Advertisement

Hard Tissue Replacement Implants

  • Joon Bu Park
Chapter

Abstract

When we try to replace a joint or help heal a fractured bone, it is logical that bone repairs should be made according to the best repair course that the tissues follow. Therefore, if they are healed faster when a compressive force or strain is exerted, then we should provide compression through an appropriate implant design.(1) Likewise, if compression is detrimental to healing of the wound, the opposite approach should be taken. Unfortunately, the effects of compressive or tensile forces on the repair of long bones are not fully understood. Worse yet, experimental results provide a completely opposite conclusion.

Keywords

Femoral Head Bone Cement Joint Replacement Total Knee Replacement Intramedullary Nail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Olenoid and G. Danckwardt-Lilliestrom, Fracture healing in compression osteosynthesis: An experimental study in dogs with an avascular, diaphyseal, intermediate fragment,Acta Orthop. Scand. Suppl137, 1–44, 1971.Google Scholar
  2. 2.
    J. Black, S. P. Richardson, R. U. Mattson, and S. R. Pollack, Haversian osteons: Longitudinal variation of internal structure,J. Biomed. Mater. Res. 14, 41–53, 1980.CrossRefGoogle Scholar
  3. 3.
    K. Pierkarski, A. M. Wiley, and J. E. Bartels, The effect of delayed internal fixation on fracture healing: An experimental study,Acta Orthop. Scand. 40, 543–551, 1970.Google Scholar
  4. 4.
    Richards Manufacturing Co.,Bone Screw Technical Information, Technical Publication 4167, Memphis, Tenn., 1980.Google Scholar
  5. 5.
    J. Schatzker, R. Sanderson, and J. P. Murnaghan, The holding power of orthopedic screwsin vivo, Clin. Orthop. Relat. Res. 108, 115–126, 1975.CrossRefGoogle Scholar
  6. 6.
    E. Koranyi, C. E. Bowman, C. D. Knecht, and M. Janssen, Holding power of orthopedic screws in bone,Clin. Orthop. Relat. Res. 72, 283–286, 1970.Google Scholar
  7. 7.
    J. Schatzker, J. G. Home, and G. Summer-Smith, The effect of movement on the holding power of screw in bone,Clin. Orthop. Relat. Res. 111, 257–262, 1975.CrossRefGoogle Scholar
  8. 8.
    J. Schatzker, J. G. Home, and G. Summer-Smith, The reaction of cortical bone to compression by screw threads,Clin. Orthop. Relat. Res. 111, 263–265, 1975.CrossRefGoogle Scholar
  9. 9.
    H. K. Uhthoff, Mechanical factors influencing the holding power of screws in compact bone,J. Bone Jt. Surg. 55B, 633–639, 1973.Google Scholar
  10. 10.
    J. A. Albright, T. R. Johnson, and S. Saha, Principles of internal fixation, in:Orthopedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), pp. 123–229, Academic Press, New York, 1978.Google Scholar
  11. 11.
    M. Laurence, M. A. R. Freeman, and S. A. V. Swanson, Engineering considerations in the internal fixation of fractures of the tibial shaft,J. Bone Jt. Surg. 51B, 754–768, 1969.Google Scholar
  12. 12.
    M. Allgower, P. Matter, S. M. Perren, and T. Ruedi,The Dynamic Compression Plate, DCP, p. 18, Springer-Verlag, Berlin, 1973.Google Scholar
  13. 13.
    A. A. White, Fracture treatment: The still unsolved problem,Clin. Orthop. Relat. Res. 106, 279–284, 1975.CrossRefGoogle Scholar
  14. 14.
    R. V. Lindholm, T. S. Lindholm, S. Toikkanen, and R. Leino, Effect of forced interfrag- mental movements on the healing of tibial fractures in rats,Acta Orthop. Scand. 40, 721–728, 1970.Google Scholar
  15. 15.
    H. K. Uhthoff and F. L. Dubuc, Bone structure changes in the dog under rigid internal fixation,Clin. Orthop. Relat. Res. 81, 165–170, 1971.CrossRefGoogle Scholar
  16. 16.
    S. L. Y. Woo, W. H. Akeson, R. D. Coutts, L. Rutherford, D. Doty, G. F. Gemmott, and D. Amiel, A comparison of cortical bone atrophy secondary to fixation with plates and large differences in bending stiffness,J. Bone Jt. Surg. 58A, 190–195, 1976.Google Scholar
  17. 17.
    S. L. Y. Woo, The relationships of changes in stress levels on long bone remodeling, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 107–129, American Society of Mechanical Engineers, New York, 1981.Google Scholar
  18. 18.
    Z. F. G. Jaworski, M. Liskova-Kiar, and H. K. Uhthoff, Regional disuse osteoporosis and factors influencing its reversal, in:Current Concepts of Internal Fixation of Fractures, H. K. Uhthoff (ed.), pp. 17–26, Springer-Verlag, Berlin, 1980.Google Scholar
  19. 19.
    A. Brown and J. C. D’Arcy, Internal fixation for supra-condylar fractures of the femur in the elderly patients,J. Bone Jt. Surg. 53B, 420–424, 1971.Google Scholar
  20. 20.
    H. M. Frost,Orthopedic Biomechanics, p. 444, Thomas, Springfield, III., 1973.Google Scholar
  21. 21.
    G. Kuntscher,Practice of Intramedullary? Nailing, Thomas, Springfield, III., 1967.Google Scholar
  22. 22.
    F. W. Rhinelander, Effects of medullary nailing on the normal blood supply of the diaphysial cortex, inA. A. O. S. Instructional Course Lectures, Volume 12, p. 161, Mosby, St. Louis, 1973.Google Scholar
  23. 23.
    F. W. Rhinelander, Circulation in bone, in:The Biochemistry’ and Physiology of Bone, G. H. Bourne (ed.), 2nd ed., Volume 2, pp. 1–77, Academic Press, New York, 1972.Google Scholar
  24. 24.
    R. Soto-Hall and N. P. McCloy, Cause and treatment of angulation of femoral intramedullary nails,Clin. Orthop. Relat. Res.2, 66–74, 1953.Google Scholar
  25. 25.
    W. C. Allen, G. Piotrowski, A. H. Burstein, and V. H. Frankel, Biomechanical principles of intramedullary fixation,Clin. Orthop. Relat. Res.60, 13–20, 1968.CrossRefGoogle Scholar
  26. 26.
    D. F. Williams and R. Roaf,Implants in SurgerySaunders, Philadelphia, 1973.Google Scholar
  27. 27.
    W. Kuehnegger, The systematic development of a cervical-thoracic-lumbo-sacral orthesis and its clinical applications, in:Orthopedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), pp. 231–286, Academic Press, New York, 1978.Google Scholar
  28. 28.
    P. R. Harrington, The treatment of scoliosis, correction and internal spine instrumentation,J. Bone Jt. Surg.44A, 591–610, 1962.Google Scholar
  29. 29.
    R. Roaf, A new plate for correcting scoliosis,Proc. R. Soc. Med.62, 272–273, 1969.Google Scholar
  30. 30.
    L. S. Lavine, I. Lutrin, and M. H. Shamos, Treatment of congenital pseudoarthrosis of the tibia with direct current,Clin. Orthop. Relat. Res.124, 69–74, 1977.Google Scholar
  31. 31.
    J. A. Spadaro, Electrically stimulated bone growth in animals and man,Clin. Orthop. Relat. Res.122, 325–332, 1977.Google Scholar
  32. 32.
    C. A. L. Bassett, R. J. Pawluk, and A. A. Pilla, Acceleration of fracture repair by electromagnetic fields—a surgically non-invasive method,Ann. N.Y. Acad. Sci.238, 242–263, 1974.CrossRefGoogle Scholar
  33. 33.
    C. T. Brighton, Z. B. Friedenberg, E. I. Mitchell, and R. E. Booth, Treatment of nonunion with constant direct current,Clin. Orthop. Relat. Res.124, 106–123, 1977.Google Scholar
  34. 34.
    J. Black and C. T. Brighton, Mechanisms of stimulation of osteogenesis by D. C. currect, in:Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, and S. R. Pollack (ed.), pp. 215–224, Grune & Stratton, New York, 1979.Google Scholar
  35. 35.
    C. R. Hassler, E. F. Rybicki, R. B. Diegle, and L. C. Clark, Studies of enhanced bone healing via electrical stimuli,Clin. Orthop. Relat. Res.124, 9–19, 1977.Google Scholar
  36. 36.
    J. A. Spadaro, S. E. Chapin, and R. O. Becker, Cathode composition and electrical osteogenesis, 25th Annu. Orthop. Res. Soc. Meet., p. 85, San Francisco, 1979.Google Scholar
  37. 37.
    C. A. L. Bassett, A. A. Pilla, and R. J. Pawluk, A non-operative salvage of surgically resistant pseudoarthroses and nonunions by pulsing electromagnetic fields,Clin. Orthop. Relat. Res.124, 128–143, 1977.Google Scholar
  38. 38.
    B. Kummer, Biomechanics of the hip and knee joint, in:Advances in Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 24–52, Springer-Verlag, Berlin, 1976.Google Scholar
  39. 39.
    J. P. Paul, Loading on normal hip and knee joints and joint replacements, in:Advances in Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 53–70, Springer-Verlag, Berlin, 1976.Google Scholar
  40. 40.
    K. M. Sivash,Alloplasty of the Hip Joint: A Laboratory and Clinical Study, Medical Press, Moscow, 1967.Google Scholar
  41. 41.
    S. A. V. Swanson and M. A. R. Freeman (ed.),The Scientific Basis of Joint Replacement, Wiley, New York, 1977.Google Scholar
  42. 42.
    I. D. Oh, J. D’Errico, and W. H. Harris, Studies of strain in the proximal femur in simulated one-legged stance: The role of collar-calcar contact of THR in protection of the femoral stem, 24th Annu. Orthop. Res. Soc. Meet., p. 276, Dallas, 1978.Google Scholar
  43. 43.
    J. N. Wilson and J. T. Scales, Loosening of the total hip replacements with cement fixation,Clin. Orthop. Relat. Res.72, 145–160, 1970.Google Scholar
  44. 44.
    J. H. Dumbleton,Tribology of Natural and Artificial Joints, Elsevier, Amsterdam, 1981.Google Scholar
  45. 45.
    H. C. Amstutz, K. L. Markolf, G. M. McNeices, and T. A. W. Gruen, Loosening of total hip components: Cause and prevention, in:The Hip, pp. 102–116, Mosby, St. Louis, 1976.Google Scholar
  46. 46.
    J. Miller, D. L. Burke, J. W. Stachiewics, A. N. Ahmed, and L. C. Kelebay, Pathophysiology of loosening of femoral components in total hip arthroplasty, in:The Hip, pp. 64–86, Mosby, St. Louis, 1978.Google Scholar
  47. 47.
    P. S. Walker, Engineering principles of knee prostheses, in:Disorders of the Knee, A. J. Helfet (ed.), p. 262, Lippincott, Philadelphia, 1974.Google Scholar
  48. 48.
    A. S. Greenwald and M. B. Matejczyk, Knee joint mechanics and implant evaluation, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 11–30, Appleton-Century-Crofts, New York, 1980.Google Scholar
  49. 49.
    A. A. Savastano, Indications for knee joint replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 31–39, Appleton-Century-Crofts, New York, 1980.Google Scholar
  50. 50.
    D. C. Mears,Materials and Orthopedic Surgery, Williams & Wilkins, Baltimore, 1979.Google Scholar
  51. 51.
    L. Marmor, The Marmor type of knee replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 107–123, Appleton-Century-Crofts, New York, 1980.Google Scholar
  52. 52.
    J. Charnley,The Charnley Load-Angle Inlay Arthroplasty of the Knee, Leeds, Thackey, 1975.Google Scholar
  53. 53.
    T. R. Waugh and P. M. Evanski, University of California, Irvine (UCI) knee replacement —Design, operative technique and results, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 217–232, Appleton-Century-Crofts, New York, 1980.Google Scholar
  54. 54.
    J. N. Insall, The total condylar prosthesis, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 83–105, Appleton-Century-Crofts, New York, 1980.Google Scholar
  55. 55.
    M, A. R. Freeman, The ICLH arthroplasty of the knee joint, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 59–82, Appleton-Century-Crofts, New York, 1980.Google Scholar
  56. 56.
    G. Deane,The Deane Knee, p. 1, Institution of Mechanical Engineers, London, 1975.Google Scholar
  57. 57.
    D. A. Sonstegard, H. Kaufer, and L. S. Matthews, The spherocentric knee: Biomechanical testing and clinical trial,J. Bone Jt. Surg.59A, 602–616, 1977.Google Scholar
  58. 58.
    C. G. Attenborough, The Attenborough total knee replacement,J. Bone Jt. Surg.60B, 302–326, 1978.Google Scholar
  59. 59.
    B. Walldius, Arthroplasty of the knee—27 years experience, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 195–216, Appleton-Century-Crofts, New York, 1980.Google Scholar
  60. 60.
    L. G. Shiers, Arthroplasty of the knee: Interim report of a new method,J. Bone Jt. Surg.42B, 31–39, 1960.Google Scholar
  61. 61.
    E. Englebrecht, A. Siegel, J. Rottger, and H. W. Buchholz, Statistics of total knee replacement: Partial and total knee replacement, design St. Georg. A review of a 4 year observation,Clin. Orthop. Relat. Res.120, 54–64, 1976.Google Scholar
  62. 62.
    A. Deburge, Guepar, “Guepar hinge prosthesis: Complications and results with two years” follow-up,Clin. Orthop. Relat. Res.120, 47–53, 1976.Google Scholar
  63. 63.
    Stanmore Total Knee Replacement, Booklet No. 169, Orthopedic Equipment Co, Bourbon, Ind., 1978.Google Scholar
  64. 64.
    C. O. Bechtol, Bechtol patello-femoral joint replacement system, Richards Manufacturing Co, Memphis, Tenn.Google Scholar
  65. 65.
    E. A. Salvati and J. N. Insall, The management of sepsis in total knee replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 49–58, Appleton-Century-Crofts, New York, 1980.Google Scholar
  66. 66.
    The Porous Coated Anatomic (PCA) Total Knee System, Orthopaedic Division, Howmedica, Inc., Rutherford, N.J., 1981.Google Scholar
  67. 67.
    P. Ducheyne, M. Martens, P. DeMeester, E. Aernoudt, and J. C. Mulier, Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopaedic implants,J. Biomed. Mater. Res.11, 811–838, 1977.CrossRefGoogle Scholar
  68. 68.
    Richards Manufacturing Co,In vitrotesting of the RMC total knee, R&D Technical Monograph 3468, Memphis, Tenn, 1978.Google Scholar
  69. 69.
    H. J. Hicks, The mechanics of foot,J. Anat.87, 345–357, 1953.Google Scholar
  70. 70.
    D. G. Wright, S. M. Desai, and W. H. Henderson, Action of the subtalar and ankle-joint complex during the stance phase of walking,J. Bone Jt. Surg.46A, 361–382, 1964.Google Scholar
  71. 71.
    G. J. Sammarco, A. H. Burstein, and V. H. Frankel, Biomechanics of the ankle: A kinematic study,Orthop. Clin. N. Am.4, 75–96, 1973.Google Scholar
  72. 72.
    M. Pappas, F. F. Buechel, and A. F. DePalma, Cylindrical total ankle joint replacement: Surgical and biomechanical rationale,Clin. Orthop. Relat. Res.118, 82–92, 1976.Google Scholar
  73. 73.
    C. M. Goss (ed.),Gray’s Anatomy, p. 316, Lea & Febiger, Philadelphia, 1975.Google Scholar
  74. 74.
    C. S. Neer, Replacement arthroplasty for glenohumeral osteoarthritis,J. Bone Jt. Surg.56A, 1–13, 1974.Google Scholar
  75. 75.
    J. M. Fenlin, Jr., Total glenohumeral joint replacement,Orthop. Clin. N. Am.6, 565–583, 1975.Google Scholar
  76. 76.
    I. C. Clarke, T. A. W. Gruen, A. Sewhoy, D. Hirschowitz, S. Maki, and H. C. Amstutz, Problems in glenohumeral surface replacements—real or imagined?,Eng. Med.8, 161–175, 1979.CrossRefGoogle Scholar
  77. 77.
    B. F. Morrey and E. Y. S. Chao, Passive motion of the elbow joint,J. Bone Jt. Surg.58A, 501–508, 1976.Google Scholar
  78. 78.
    I. A. Kapandji,Physiology of the Joints, p. 81, Livingstone, Edinburgh, 1970.Google Scholar
  79. 79.
    Institution of Mechanical Engineers Report, Joint replacement in the upper limb,Eng. Med.6, 90–93, 1977.CrossRefGoogle Scholar
  80. 80.
    N. Gschwend, Design criteria, present indication, and implantation techniques for artificial knee joints, in:Advances in Artificial Hip and Knee Joint Technology?, M. Schaldach and D. Hohmann (ed.), pp. 90–114, Springer-Verlag, Berlin, 1976.Google Scholar
  81. 81.
    R. G. Volz, Total wrist arthroplasty: A new approach to wrist disability,Clin. Orthop. Relat. Res.128, 180–189, 1977.Google Scholar
  82. 82.
    Y. Youm, R. Y. McMurty, A. E. Flatt, and T. E. Gillespie, Kinematics of the wrist. I. An experimental study of radial ulnar deviation and flexion extension,J. Bone Jt. Surg.64A, 423–431, 1978.Google Scholar
  83. 83.
    H. C. Z. Meuli, Alloarthropstik des Handgelenks,Z. Orthop. Ihre Grenzgeb.113, 476–478, 1975.Google Scholar
  84. 84.
    A. B. Swanson,Flexible Implant Resection Arthroplasty in the Hand and Extremities, Mosby, St. Louis, 1973.Google Scholar
  85. 85.
    A. E. Flatt (ed.),The Care of Minor Hand Injuries, Mosby, St. Louis, 1972.Google Scholar
  86. 86.
    R. L. Linshend and E. Y. S. Chao, Biomechanical assessment of finger function in prosthetic joint design,Orthop. Clin. N. Am.4, 317–320, 1973.Google Scholar
  87. 87.
    R. I. Burton, Implant arthroplasty in the hand: An introduction,Orthop. Clin. N. Am.4, 313–316, 1973.MathSciNetGoogle Scholar
  88. 88.
    J. B. Park and K. Margraf, Interfacial shear stress strength of implant/intramedullary bone in geese, in:Biocompatible Polymers, Metals, and Composites, M. Szycher (ed.), Chapter 28, Technomic, Lancaster, Pa., 1982.Google Scholar
  89. 89.
    E. E. Frisch, Functional considerations in implant design, Proceedings of the First Southern Biomedical Engineering Conference, S. Saha (ed.), pp. 299–304, Pergamon Press, Elmsford, N.Y., 1982.Google Scholar
  90. 90.
    P. A. Schnitman and L. B. Schulman (ed.),Dental Implants: Benefits and Risk, NIH-Harvard Consensus Development Conference, NIH Publication 81-1531, 1980.Google Scholar
  91. 91.
    D. E. Grenoble and D. Voss, Materials and designs for implant dentistry,Biomater. Med. Devices Artif. Organs 4, 133–169, 1976.Google Scholar
  92. 92.
    J. E. Lemons, Biomaterials science protocols for clinical investigations on porous alumina ceramic and vitreous carbon implants,J. Biomed. Mater. Res. Symp.4, 9–16, 1975.CrossRefGoogle Scholar
  93. 93.
    E. D. McCoy, Risk of vitreous carbon implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 211–221, NIH Publication 81–1531, 1980.Google Scholar
  94. 94.
    K. K. Kapur, Benefit and risk of blade implants: A critique, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 305–314, NIH Publication 81–1531, 1980.Google Scholar
  95. 95.
    A. N. Cranin, P. A. Schnitman, M. F. Rabkin, and T. Dennison, Alumina and zirconium coated Vitallium oral endosteal implants in beagles,J. Biomed. Mater. Res. Symp. 9, 257–262, 1975.CrossRefGoogle Scholar
  96. 96.
    J. N. Kent, C. A. Homsy, B. D. Gross, and E. C. Hinds, Pilot studies of a porous implant in dentistry and oral surgery,J. Oral Surg.30, 608–615, 1972.Google Scholar
  97. 97.
    H. S. Shim, The strength of LTI carbon dental implants,J. Biomed. Mater. Res.11, 435–445, 1977.CrossRefGoogle Scholar
  98. 98.
    S. F. Hulbert, J. N. Kent, J. C. Bokros, H. S. Shim, and O. M. Reed, Design and evaluation of LTI-Si carbon endosteal implants,Oral Implant.6, 79–94, 1975.Google Scholar
  99. 99.
    T. D. Driskell and A. L. Heller, Clinical use of aluminum oxide endosseous implants,Oral Implant.7, 53–76, 1977.Google Scholar
  100. 100.
    W. Schulte, C. M. Busing, B. D’Hoedt, and G. Heinke, Endosseous implants of aluminum oxide ceramics: A 5 year study in humans, in:Implantology and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 157–167, Ishiyakn, Tokyo, 1980.Google Scholar
  101. 101.
    A. Sawa, A. Fujisawa, A. Yamagami, U. Tsunosue, K. Hoshino, H. Agariguchi, F. Ozawa, I. Kuroyama, S. Shimodaira, M. Chin, and T. Wada, Statistical study of the clinical cases using ceramic implants, in:Implantology and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 141–150, Ishiyakn, Tokyo, 1980.Google Scholar
  102. 102.
    A. M. Weinstein, S. D. Cook, J. J. Klawitter, L. A. Weinberg, and M. Zide, An evaluation of ion-textured aluminum oxide dental implants,J. Biomed. Mater. Res.15, 749–756, 1981.CrossRefGoogle Scholar
  103. 103.
    S. O. Young, J. B. Park, G. H. Kenner, R. R. Moore, B. R. Meyers, and B. W. Sauer, Dental implant fixation by electrically mediated process. I. Interfacial strength,Biomater. Med. Devices Artif. Organs 5, 111–126, 1978.Google Scholar
  104. 104.
    J. B. Park, S. O. Young, G. H. Kenner, A. F. von Recum, B. R. Meyers, and R. R. Moore, Dental implant fixation by electrically mediated process. II. Tissue ingrowth,Biomater. Med. Devices Artif. Organs 5, 291–301, 1978.Google Scholar
  105. 105.
    W. J. Whatley, J. B. Park, G. H. Kenner, and A. F. von Recum, The effects of load on electrically stimulated porous dental implants, in:Implantology’ and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 173–179, Ishiyakn, Tokyo, 1980.Google Scholar
  106. 106.
    L. Gettleman, D. Nathanson, R. L. Myerson, and M. Hodosh, Porous heat cured poly(methyl methacrylate) for dental implants,J. Biomed. Mater. Res. Symp. 6, 243–249, 1975.CrossRefGoogle Scholar
  107. 107.
    I. A. Small, Benefit and risk of mandibular staple bone plates, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 139–151, NIH Publication 81–1531, 1980.Google Scholar
  108. 108.
    N. I. Goldberg, Risk of subperiosteal implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 89–95, NIH Publication 81–1531, 1980.Google Scholar
  109. 109.
    R. L. Bodine and R. T. Yanase, Benefit of subperiosteal implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 75–85, NIH Publication 81–1531, 1980.Google Scholar

Bibliography

  1. M. Allgower, P. Matter, S. M. Perren, and T. Ruedi,The Dynamic Compression Plate, DCP, Springer-Verlag, Berlin, 1973.Google Scholar
  2. C. O. Bechtol, A. B. Ferguson, and P. G. Laing,Metals and Engineering in Bone and Joint Surgery, Ballière, Tindall & Cox, London, 1979.Google Scholar
  3. J. Black and J. H. Dumbleton (ed.),Clinical Biomechanics: A Case History Approach, Churchill Livingstone, Edinburgh, 1981.Google Scholar
  4. J. Charnley,Acrylic Cement in Orthopedic Surgery, Livingstone, Edinburgh, 1970.Google Scholar
  5. J. Charnley,Low Friction Arthroplasty of the Hip, Springer-Verlag, Berlin, 1979.Google Scholar
  6. A. N. Cranin (ed.),Oral Implantology, Thomas, Springfield, III., 1970.Google Scholar
  7. J. H. Dumbleton,Tribology of Natural and Artificial Joints, Elsevier, Amsterdam, 1981.Google Scholar
  8. J. H. Dumbleton and J. Black,An Introduction to Orthopedic Materials, Thomas, Springfield, III., 1975.Google Scholar
  9. N. S. Eftekhar,Principles of Total Hip Arthroplasty, Mosby, St. Louis, 1978.Google Scholar
  10. A. E. Flatt (ed.),The Care of Minor Hand Injuries, Mosby, St.Louis, 1972.Google Scholar
  11. V. H. Frankel and A. H. Burstein,Orthopedic Biomechanics, Lea & Febiger, Philadelphia, 1971.Google Scholar
  12. H. M. Frost,Orthopedic Biomechanics, Thomas, Springfield, III., 1973.Google Scholar
  13. D. N. Ghista and R. Roaf (ed.),Orthopedic Mechanics: Procedures and Devices, Academic Press, New York, 1978.Google Scholar
  14. N. Gschwend, Design criteria, present indication, and implantation techniques for artificial knee joints, in:Advances in Artificial Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 90–114, Springer-Verlag, Berlin, 1976.Google Scholar
  15. G. Kuntscher,The Practice of Intramedullary Nailing, Thomas, Springfield, III., 1947.Google Scholar
  16. D. C. Mears,Materials and Orthopedic SurgeryWilliams & Wilkins, Baltimore, 1979.Google Scholar
  17. J. B. Park,Biomaterials: An Introduction, Plenum Press, New York, 1979.Google Scholar
  18. H. K. Uhthoff (ed.),Current Concepts of Internal Fixation of Fractures, Springer-Verlag, Berlin, 1980.Google Scholar
  19. A. A. Savastano (ed.),Total Knee Replacement, Appleton-Century-Crofts, New York, 1980.Google Scholar
  20. M. Schaldach and D. Hohmann (ed.),Advances in Artificial Hip and Knee Joint Technology, Springer-Verlag, Berlin, 1976.Google Scholar
  21. P. A. Schnitman and L. B. Schulman (ed.),Dental Implants: Benefits and Risk, NIH-Harvard Consensus Development Conference, NIH Publication 81-1531,1980.Google Scholar
  22. S. A. V. Swanson and M. A. R. Freeman (ed.),The Scientific Basis of Joint Replacement, Wiley, New York, 1977.Google Scholar
  23. A. R. Taylor,Endosseous Dental Implants, Butterworths, London, 1970.Google Scholar
  24. C. S. Venable and W. C. Stuck,The Internal Fixation of Fractures, Thomas, Springfield, III., 1947.Google Scholar
  25. D. F. Williams, (ed.),Compatibility of Implant Materials, Sector, London, 1976.Google Scholar
  26. D. F. Williams and R. Roaf,Implants in Surgery, Saunders, Philadelphia, 1973.Google Scholar
  27. D. F. Williams (ed.),Fundamental Aspects of Biocompatibility, Volumes 1 and 2, CRC Press, Boca Raton, Fla., 1981.Google Scholar
  28. V. Wright (ed.),Lubrication and Wear in Joints, Lippincott, Philadelphia, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joon Bu Park
    • 1
  1. 1.College of EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations