Chloroplasts pp 147-198 | Cite as

The Chloroplast Genome and Its Expression

Part of the Cellular Organelles book series (CORG)


The studies of Schimper, Strasburger, and others in the 1880s demonstrated that chloroplasts in a sense have an existence of their own. Chloroplasts were found to proliferate by division of existing plastids and were passed on to daughter cells at the time of cell division. But more recent findings have indicated that the chloroplasts’ independence is quite limited. Plastids have their own DNA, which is quite distinct from nuclear DNA, and also have the ability to express the genetic information in their DNA. A question with much current interest, however, is the critical one of how much information chloroplast DNA actually contains. Although the total mass of DNA in a chloroplast is generally somewhat more than that in a bacterial cell, the genetic capacity of chloroplast DNA is much less than that of the bacterial chromosome. The reason for this paradox is that chloroplasts contain multiple copies of a relatively small molecule of DNA. As with mitochondria, the information in chloroplast DNA apparently is only that which is required, separate from the nucleus, to synthesize a few necessary functional proteins. However, even to accomplish the synthesis of these relatively few proteins, the chloroplast must contain its own ribosomes and complete machinery for protein synthesis. As work on the biosynthetic capabilities of the chloroplast proceeds, it is becoming quite clear that most of the plastid’s proteins and properties are determined by the nuclear genome and that most of its proteins are synthesized on cytoplasmic ribosomes.


Large Subunit Chloroplast Genome Spinach Chloroplast Inverted Repeat Region Cytoplasmic Ribosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allet, B., and Rochaix, J.-D. (1979) Structure analysis at the ends of the intervening DNA sequences in the chloroplast 23S ribosomal genes of C. reinhardii, Cell 18:55–60.PubMedCrossRefGoogle Scholar
  2. Bedbrook, J. R., Coen, D. M., Beaton, A. R., Bogorad, L., and Rich, A. (1979) Location of the single gene for the large subunit of ribulosebisphosphate carboxylase in the maize chloroplast chromosome, J. Biol. Chem. 254:905–910.PubMedGoogle Scholar
  3. Blair, G. E., and Ellis, R. J. (1973) Protein synthesis in chloroplasts, I. Light-driven synthesis of the large subunit of fraction I protein by isolated pea chloroplasts. Biochim. Biophys. Acta 319:223–234.PubMedGoogle Scholar
  4. Boffey, S. A., and Leech, R. M. (1982) Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves, Plant Physiol. 69:1387–1391.PubMedCrossRefGoogle Scholar
  5. Bogorad, L. (1981) Chloroplasts, J. Cell Biol. 91:256s–270s.PubMedCrossRefGoogle Scholar
  6. Bolen, P. L., Grant, D. M., Swinton, D., Boynton, J. E., and Gillham, N. W. (1982) Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in Chlamydomonas, Cell 28:335–343.PubMedCrossRefGoogle Scholar
  7. Bottomley, W., and Whitfeld, P. R. (1979) Cell-free transcription and translation of total spinach chloroplast DNA, Eur. J. Biochem. 93:31–39.PubMedCrossRefGoogle Scholar
  8. Brügger, M., and Boschetti, A. (1975) Two-dimensional gel electrophoresis of ribosomal proteins from streptomycin-sensitive and streptomycin-resistant mutants of Chlamydomonas reinhardi, Eur. J. Biochem. 58:603–610.PubMedCrossRefGoogle Scholar
  9. Burton, W. G., Grabowy, C. T., and Sager, R. (1979) Role of methylation in the modification and restriction of chloroplast DNA in Chlamydomonas, Proc. Natl. Acad. Sci. USA 76:1390–1394.PubMedCrossRefGoogle Scholar
  10. Calagan, J. L., Pirtle, R. M., Pirtle, I. L., Kashdan, M. A., Vreman, H. J., and Dudock, B. S. (1980) Homology between chloroplast and prokaryotic initiator tRNA. Nucleotide sequence of spinach chloroplast methionine initiator tRNA, J. Biol. Chem. 255:9981–9984.PubMedGoogle Scholar
  11. Chiang, K.-S. (1971) Replication, transmission and recombination of cytoplasmic DNAs in Chlamydomonas reinhardi, in Autonomy and Biogenesis of Mitochondria and Chloroplasts (N. K. Boardman, A. W. Linnane, and R. M. Smillie, eds.), Elsevier/North Holland, Amsterdam, pp. 235–249.Google Scholar
  12. Chiang, K.-S., and Sueoka, N. (1967) Replication of chloroplast DNA in Chlamydomonas reinhardi during vegetative cell cycle: its mode and regulation, Proc. Natl. Acad. Sci. USA 57:1506–1513.PubMedCrossRefGoogle Scholar
  13. Chua, N.-H., and Gillham, N. W. (1977) The sites of synthesis of the principal thylakoid membrane polypeptides in Chlamydomonas reinhardtii, J. Cell Biol. 74:441–452.PubMedCrossRefGoogle Scholar
  14. Crouse, E. J., Schmitt, J. M., Bohnert, H.-J., Gordon, K., Driesel, A. J., and Herrmann, R. G. (1978) Intramolecular compositional heterogeneity of Spinacia and Euglena chloroplast DNAs, in Chloroplast Development (G. Akoyunoglou and J. H. Argyroudi-Akoyunoglou, eds.), Elsevier/North Holland, Amsterdam, pp. 565–572.Google Scholar
  15. Deno, H., Kato, A., Shinozaki, K., and Sugiura, M. (1982) Nucleotide sequences of tobacco chloroplast genes for elongator tRNAMet and tRNAVal (UAC): The tRNAVal(UAC] gene contains a long intron, Nucleic Acids Res. 10:7511–7520.PubMedCrossRefGoogle Scholar
  16. Dietrich, A., Souciet, G., Colas, B., and Weil, J.-H. (1983) Phaseolus vulgaris cytoplasmic leucyl-tRNA synthetase. Purification and comparison of its catalytic, structural, and immunological properties with those of the chloroplastic enzyme. J. Biol. Chem. 258:12386–12393.PubMedGoogle Scholar
  17. Dron, M., Rahire, M., and Rochaix, J.-D. (1982a) Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii, Nucleic Acids Res. 10:7609–7620.PubMedCrossRefGoogle Scholar
  18. Dron, M., Rahire, M., and Rochaix, J.-O. (1982b) Sequence of the chloroplast DNA region of Chlamydomonas reinhardii containing the gene of the large subunit of ribulose bisphosphate carboxylase and parts of its flanking genes, J. Mol. Biol. 162:775–793.PubMedCrossRefGoogle Scholar
  19. Dron, M., Rahire, M., Rochaix, J.-O., and Mets, L. (1983) First DNA sequence of a chloroplast mutation: A missense alteration in the ribulosebisphosphate carboxylase large subunit gene. Plasmid 9:321–324.PubMedCrossRefGoogle Scholar
  20. Goodenough, U. W., and Weiss, R. L. (1975) Gametic differentiation in Chlamydomonas reinhardtii, III. Cell wall lysis and microfilament-associated mating structure activation in wild-type and mutant strains, J. Cell Biol. 67:623–637.PubMedCrossRefGoogle Scholar
  21. Grant, D. M., Gillham, N. W., and Boynton, J. E. (1980) Inheritance of chloroplast DNA in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA 77:6067–6071.PubMedCrossRefGoogle Scholar
  22. Hartley, M. R., and Ellis, R. J. (1973) Ribonucleic acid synthesis in chloroplasts. Biochem. J. 134:249–262.PubMedGoogle Scholar
  23. Hartley, M. R., and Head, C. (1979) The synthesis of chloroplast high-molecular-weight ribosomal ribonucleic acid in spinach, Eur. J. Biochem. 96:301–309.PubMedCrossRefGoogle Scholar
  24. Hoober, J. K., and Blobel, G. (1969) Characterization of the chloroplastic and cytoplasmic ribosomes of Chlamydomonas reinhardi, J. Mol. Biol. 41:121–138.PubMedCrossRefGoogle Scholar
  25. Howe, C. J., Bowman, C. M., Dyer, T. A., and Gray, J. C. (1982) Localization of wheat chloroplast genes for the beta and epsilon subunits of ATP synthesis, Mol. Gen. Genet. 186:525–530.CrossRefGoogle Scholar
  26. Howe, C. J., Bowman, C. M., Dyer, T. A., and Gray, J. C. (1983) The genes for the alpha and proton-translocating subunits of wheat chloroplast ATP synthase are close together on the same strand of chloroplast DNA, Mol. Gen. Genet. 190:51–55.CrossRefGoogle Scholar
  27. Howell, S. H., and Walker, L. L. (1976) Informational complexity of the nuclear and chloroplast genomes of Chlamydomonas reinhardi, Biochim. Biophys. Acta 418:249–256.PubMedGoogle Scholar
  28. Kashdan, M. A., and Dudock, B. S. (1982) The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon, J. Biol. Chem. 257:11191–11194.PubMedGoogle Scholar
  29. Koch, W., Edwards, K., and Kössel, H. (1981) Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes, Cell 25:203–213.PubMedCrossRefGoogle Scholar
  30. Kolodner, R, and Tewari, K. K. (1972) Molecular size and conformation of chloroplast deoxyribonucleic acid from pea leaves, J. Biol. Chem. 247:6355–6364.PubMedGoogle Scholar
  31. Kolodner, R, and Tewari, K. K. (1975) The molecular size and conformation of the chloroplast DNA from higher plants, Biochim. Biophys. Acta 402:372–390.PubMedGoogle Scholar
  32. Link, G., Coen, D. M., and Bogorad, L. (1978) Differential expression of the gene for the large subunit of ribulose bisphosphate carboxylase in maize leaf cell types, Cell 15:725–731.PubMedCrossRefGoogle Scholar
  33. Martin, N. C., and Goodenough, U. W. (1975) Gametic differentiation in Chlamydomonas reinhardtii, I. Production of gametes and their fine structure. J. Cell Biol. 67:587–605.PubMedCrossRefGoogle Scholar
  34. Passavant, C. W., Stiegler, G. L., and Hallick, R. B. (1983) Location of the single gene for elongation factor Tu on the Euglena gracilis chloroplast chromosome, J. Biol. Chem. 258:693–695.PubMedGoogle Scholar
  35. Pirtle, R., Calagan, J., Pirtle, I., Kashdan, M., Vreman, H., and Dudock, B. S. (1981) The nucleotide sequence of spinach chloroplast methionine elongator tRNA, Nucleic Acids Res. 9:183–188.PubMedCrossRefGoogle Scholar
  36. Rochaix, J.-D. (1978) Restriction endonuclease map of the chloroplast DNA of Chlamydomonas reinhardii, J. Mol. Biol. 126:597–617.PubMedCrossRefGoogle Scholar
  37. Rochaix, J.-D., and Darlix, J.-L. (1982) Composite structure of the chloroplast 23S ribosomal RNA genes of Chlamydomonas reinhardii. Evolutionary and functional implications, J. Mol. Biol. 159:383–395.PubMedCrossRefGoogle Scholar
  38. Rochaix, J.-D., and Malnoe, P. (1978) Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardii, Cell 15:661–670.PubMedCrossRefGoogle Scholar
  39. Sager, R (1972) Cytoplasmic Genes and Organelles, Academic Press, New York.Google Scholar
  40. Sager, R (1977) Genetic analysis of chloroplast DNA, Adv. Genet. 19:287–338.PubMedCrossRefGoogle Scholar
  41. Sager, R., and Grabowy, C. (1983) Differential methylation of chloroplast DNA regulates maternal inheritance in a methylated mutant of Chlamydomonas, Proc. Natl. Acad. Sci. USA 80:3025–3029.PubMedCrossRefGoogle Scholar
  42. Sagher, D., Grosfeld, H., and Edelman. M. (1976) Large subunit ribulosephosphate carboxylase messenger RNA from Euglena chloroplasts. Proc. Natl. Acad. Sci. USA 73:722–726.PubMedCrossRefGoogle Scholar
  43. Sano, H., Grabowy, C., and Sager, R. (1981) Differential activity of DNA methyltransferase in the life cycle of Chlamydomonas reinhardi, Proc. Natl. Acad. Sci. USA 78:3118–3122.PubMedCrossRefGoogle Scholar
  44. Schmidt, R. J., Richardson, C. B., Gillham, N. W., and Boynton, J. E. (1983) Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas, J. Cell Biol. 96:1451–1463.PubMedCrossRefGoogle Scholar
  45. Swinton, D. C., and Hanawalt, P. C. (1972) In vivo specific labeling of Chlamydomonas chloroplast DNA, J. Cell Biol. 54:592–597.PubMedCrossRefGoogle Scholar
  46. Tewari, K. K., Kolodner, R. D., and Dobkin, W. (1976) Replication of circular chloroplast DNA, in Genetics and Biogenesis of Chloroplasts and Mitochondria (T. Bücher, W. Neupert, W. Sebald, and S. Werner, eds.), Elsevier/North-Holland, Amsterdam, pp. 379–386.Google Scholar
  47. Thomas, J. R., and Tewari, K. K. (1974) Ribosomal RNA genes in the chloroplast DNA of pea leaves, Biochim. Biophys. Acta 361:73–83.PubMedGoogle Scholar
  48. Tiboni, O., and Ciferri, O. (1982) A rapid procedure for the purification of elongation factor Tu (EF-Tu/chl) from spinach chloroplasts., FEBS Lett. 146:197–200.CrossRefGoogle Scholar

Additional Reading

  1. Bogorad, L., Gubbins, E. J., Krebbers, E., Larrinua, I. M., Mulligan, B. J., Muskavitch, K. M. T., Orr, E. A., Rodermel, S. R., Schantz, R., Steinmetz, A. A., Vos, G. D., and Ye, K. K. (1983) Cloning and physical mapping of maize plastid genes, Meth. Enzymol. 97:524–554.CrossRefGoogle Scholar
  2. Buetow, D. (1982) Molecular biology of chloroplasts, in Photosynthesis: Development, Carbon Metabolism, and Plant Productivity, Vol. 2 (Govindjee, ed.), Academic Press, New York, pp. 43–88.Google Scholar
  3. Capel, M. S., and Bourque, D. P. (1982) Characterization of Nicotiana tabacum chloroplast and cytoplasmic ribosomal proteins, J. Biol. Chem. 257:7746–7755.PubMedGoogle Scholar
  4. Edelman, M., Hallick, R. B., and Chua, N.-H. (eds.) Methods in Chloroplast Molecular Biology, Elsevier, Amsterdam.Google Scholar
  5. Ellis, R. J. (1977) Protein synthesis by isolated chloroplasts, Biochim. Biophys. Acta 463:185–215.Google Scholar
  6. Ellis, R. J. (1981) Chloroplast proteins: Synthesis, transport and assembly, Annu. Rev. Plant Physiol. 32:111–137.CrossRefGoogle Scholar
  7. Gillham, N. W. (1978) Organelle Heredity, Raven Press, New York.Google Scholar
  8. Hoober, J. K. (1976) Protein synthesis in chloroplasts, in Protein Synthesis (E. H. McConkey, ed.), Marcel Dekker, New York, pp. 169–248.Google Scholar
  9. Jolly, S. O., McIntosh, L., Link, G., and Bogorad, L. (1981) Differential transcription in vivo and in vitro of two adjacent maize chloroplast genes: The large subunit of ribulosebisphosphate carboxylase and the 2.2-kilobase gene, Proc. Natl. Acad. Sci. USA 78:6821–6825.PubMedCrossRefGoogle Scholar
  10. Keller, S. J., and Ho, C. (1981) Chloroplast DNA replication in Chlamydomonas reinhardtii, Internatl. Rev. Cytol. 69:157–190.CrossRefGoogle Scholar
  11. Lake, J. A. (1981) The ribosome, Sci. Am. 245:(2)84–97.PubMedCrossRefGoogle Scholar
  12. Palmer, J. D., Singh, G. P., and Pillay, D. T. N. (1983) Structure and sequence evolution of three legume chloroplast DNAs, Mol. Gen. Genet. 190:13–19.CrossRefGoogle Scholar
  13. Potter, J. W., and Black, C. C., Jr. (1982) Differential protein composition and gene expression of leaf mesophyll cells and bundle sheath cells of the C4 plant Digitaria sanguinalis (L.) Scop., Plant Physiol. 70:590–597.PubMedCrossRefGoogle Scholar
  14. Rochaix, J.-D. (1981) Organization, function and expression of the chloroplast DNA of Chlamydomonas reinhardii, Experientia 37:323–332.CrossRefGoogle Scholar
  15. Schwarz, Zs. and Kassel, H. (1980) The primary structure of 16S rDNA from Zea mays chloroplast is homologous to E. coli 16S rRNA, Nature (London) 283:739–742.CrossRefGoogle Scholar
  16. Whitfeld, P. R., and Bottomley, W. (1983) Organization and structure of chloroplast genes, Annu. Rev. Plant Physiol. 34:279–309.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  1. 1.Temple University School of MedicinePhiladelphiaUSA

Personalised recommendations