Advertisement

Structure-Property Relationships of Biological Materials

  • Joon Bu Park
Chapter

Abstract

The major difference between biological materials and biomaterials (implants) isviability. There are other important differences that distinguish living materials from artificial replacements. First, most biological materials are continuously bathed with body fluids, most of which are water as given in Table 6-1. Exceptions are the specialized surface layers of skin, hair, nails, hooves, and the enamel of teeth. Second, most biological materials can be considered as composites.

Keywords

Hyaluronic Acid Collagen Fiber Chondroitin Sulfate Collagen Fibril Strain Energy Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Black,Biological Performance of Materials, Dekker, New York, 1981.Google Scholar
  2. 2.
    M. Chvapil,Physiology of Connective Tissue, Chapter 2, Butterworths, London, 1967.Google Scholar
  3. 3.
    J. T. Triffit, The organic matrix of bone tissue, in:Fundamental and Clinical Bone Physiology, M. R. Urist (ed.), Chapter 3, Lippincott, Philadelphia, 1980.Google Scholar
  4. 4.
    Y. C. Fung,Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, Berlin, 1981.Google Scholar
  5. 5.
    B. G. King and M. J. Showers,Human Anatomy and Physiology, Saunders, Philadelphia, 1963.Google Scholar
  6. 6.
    H. J. Hohling, B. A. Ashton, and H. D. Koster, Quantitative electron microscope investigation of mineral nucleation in collagen,Cell Tissue Res.148, 11–26, 1974.CrossRefGoogle Scholar
  7. 7.
    K. Pierkarski, Structure, properties and rheology of bone, in:Orthopaedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), Chapter 7, Academic Press, New York, 1978.Google Scholar
  8. 8.
    H. Yamada,Strength of Biological Materials, Williams & Wilkins, Baltimore, 1970.Google Scholar
  9. 9.
    F. G. Evans and M. Lebow, The strength of human compact bone as revealed by engineering technics,Am. J. Surg.83, 326 - 331, 1952.CrossRefGoogle Scholar
  10. 10.
    J. H. McElhaney, Dynamic response of bone and muscle tissue,J. Appl. Physiol.21, 1231–1236, 1966.Google Scholar
  11. 11.
    J. D. Currey, What is bone for?—Property-function relationships in bone, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 13–26, ASME, New York, 1981.Google Scholar
  12. 12.
    A. H. Burstein, J. M. Zika, K. G. Heiple, and L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone,J. Bone Jt. Surg.57A, 956–961, 1975.Google Scholar
  13. 13.
    S. L.-Y. Woo, W. H. Akeson, R. D. Coutts, L. Rutherford, D. Doty, G. F. Jemmott, and D. Amiel, A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness,J. Bone Jt. Surg.58A, 190–195, 1976.Google Scholar
  14. 14.
    J. Wolff,Das Gesetz der Transformation der Krochen, Hirchwild, Berlin, 1892.Google Scholar
  15. 15.
    W. Starkebaum, S. R. Pollack, and E. Korostoff, Microelectric studies of stress-generated potentials in four-point bending of bone,J. Biomed. Mater. Res.3, 729–751, 1979.CrossRefGoogle Scholar
  16. 16.
    C. T. Brighton, Z. B. Friedenberg, and J. Black, Evaluation of the use of constant direct current in the treatment of nonunion, in:Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, and S. R. Pollack (ed.), pp. 519–545, Grune & Stratton, New York, 1979.Google Scholar
  17. 17.
    C. Eriksson, Streaming potentials and other water-dependent effects in mineralized tissue,Ann. N.Y. Acad. Sci.238, 321–338, 1974.CrossRefGoogle Scholar
  18. 18.
    A. Y. Ketenjian and C. Arsenis, Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage,Clin. Orthop. Relat. Res.107, 266–273, 1975.CrossRefGoogle Scholar
  19. 19.
    M. R. Urist (ed.),Fundamental and Clinical Bone Physiology, Lippincott, Philadelphia, 1980.Google Scholar
  20. 20.
    S. C. Cowin, Continuum models of the adaptation of bone stress, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 193–210, ASME, New York, 1981.Google Scholar
  21. 21.
    J. Gross, Collagen,Sci. Am.204, 121–130, 1961.CrossRefGoogle Scholar
  22. 22.
    W. Bloom and D. W. Fawcett,A Textbook of Histology, 9th ed., Saunders, Philadelphia, 1968.Google Scholar
  23. 23.
    A. J. Bailey, C. M. Peach, and L. J. Fawler, Biosynthesis of intermolecular cross-links in collagen, in:The Chemistry and Molecular Biology on the Intracellular Matrix, Volume 1, E. A. Balazs (ed.), pp. 385–404, Academic Press, New York, 1970.Google Scholar
  24. 24.
    S. A. Wainwright, W. D. Biggs, J. D. Currey, and J. M. Gosline,Mechanical Design in Organisms, Arnold, London, 1976.Google Scholar
  25. 25.
    P. Mason and B. J. Rigby, Thermal transitions in collagen,Biochim. Biophys. Acta 66, 448–450, 1963.CrossRefGoogle Scholar
  26. 26.
    B. J. Rigby, N. Hiraci, J. D. Spikes, and H. Eyring, The mechanical properties of rat tail tendon,J. Gen. Physiol.43, 265–283, 1959.CrossRefGoogle Scholar
  27. 27.
    G. W. Becker, Stress relaxation of polyethylene,Kolloid Z.175, 99–110, 1961.CrossRefGoogle Scholar
  28. 28.
    C. H. Daly, The Biomechanical Characteristics of Human Skin, Ph.D. thesis, University of Strathclyde, Scotland, 1966.Google Scholar
  29. 29.
    G. L. Wilkes, I. A. Brown, and R. H. Wildnauer, The biochemical properties of skin,CRC Crit. Rev. Bioeng.1, 453–495, 1973.Google Scholar
  30. 30.
    P. S. Walker, J. Sikorski, D. Downson, M. Longfield, and V. Wright, Lubrication mechanism in human joints, in:Lubrication and Wear in Joints, V. Wright (ed.), pp. 49–61, Lippincott, Philadelphia, 1969.Google Scholar
  31. 31.
    J. McAll, Load deformation response of the microstructure of articular cartilage, in:Lubrication and Wear in Joints, V. Wright (ed.), pp. 39–48, Lippincott, Philadelphia, 1969.Google Scholar
  32. 32.
    A. S. Hoffman, A critical evaluation of the application of rubber elasticity principles to the study of structural proteins such as elastin, in:Biomaterials, A. L. Bement, Jr. (ed.), pp. 285–312, University of Washington Press, Seattle, 1971.Google Scholar
  33. 33.
    C. A. J. Hoeve and P. J. Flory, Elastic properties of elastin,J. Am. Chem. Soc.80, 6523–6526, 1958.CrossRefGoogle Scholar
  34. 34.
    D. Volpin and A. Ciferri, Thermoelasticity of elastin,Nature (London) 225, 382, 1970.CrossRefGoogle Scholar
  35. 35.
    T. Weis-Fogh and S. O. Andersen, New molecular model for long-range elasticity of elastin,Nature (London) 227, 718–721, 1970.CrossRefGoogle Scholar
  36. 36.
    R. D. Harkness, Mechanical properties of collageneous tissues, in:Treatise on Collagen, B. S. Gould (ed.), Volume 2, Part A, Chapter 6, Academic Press, New York, 1968.Google Scholar
  37. 37.
    D. H. Bergel, The static elastic properties of the arterial wall,J. Physiol. (London) 156, 445–475, 1961.Google Scholar
  38. 38.
    A. C. Burton,Physiology and Biophysics of Circulation, Chapter 7, Year Book Medical Publishers, Chicago, 1965.Google Scholar
  39. 39.
    Y. C. Fung, N. Perrone, and M. Anliker (ed.)Biomechanics: Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, N.J., 1972.Google Scholar
  40. 40.
    D. R. Veronda and R. A. Westmann, Mechanical characterization of skin—Finite deformities,J. Biomech.3, 111–124, 1970.CrossRefGoogle Scholar
  41. 41.
    J. D. C. Crisp, Properties of tendon and skin, in:Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker (ed.), pp. 141–179, Prentice-Hall, Englewood Cliffs, N.J., 1972.Google Scholar
  42. 42.
    T. Azuma and M. Hasegawa, Distensibility of the vein: From the architectural view point,Biorheology 10, 469–479, 1973.Google Scholar
  43. 43.
    A. S. Hoffman, L. A. Grande, P. Gibson, J. B. Park, C. H. Daly, and R. Ross, Preliminary studies on mechanochemical-structure relationships in connective tissues using enzymolysis techniques, in:Perspectives of Biomedical Engineering, R. M. Kenedi (ed.), pp. 173–176, University Park Press, Baltimore, 1972.Google Scholar
  44. 44.
    J. B. Park,Biomaterials: An Introduction, Plenum Press, New York, 1979.Google Scholar

Bibliography

  1. R. Barker,Organic Chemistry of Biological Compounds, Chapters 4 and 5, Prentice-Hall, Englewood Cliffs, N.J., 1971.Google Scholar
  2. J. Black,Biological Performance of Materials, Dekker, New York, 1981.Google Scholar
  3. S. C. Cowin (ed.),Mechanical Properties of Bone, ASME, New York, 1981.Google Scholar
  4. H. R. Eiden (ed.),Biophysical Properties of the Skin, Wiley, New York, 1971.Google Scholar
  5. H. Fleisch, H. J. J. Blackwood, and M. Owen (ed.),Calcified Tissue, Springer-Verlag, Berlin, 1966.Google Scholar
  6. K. H. Gustavson,The Chemistry of Reactivity of Collagen, Academic Press, New York, 1956.Google Scholar
  7. D. A. Hall,The Chemistry of Connective Tissue, Thomas, Springfield, III., 1961.Google Scholar
  8. R. M. Kenedi (ed.),Perspectives in Biomedical Engineering, University Park Press, Baltimore, 1973.Google Scholar
  9. H. Kraus, On the mechanical properties and behavior of human compact bone,Adv. Biomed. Eng. Med. Phys.2, 169–204, 1968.Google Scholar
  10. J. B. Park, C. H. Daly, and A. S. Hoffman, The contribution of collagen to the mechanical response of canine artery at low strains, in:Frontiers of Matrix Biology?, Volume 3, A. M. Robert and L. Robert (ed.), pp. 218–233, Karger, Basel, 1976.Google Scholar
  11. G. N. Ramachandran (ed.),Treatise on Collagen: Volume 2A, Chapter 6, “Mechanical Properties of Collagenous Tissues,” by R. D. Harkness; Volume 2B, Chapter 3, “Organization and Structure of Bone,” by M. J. Glimcher and S. M. Krane; Volume 1, Chapter 1, “Composition of Collagen and Allied Proteins,” by J. E. Eastoe, Academic Press, New York, 1967, 1968.Google Scholar
  12. J. W. Remington (ed.),Tissue Elasticity, American Physiological Society, Washington, D.C., 1957.Google Scholar
  13. A. Viidik, Functional properties of collagenous tissues,Int. Rev. Connect. Tissue Res.6, 127–215, 1973.Google Scholar
  14. I. Zipkin (ed.),Biological Mineralization, Wiley, New York, 1973.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joon Bu Park
    • 1
  1. 1.College of EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations