Characteristic Components of Chloroplast Membranes

Part of the Cellular Organelles book series (CORG)


To determine its chemical composition as well as the mechanism of function. the chloroplast must be prepared in a relatively pure state. An important consideration during purification is the osmolarity of the surrounding medium. In solutions with osmolarities less than that inside the organelle, bulk water is drawn in until the chloroplast swells to the limits of elasticity of its envelope, beyond which it bursts. This condition permits escape of nearly all water-soluble components contained in the stroma of the chloroplast. Such drastic consequences can be avoided, however, by adding to the medium a solute to which the chloroplast envelope is relatively impermeable, at a concentration sufficient to balance the internal osmotic pressure. The two most widely used substances for this purpose are sucrose and sorbitol (Fig. 3.1).


Thylakoid Membrane Pyrrole Ring Chloroplast Membrane Chloroplast Envelope Intact Chloroplast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Chua, N.-H., Martin, K., and Bennoun, P. (1975) A chlorophyll-protein complex lacking in photosystem 1 mutants of Chlamydomonas reinhardtii, J. Cell Biol. 67:361–377.PubMedCrossRefGoogle Scholar
  2. Cohen, M., Ginoza, W., Dorner, R. W., Hudson, W. R., and Wildman, S. G. (1956) Solubility and color characteristics of leaf proteins prepared in air and nitrogen, Science 124:1081–1082.PubMedCrossRefGoogle Scholar
  3. Diner, B. A {1979} Energy transfer from the phycobilisomes to photosystem II reaction centers in wild type Cyanidium caldarium, Plant Physiol. 63:30–34.Google Scholar
  4. Ficken, G. E., Johns, R. B., and Linstead, R. P. {1956} Chlorophyll and related compounds, IV. The position of the extra hydrogens in chlorophyll. The oxidation of pyropheophorbide-a, J. Chem. Soc. 1956:2272–2280.Google Scholar
  5. Fischer, H. (1940) Progress of chlorophyll chemistry, Naturwissenschaften 28:401–405.CrossRefGoogle Scholar
  6. French, C. S. (1971) The distribution and action in photosynthesis of several forms of chlorophyll, Proc. Natl. Acad. Sci. USA 68:2893–2897.PubMedCrossRefGoogle Scholar
  7. Gantt, E. {1981} Phycobilisomes, Annu. Rev. Plant Physiol. 32:327–347.Google Scholar
  8. Hoober, J. K., Millington, R. H., and D’Angelo, L. P. (1980) Structural similarities between the major polypeptides of thylakoid membranes from Chlamydomonas reinhardtii, Arch. Biochem. Biophys. 202:221–234.PubMedCrossRefGoogle Scholar
  9. Janero, D. R., and Barnett, R. (1981) Cellular and thylakoid-membrane glycolipids and phospholipids of Chlamydomonas reinhardtii 137+, J. Lipid Res. 22:1119–1130.PubMedGoogle Scholar
  10. Janero, D. R., and Barnett, R. (1982) Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+, J. Lipid Res. 23:307–316.PubMedGoogle Scholar
  11. Lichtenthaler, H. K., and Park, R. B. (1963) Chemical composition of chloroplast lamellae from spinach, Nature (London) 198:1070–1072.CrossRefGoogle Scholar
  12. I anero, D. R, and Barnett, R (1982) Isolation and characterization of an ether-linked homoserine lipid from the thylakoid membrane of Chlamydomonas reinhardtii 137+, J. Lipid Res. 23:307–316.Google Scholar
  13. Kates, M. (1970) Plant phospholipids and glycolipids, Adv. Lipid Res. 8:225–265.Google Scholar
  14. Machold, O. {1981} Chlorophylla/b-proteins and light-harvesting complex of Vicia faba and Hordeum vulgare, Biochem. Physiol. Pflanzen 176:805–827.Google Scholar
  15. Machold, O., Simpson, D. J., and Moller, B. L. (1979) Chlorophyll-proteins of thylakoids from wildtype and mutants of barley (Hordeum vulgare L.), Carlsberg Res. Commun. 44:235–254.CrossRefGoogle Scholar
  16. Morgenthaler, J. J., Marsden, M. P. F., and Price, C. A (1975) Factors affecting the separation of photosynthetically competent chloroplasts in gradients of silica sols, Arch. Biochem. Biophys. 168:289–301.PubMedCrossRefGoogle Scholar
  17. Vernon, L. P., and Shaw, E. R. (1971) Subchloroplast fragments: Triton X-100 method, Meth. Enzymol. 23:277–289.CrossRefGoogle Scholar
  18. Willstätter, R., and Stoll, A (1928) Untersuchungen über Chlorophyll, J. Springer, Berlin. (English edition, Investigations on Chlorophyll, Science Press, Lancaster, Ohio.)Google Scholar
  19. Woodward, R. B. (1961) The total synthesis of chlorophyll, Pure Appl. Chem. 2:383–404.CrossRefGoogle Scholar
  20. Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnett, R., Bushschacher, P., Closs, G. L., Dutler, H., Hannah, J., Hauck, F. P., Ito, S., Langemann, A, Le Goff, E., Leimgruber, W., Lwowski, W., Sauer, J., Valenta, Z., and Volz, H. (1961) The total synthesis of chlorophyll, J. Am. Chem. Soc. 82:3800–3802.CrossRefGoogle Scholar

Additional Reading

  1. Barr, R., and Crane, F. L. (1971) Quinones in algae and higher plants, Meth. Enzymol. 23:372–408.CrossRefGoogle Scholar
  2. Benson, A. A (1963) The plant sulfolipid, Adv. Lipid Res. 1:387–394.PubMedGoogle Scholar
  3. Black, C. C., Jr., and Rouhani, I. (1980) Isolation of leaf mesophyll and bundle sheath cells, Meth. Enzymol. 69:55–68.CrossRefGoogle Scholar
  4. Glazer, A. N. {1982} Phycobilisomes: Structure and dynamics, Annu. Rev. Microbiol. 36:173–198.Google Scholar
  5. Glazer, A. N. (1983) Comparative biochemistry of photosynthetic light-harvesting systems, Annu. Rev. Biochem. 52:125–157.PubMedCrossRefGoogle Scholar
  6. Goodwin, T. W. {1976} Distribution of the carotenoids, in Chemistry and Biochemistry of Plant Pigments (T. W. Goodwin, ed.), Vol. 1, Academic Press, New York, pp. 225–261.Google Scholar
  7. Jackson, A H. (1976) Structure, properties and distribution of chlorophylls, in Chemistry and Biochemistry of Plant Pigments {T. W. Goodwin}, ed.), Vol.} 1}, Academic Press}, New York}, pp.} 1–63Google Scholar
  8. ÓCarra, P., and Ó hEocha, C. (1976) Algal biliproteins and phycobilins, in Chemistry and Biochemistry of Plant Pigments (T. W. Goodwin, ed.), Vol. 1, Academic Press, New York, pp. 328–376.Google Scholar
  9. Poincelot, R. P. (1980) Isolation of chloroplast envelope membranes, Meth. Enzymol. 69:121–128.CrossRefGoogle Scholar
  10. Reeves, S. G., and Hall, D. O. (1980) Higher plant chloroplasts and grana: General preparative procedures (excluding high carbon dioxide fixation ability chloroplasts), Meth. Enzymol. 69:85–94.CrossRefGoogle Scholar
  11. Scheer, H., and Katz, J. J. (1975) Nuclear magnetic resonance spectroscopy of porphyrins and metalloporphyrins, in Porphyrins and Metalloporphyrins (K. M. Smith, ed.), Elsevier, Amsterdam, pp. 399–524.Google Scholar
  12. Strain, H. H., Cope, B. T., and Svec, W. A. (1971) Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls, Meth. Enzymol. 23:452–476.CrossRefGoogle Scholar
  13. Thornber, J. P., and Markwell, J. P. (1981) Photosynthetic pigment-protein complexes in plant and bacterial membranes, Trends Biochem. Sci. 6:122–125.CrossRefGoogle Scholar
  14. Walker, D. A. (1980) Preparation of higher plant chloroplasts, Meth. Enzymol. 69:94–104.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  1. 1.Temple University School of MedicinePhiladelphiaUSA

Personalised recommendations