Advertisement

Ceramic Implant Materials

  • Joon Bu Park
Chapter

Abstract

Although the use of ceramic materials is well known in dentistry, their use in medicine as implants is relatively new. The main advantage of ceramics over other implant materials is their “inertness” or “biocompatibility,” which is due to their low chemical reactivity. However, certain ceramics are made reactive so as to induce direct bonding to hard tissues. Some ceramics are also made to be absorbed in vivo after their original function is fulfilled.

Keywords

Calcium Phosphate Calcium Aluminate Amorphous Calcium Phosphate Pyrolytic Carbon Vitreous Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Gitzen (ed.),Alumina as a Ceramic Material, American Ceramic Society, Columbus, Ohio, 1970:Google Scholar
  2. 2.
    Annual Book of ASTM Standards, Part 46, F603-78, American Society for Testing and Materials, Philadelphia, 1980.Google Scholar
  3. 3.
    H. Kawahara, M. Hirabayashi, and T. Shikita, Single crystal alumina for dental implants and bone screws,J. Biomed. Mater. Res.14, 597–606, 1980.CrossRefGoogle Scholar
  4. 4.
    H. Kawahara, A. Yamagami, Y. Koda, J. Yokota, H. Sogawa, Y. Kataoka, H. Kobayashi, S. Maehara, and M. Hirabayashi, Bioceram-A new type of ceramic implant,Jpn. Soc. Implant Dent. August 1975.Google Scholar
  5. 5.
    M. Spraggs and T. Vasilos, Effect of grain size on transverse bend strength of alumina and magnesia,J. Am. Ceram. Soc. 46, 224–228, 1963.CrossRefGoogle Scholar
  6. 6.
    J. T. Frakes, S. D. Brown, and G. H. Kenner, Delayed failure and aging of porous alumina in water and physiological medium,Am. Ceram. Soc. Bull.53, 193–197, 1974.Google Scholar
  7. 7.
    F. E. Krainess and W. J. Knapp, Strength of a dense alumina ceramic after agingin vitro, J. Biomed. Mater. Res.12, 241–246, 1978.CrossRefGoogle Scholar
  8. 8.
    C. P. Chen and W. J. Knapp, Fatigue fracture of an alumina ceramic at several temperatures,in: Fracture Mechanics of Ceramics, Volume 2, R. C. Bradt, D. P. H. Hasselman, and F. F. Lange (ed.), pp. 691–707, Plenum Press, New York, 1974.Google Scholar
  9. 9.
    J. E. Ritter, Jr., D. C. Greenspan, R. A. Palmer, and L. L. Hench, Use of fracture of an alumina and Bioglass-coated alumina,J. Biomed. Mater. Res.13, 251–263, 1979.CrossRefGoogle Scholar
  10. 10.
    C. G. Trantina, Brittle fracture and subcritical crack growth in a ceramic structure, in:Fracture, Volume 3, D. M. R. Taphn (ed.), pp. 921–927, University of Waterloo, Waterloo, Canada, 1977.Google Scholar
  11. 11.
    M. R. Urist, Bone histogenesis and morphogenesis in implants of demineralized enamel and dentin,J. Oral Surg.29, 88–102, 1971.Google Scholar
  12. 12.
    A. S. Posner, A. Perloff, and A. D. Diorio, Refinement of the hydroxyapatite structure,Acta Crhstallogr.11, 308–309, 1958.CrossRefGoogle Scholar
  13. 13.
    R. A. Young and J. C. Elliot, Atomic scale bases for several properties of apatites,Arch. Oral Biol.11, 699–707, 1966.CrossRefGoogle Scholar
  14. 14.
    D. McConell,Apatite: Its Crvstal Chemistry, Mineralogy, Utilization, and Biologic Occurrence, Springer-Verlag, Berlin, 1973.Google Scholar
  15. 15.
    M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. P. Kay, and H. Doremus, Hydroxyapatite synthesis and characterization in dense polycrystalline form,J. Mater. Sci.11, 2027–2035, 1976.CrossRefGoogle Scholar
  16. 16.
    K. Kato, H. Aoki, T. Tabata, and M. Ogiso, Biocompatibility of apatite ceramics in mandibles,Biomater. Med. Devices Artif. Organs 7, 291 - 297, 1979.Google Scholar
  17. 17.
    D. E. Grenoble, The elastic properties of hard tissues and apatites,J. Biomed. Mater. Res. 6, 221–233, 1972.CrossRefGoogle Scholar
  18. 18.
    R. S. Gilmore, R. P. Pollack, and J. L. Katz, Elastic properties of bovine dentine and enamel,Arch. Oral Biol.15, 787–796, 1970.CrossRefGoogle Scholar
  19. 19.
    F. Gaynor Evans,Mechanical Properties of Bones, p. 164, Thomas, Springfield, III., 1973.Google Scholar
  20. 20.
    A. M. Torgalkar, A resonance frequency technique to determine elastic modulus of hydroxyapatite,J. Biomed. Mater. Res.13, 907–920, 1979.CrossRefGoogle Scholar
  21. 21.
    P. Decheyne and K. de Groot, In vivo surface activity of a hydroxyapatite alveolar bone substitute,J. Biomed. Mater. Res.15, 441–445, 1981.CrossRefGoogle Scholar
  22. 22.
    R. E. Holmes, Bone regeneration within a coralline hydroxyapatite implant,Plast. Reconstr. Surg.63, 626–633, 1979.CrossRefGoogle Scholar
  23. 23.
    E. A. Monroe, W. Votaya, D. B. Bass, and J. McMullen, New calcium phosphate ceramic material for bone and tooth implants,J. Dent. Res.50, 860–861, 1971.CrossRefGoogle Scholar
  24. 24.
    S. Niwa, K. Sawai, S. Takahashie, H. Tagai, M. Ono, and Y. Fukuda, Experimental studies on the implantation of hydroxyapatite in the medullary canal of rabbits,Transactions, First World Biomaterials Congress, Baden, Austria, April 8–12, 1980.Google Scholar
  25. 25.
    L. L. Hench, R. K. Splinter, and W. C. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials,J. Biomed. Mater. Symp.2, 117–141, 1971.CrossRefGoogle Scholar
  26. 26.
    E. D. Eanes and A. S. Posner, Kinetics and mechanisms of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite,Trans. N.Y. Acad. Sci.28, 233–241, 1965.Google Scholar
  27. 27.
    E. Hayek and H. Newesely, Pentacalcium monohydroxyorthophosphate,Inorg. Synth.7, 63–65, 1963.CrossRefGoogle Scholar
  28. 28.
    D. J. Greenfield and E. D. Eanes, Formation chemistry of amorphous calcium phosphates prepared from carbonate-containing solutions,Calcif. Tissue Res.9, 152–162, 1972.CrossRefGoogle Scholar
  29. 29.
    T. Kijima and M. Tsutsumi, Preparation and thermal properties of dense polycrystalline oxyhydroxyapatite,J. Am. Ceram. Soc.62, 954–960, 1979.CrossRefGoogle Scholar
  30. 30.
    P. W. McMillan,Glass-Ceramics, 2nd ed., Academic Press, New York, 1979.Google Scholar
  31. 31.
    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann,Introduction to Ceramics, 2nd ed., p. 368, Wiley, New York, 1976.Google Scholar
  32. 32.
    L. L. Hench and H. A. Paschall, Direct chemical bond of bioactive glass-ceramic materials to bone and muscle,J. Biomed. Mater. Res. Symp.2, 5–42, 1973.Google Scholar
  33. 33.
    G. Piotrowski, L. L. Hench, W. C. Allen, and G. J. Miller, Mechanical studies of bone-Bioglass interfacial bond,J. Biomed. Mater. Symp.6, 47–61, 1975.CrossRefGoogle Scholar
  34. 34.
    M. Ogino, F. Ohuchi, and L. L. Hench, Compositional dependence of the formation of calcium phosphate film on Bioglass,J. Biomed. Mater. Res. 14, 55–64, 1980.CrossRefGoogle Scholar
  35. 35.
    B. A. Blencke, H. Bromer, and K. K. Deutscher, Compatibility and long-term stability of glass-ceramic implants,J. Biomed. Mater. Res. 12, 307–318, 1978.CrossRefGoogle Scholar
  36. 36.
    G. Muller, Glass ceramics as composite fillers,J. Dent. Res. 53, 1342–1345, 1974.CrossRefGoogle Scholar
  37. 37.
    O.M. Wyatte and D. Dew-Hughes,Metals, Ceramics, and Polymers, p. 267, Cambridge University Press, London, 1974.Google Scholar
  38. 38.
    C. A. Beckham, T. K. Greenlee, Jr., and A. R. Crebo, Bone formation at a ceramic implant interface,Calcif. Tissue Res.8, 165–171, 1971.CrossRefGoogle Scholar
  39. 39.
    W. Hennig, B. A. Blencke, H. Bromer, K. K. Deutscher, A. Gross, and W. Ege, Investigation with bioactivated polymethacrylates,J. Biomed. Mater. Res.13, 89–99, 1979.CrossRefGoogle Scholar
  40. 40.
    P. Griss, D. C. Greenspan, G. Heimke, B. Krenpien, R. Buchinger, L. L. Hench, and G. Jentchura, Evaluation of a Bioglass-coated A12O3total hip prosthesis in sheep,J. Biomed. Mater. Res. Symp.7, 511–518,1976.CrossRefGoogle Scholar
  41. 41.
    S. F. Hulbert and F. A. Young (ed.),Use of Ceramics in Surgical Implants, Gordon & Breach, New York, 1978.Google Scholar
  42. 42.
    T. L. Bridges, A Basic Investigation into the Potential Use of Titanium Dioxide as a Component of the Cardiovascular System, M. S. thesis, Clemson University,1970.Google Scholar
  43. 43.
    J.J. Klawitter, A Basic Investigation of Bone Growth into a Porous Ceramic Material, Ph.D. thesis, Clemson University,1970.Google Scholar
  44. 44.
    J. J.Klawitter and S. F. Hulbert, Application of porous ceramics for the attachment of load bearing internal orthopedic applications, J. Biomed. Mater. Res. Symp.2, 161–229, 1972.Google Scholar
  45. 45.
    G. S.Schnittgrund, G. H. Kenner, and S. D. Brown,In vivoandin vitrochanges in strength of orthopedic calcium aluminate,J. Biomed. Mater. Res. Symp.4, 435–452, 1973.CrossRefGoogle Scholar
  46. 46.
    T. D. Driskell, C. R. Hassler, and L. McCoy, Significance of resorbable bioceramics in the repair of bone defects,Annv. Conf. Eng. Med. Biol.15, 199, 1973.Google Scholar
  47. 47.
    H. U. Cameron, I. Macnab, and R. M. Pilliar, Evaluation ofabiodegradable ceramic,J. Biomed. Mater. Res.11, 179–186, 1977.CrossRefGoogle Scholar
  48. 48.
    G. A. Graves and R. L. Hentrich, Resorbable ceramic implants,J. Biomed. Muter. Res. Symp.2, 91–115, 1972.Google Scholar
  49. 49.
    J. B. Park, A. F. von Recum, G. H. Kenner, B. J. Kelly, W. W. Coffeen, and M. F. Grether, Piezoelectric ceramics: A feasibility study,J. Biomed. Muter. Res.14, 269–277, 1980.CrossRefGoogle Scholar
  50. 50.
    J.B. Park, B. J.Kelly, A. F. von Recum, G. H. Kenner, W. W. Coffeen, and M. F. Grether, Piezoelectric ceramic implants:In vivoresults,J. Biomed. Muter. Res.15, 103–110, 1981.CrossRefGoogle Scholar
  51. 51.
    J. C.Bokros, Deposition structure and properties of pyrolytic carbon, in:Chemistry and Physics of Carbon, P. L. Walker (ed.), Volume 5 pp., 70–81,Dekker, New York,1969.Google Scholar
  52. 52.
    J. C. Bokros, L. D. LaGrange, and G J. Schoen, Control of structure of carbon for use in bioengineering, in:Chemistry and Physics of Carbon, P.L. Walker (ed.), Volume9, pp. 103–171, Dekker, New York, 1972.Google Scholar
  53. 53.
    E. I. Shobert, II,Carbon and Graphite, Academic Press, New York, 1964.Google Scholar
  54. 54.
    H. P. Boehm, Funktionelle Gruppen an Festkorper-Oberflachen,Angew. Chem.78, 617–652, 1966.CrossRefGoogle Scholar
  55. 55.
    J. L. Kaae, Structure and mechanical properties of isotropic pyrolytic carbon deposited below 1600°C,J. Nucl. Mater.38, 42–50, 1971.CrossRefGoogle Scholar
  56. 56.
    H. S. Shim and A. D. Haubold, The fatigue behavior of vapor deposited carbon films,Biomater. Med. Devices Artif. Organs 8, 333–344, 1980.Google Scholar
  57. 57.
    P. G. Rose, F. Gerstenberger, U. Gruber, W. Loos, D. Wolter, and R. Neugebauer, New aspects of the design and application of carbon fibre reinforced carbon for prostheticdevices,Transactions, First World Biomaterials Congress, p. 1.6, Baden, Austria, April 8–12, 1980.Google Scholar
  58. 58.
    H. Nruckman, H. J. Mauer, K. J. Huttinger, H. Rettig, and U. Weber, New carbon materials for joint prostheses,Transactions, First World Biomaterials Congress, p. 1.7, Baden, Austria, April 8–12, 1980.Google Scholar
  59. 59.
    D. Adams and D. F. Williams, Carbon fiber-reinforced carbon as a potential implant material,J. Biomed. Mater. Res.12, 35–42, 1978.CrossRefGoogle Scholar
  60. 60.
    J. C. Bokros, R. J. Atkins, H. S. Shim, A. D. Haubold, and N. K. Agarwal, Carbon in prosthetic devices, in:Petroleum Derived Carbons,M.L. Deviney and T. M. O’Grady (ed.), pp. 237–265, American Chemical Society, Washington, D.C., 1976.CrossRefGoogle Scholar
  61. 61.
    J. L. Nilles and M. Lapitsky, Biomechanical investigations of bone-porous carbon and porous metal interfaces,J. Biomed. Mater. Res. Symp.4, 63–84, 1973.CrossRefGoogle Scholar
  62. 62.
    C. L. Stanitski and V. Mooney, Osseous attachment to vitreous carbons,J. Biomed. Mater. Res. Symp.4, 97–108, 1973.CrossRefGoogle Scholar
  63. 63.
    V. Mooney, P. K. Predecki, J. Renning, and J. Gray, Skeletal extension of limb prosthetic attachments-Problems in tissue reaction,J. Biomed. Mater. Res. Symp.2, 143–159, 1971.CrossRefGoogle Scholar
  64. 64.
    J. Benson, Elemental carbon as a biomaterial,J. Biomed. Mater. Res. Symp.2, 41–47, 1971.CrossRefGoogle Scholar
  65. 65.
    A. D. Haubold, H. S. Shim, and J. C. Bokros, Carbon cardiovascular devices, in:Assisted Circulation,F. Unger (ed.), pp. 520–532, Academic Press, New York, 1979.Google Scholar
  66. 66.
    F. C. Cowland and J. C. Lewis, Vitreous carbon-A new form of carbon,J. Mater. Sci.2, 507–512, 1967.CrossRefGoogle Scholar
  67. 67.
    R. M. Gill,Carbon Fibres in Composite Materials, Butterworths, London, 1972.Google Scholar

Bibliography

  1. J. C. Bokros; R. J. Atkins, H. S. Shim, A. D. Haubold, and N. K. Agarwal, Carbon in prosthetic devices, in: PetroleumDerived Carbons,M.L. Deviney and T. M. O’Grady (ed.), American Chemical Society, Washington, D.C., 1976.Google Scholar
  2. J. J. Gilman, The nature of ceramics, in: Materials, D. Flanagen et al. (ed.), Freeman, San Francisco, 1967.Google Scholar
  3. G. W. Hastings and D. F. Williams (ed.),Mechanical Properties of Biomaterials, Part 3, pp. 207–274, Wiley, New York, 1980.Google Scholar
  4. S. F. Hulbert and F. A. Young (ed.),Use of Ceramics in Surgical Implants, Gordon & Breach, New York 1978.Google Scholar
  5. S. F. Hulbert, F. A. Young, and D. D. Moyle (ed.),J. Biomed. Mater. Res. Symp.2, 1972.Google Scholar
  6. W. D. Kingery, H. Bowen, and D. R. Uhlmann,Introduction to Ceramics, 2nd ed., Wiley, New York, 1976.Google Scholar
  7. F. Norton,Elements of Ceramics, 2nded., Addison-Wesley, Reading, Mass., 1974.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joon Bu Park
    • 1
  1. 1.College of EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations