A Wigner Function Approach to Transport and Switching in Sub-Micron Heterostructures

  • J. R. Barker
  • D. W. Lowe
  • S. Murray

Abstract

The equation of motion for Wigner’s function is derived as an exact non-local extension of Boltzmann’s equation. Its solution is discussed for generic device potentials. Modifications for spatially varying effective mass are outlined and the moment balance equations critically discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Sze, “Physics of Semiconductor Devices”, 2nd edition, ( Wiley-Interscience, New York ), 1982.Google Scholar
  2. 2.
    L. Eastman, J. Physique, Colloque C7, Supp. 10, 42 263, 1981.Google Scholar
  3. 3.
    R. Dingle, “Microelectronics: Structures and Complexity”, ed. R. Dingle ( Plenum Press, New York ), 1982.Google Scholar
  4. 4.
    J. R. Barker, “Physics of Non-Linear Transport in Semiconductors”, ed. D. K. Ferry, J. R. Barker & C. Jacoboni, (Plenum Press, New York), 127, 1980.Google Scholar
  5. 5.
    J. R. Barker and D. Lowe, J. Physique, Colloque C7, Supp. 10, 42 293, 1981.Google Scholar
  6. 6.
    H. L. Grubin, D. K. Ferry, G. J. Iafrate and J. R. Barker, “VLSI Electronics: Microstructure Science”, ed. N. G. Einsprach, (Academic Press, New York) Vol. 3, 198, 1982.Google Scholar
  7. 7.
    G. J. Iafrate, H. L. Grubin and D. K. Ferry, J. Physique, Colloque C7, Supp. 10, 42 307, 1981.Google Scholar
  8. 8.
    J. R. Barker, in “Microelectronics: Structure and Complexity”, ed. R. Dingle, ( Plenum Press, New York ) 1982.Google Scholar
  9. 9.
    S. Fujita, “Non-Equilibrium Quantum Statistical Mechanics”, ( Saunders, New York ), 1966.MATHGoogle Scholar
  10. 10.
    E. J. Heller, J. Chem. Phys. 65 1289, 1976.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    E. P. Wigner, “Perspectives in Quantum Theory”, ed. W. Yourgrau, (Dover, New York), 25, 1971.Google Scholar
  12. 12.
    M. V. Berry, Phil. Trans. Roy. Soc. London. A287 237, 1977.ADSMATHCrossRefGoogle Scholar
  13. 13.
    J. E. Moyal, Proc. Camb. Phil. Soc. Math. Phys. Sci. 45 99, 1949.MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    H. J. Groenwald, Physica 12 405, 1946.MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M. Abramowitz and L. A. Stegun, “Handbook of Mathematical Functions”, U.S. Bureau of Standards, Washington, D.C., 1964.MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. R. Barker
    • 1
  • D. W. Lowe
    • 1
  • S. Murray
    • 1
  1. 1.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations