Advertisement

Polymeric Implant Materials

  • Joon Bu Park
Chapter

Abstract

Polymeric materials have a wide variety of applications for implantation since they can be easily fabricated into many forms: fibers, textiles, films, and solids. Polymers bear a close resemblance to natural tissue components such as collagen which allows direct bonding with other substances, e.g., heparin coating on the surface of polymers for the prevention of blood clotting. Adhesive polymers can be used to close wounds or lute orthopedic implants in place.

Keywords

Electron Paramagnetic Resonance Natural Rubber Bone Cement Silicone Rubber Polyvinyl Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Wunderlich,Crystals of Linear Macromolecules, ACS Audio Course, American Chemical Society, Washington, D.C., 1973.Google Scholar
  2. 2.
    J. H. Harrison and R. H. Adler, Nylon as a vascular prosthesis in experimental animals with tensile strength studies,Surg. Gynecol. Obstet.103, 813–818, 1956.Google Scholar
  3. 3.
    G. H. Kenner, L. Hendricks, W. Barb, G. Gimenez, and J. B. Park, Bone embedding techniques with inhibited PMMA monomer,Stain Technol.57, 121 - 128, 1982.Google Scholar
  4. 4.
    O. Wichterle and D. Lim, Hydrophilic gels for biological use,Nature (London) 185, 117–118, 1960.CrossRefGoogle Scholar
  5. 5.
    W. M. Thomas, Acrylamide polymers, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 1, pp. 177–197, Interscience, New York, 1964.Google Scholar
  6. 6.
    M. F. Refojo, Contact lenses, in:Encyclopedia of Chemical Technology, 3rd ed., Volume 16, pp. 720–742, Wiley, New York, 1979.Google Scholar
  7. 7.
    A. S. Hoffman, A review of the use of radiation plus chemical and biochemical processing treatments to prepare novel biomaterials,Radiat. Phys. Chem.18, 323–342, 1981.Google Scholar
  8. 8.
    Surgical Simplex P Bone Cement Technical Monograph, Howmedica Inc., Rutherford, N.J., 1977.Google Scholar
  9. 9.
    J. B. Park, R. C. Turner, and P. E. Atkins, EPR studies of free radicals in PMMA bone cement: A feasibility study,Biomater. Med. Devices Artif. Organs 8, 23–33, 1979.Google Scholar
  10. 10.
    R. C. Turner, P. E. Atkins, M. A. Ackley, and J. B. Park, Molecular and macroscopic properties of PMMA bone cement: Free radical generation and temperature change versus mixing ratio,J. Biomed. Mater. Res.15, 425–432, 1981.CrossRefGoogle Scholar
  11. 11.
    S. S. Haas, G. M. Brauer, and G. Dickson, A characterization of PMMA bone cement,J. Bone Jt. Surg. 51 A, 380–391, 1975.Google Scholar
  12. 12.
    Modern Plastics Encyclopedia, Volume57, p. 533, McGraw-Hill, New York, 1980.Google Scholar
  13. 13.
    R. P. Kusy, Characterization of self-curing acrylic bone cements,J. Biomed. Mater. Res.12, 271–305, 1978.CrossRefGoogle Scholar
  14. 14.
    P. R. Meyer, Jr., E. P. Lautenschlager, and B. K. Moore, On the setting properties of acrylic bone cement,J. Bone Jt. Surg.55A, 149–156, 1973.Google Scholar
  15. 15.
    Y. Nose, J. Wright, M. Mathis, and W. J. Kolff, Natural rubber artificial heart,Dig. 7th Int. Conf. Med. Biol. Eng. p. 379, 1967.Google Scholar
  16. 16.
    K. Atsumi, Y. Sakurai, E. Atsumi, S. Narausawa, S. Kunisawa, M. Okikura, and S. Kimoto, Application of specially cross-linked natural rubber for artificial internal organs,Trans. Am. Soc. Artif. Intern. Organs 9, 324–331, 1965.Google Scholar
  17. 17.
    S. Braley, Acceptable plastic implants, in:Modern Trends in Biomechanics, D. C. Simpson (ed.), pp. 25–51, Butterworths, London, 1970.Google Scholar
  18. 18.
    Bulletin of the Dow Corning Center for Aid to Medical Research, Dow Corning Corp., Midland, Mich., 1970.Google Scholar
  19. 19.
    J. H. Dumbleton, Derlin as a material for joint prosthesis—A review, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 41–60, American Society for Testing and Materials, Philadelphia, 1979.CrossRefGoogle Scholar
  20. 20.
    M. Spector, M. J. Michon, W. H. Smarook, and G. T. Kwiatrowski, A high-modulus polymer for porous orthopedic implants,J. Biomed. Mater. Res.12, 665–677, 1978.CrossRefGoogle Scholar
  21. 21.
    B. Bloch and G. W. Hastings,Plastics Materials in Surgery, 2nd ed., Thomas, Springfield, III., 1972.Google Scholar
  22. 22.
    D. F. Williams, Some observations on the role of cellular enzymes in thein vivodegradation of polymers, in:Corrosion and Degradation of Implant Materials, ASTM STP 684, B. C. Syrett and A. Acharya (ed.), pp. 61–75, American Society for Testing and Materials, Philadelphia, 1979.CrossRefGoogle Scholar

Bibliography

  1. B. Bloch and G. W. Hastings,Plastic Materials in Surgery, Thomas, Springfield, III, 1972.Google Scholar
  2. S. D. Bruck,Blood Compatible Systhetic Polymers: An Introduction, Thomas, Springfield, III., 1974.Google Scholar
  3. S. D. Bruck,Properties of Biomaterials in the Physiological Environment, CRC Press, Boca Raton, Fla, 1980.Google Scholar
  4. Guidelines for Physiochemical Characterization of Biomaterials, Report of the National Heart, Lung, and Blood Institute Work Group, Devices and Technology Branch, NIH Publication 80-2186,1980.Google Scholar
  5. Guidelines for Blood — Material Interactions, Report of the National Heart, Lung, and Blood Institute Working Group, Devices and Technology Branch, NIH Publication 80-2185, 1980.Google Scholar
  6. E. P. Goldberg and A. Nakajima (ed.),Biomedical Polymers, Polymeric Materials and Pharmaceuticals for Biomedical Use, Academic Press, New York, 1980.Google Scholar
  7. H. Lee and K. Neville,Handbook of Biomedical Plastics, Pasadena Technology Press, Pasadena, Calif, 1971.Google Scholar
  8. S. N. Levine (ed.),Polymers and Tissue Adhesives, Ann. N.Y. Acad. Sci. 146,1968.Google Scholar
  9. R. L. Kronenthal and Z. Oser (ed.),Polymers in Medicine and SurgeryPlenum Press, New York, 1975.Google Scholar
  10. R. I. Leinninger, Polymers as surgical implants,CRC Crit. Rev. Bioeng.2, 333–360, 1972.Google Scholar
  11. M. F. Refojo, Contact lenses, in:Encyclopedia of Chemical Technology, 3rd ed. Volume 16, pp. 720–742, Wiley, New York, 1979.Google Scholar
  12. M. F. Refojo, The chemistry of soft hydrogel lens materials, in:Soft Contact Lenses, M. Ruben (ed.), Chapter 3, Wiley, New York, 1978.Google Scholar
  13. M. Szycher and W. J. Robinson (ed.),Synthetic Biomedical Polymers, Concepts and Applications, Technomic, Westport, Conn, 1980.Google Scholar
  14. W. M. Thomas, Acrylamide polymers, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 1, pp. 177–197, Interscience, New York, 1964.Google Scholar
  15. L. Vroman and F. Leonard (ed.),The Behavior of Blood and Its Components at Interfaces, Ann. N.Y. Acad. Sci. 238,1978.Google Scholar
  16. O. Wichterle, Hydrogels, in:Encyclopedia of Polymer Science and Technology, N. M. Bikales (ed.), Volume 15, pp. 273–291, Interscience, New York, 1971.Google Scholar
  17. O. Wichterle and D. Lim, Hydrophilic gels for biological use,Nature (London) 185, 117–118, 1960.CrossRefGoogle Scholar
  18. D. F. Williams, Biodegradation of surgical polymers,J. Mater. Sci.17, 1233–1246, 1982.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Joon Bu Park
    • 1
  1. 1.College of EngineeringUniversity of IowaIowa CityUSA

Personalised recommendations