersive attenuation, Acoust. Im,, 12:423, Plenum Press.Google Scholar
  3. Blackledge, J. M., 1983, Ph. D. Thesis, The theory of quantitative acoustic scatter imaging, London University.Google Scholar
  4. Blackledge, J. M., Fiddy, M. A., Leeman, S. and Seggie, D., 1983, Reflectivity tomography in attenuating media, Ultra. Int., to be published.Google Scholar
  5. Jones, J. P., Leeman, S. and Blackledge, J. M., 1982, Quantitative ultrasound scatter imeging, First Int. Symp. on Med. Im, and Im. Interp., 1:325.Google Scholar
  6. Jost, R. and Kohn, W., 1952, Construction of a potential from the phase shift, Phys. Rev., 37:977.MathSciNetADSCrossRefGoogle Scholar
  7. Leeman, S., 1978, The impediography equations, Acoust. Im., 8, Plenum Press.Google Scholar
  8. Mueller, R. K., Kaveh, M. and Wade, G., 1979, Reconstruction tomography and applications to ultrasonics, Proc. IEEE, 67 (4):567.ADSCrossRefGoogle Scholar
  9. Norton, S. and Linzer, M., 1981, Ultrasonic reflectivity imaging in three dimensions, Proc. IEEE, BME-28:202.CrossRefGoogle Scholar
  10. Pechenick, K. R. and Cohen, J. M. 1981, J. Math. Phys., 22:1513.MathSciNetADSMATHCrossRefGoogle Scholar
  11. Prosser, R. T., 1979, Formal solutions of inverse scattering problems. II, J. Math, Phys., 17:1773.MathSciNetGoogle Scholar
  12. Razavy, M., 1975, Determination of the wave velocity in an inhomogeneous medium from the reflection coefficient, J. Acoust. Soc. Am., 58 (5):956.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. M. Blackledge
    • 1
  • L. Zapalowski
    • 1
  1. 1.Physics Department, Queen Elizabeth CollegeUniversity of LondonKensington, LondonUK

Personalised recommendations