Skip to main content

Evolutionary Aspects of Chloroplast Development

  • Chapter
Book cover Chloroplasts

Part of the book series: Cellular Organelles ((CORG))

  • 147 Accesses

Abstract

Life began nearly 3.8 billion years ago, within a remarkably short time after formation of the earth. The rapidity in the appearance of living structures raises the possibility that this event could have happened more than once. Nevertheless, the near universality of the genetic code can be explained most directly by assuming that all current genomes are derived from a single, original genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Curtis, S. E., and Hasselkorn, R. (1983) Isolation and sequence of the gene for the large subunit of ribulose-1, 5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120, Proc. Natl. Acad. Sci. USA 80:1835–1839.

    Article  PubMed  CAS  Google Scholar 

  • Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R. (1980) The phylogeny of prokaryotes, Science 209:457–463.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., and Doolittle, W. F. (1982) Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46:1–42.

    PubMed  CAS  Google Scholar 

  • Hori, H., and Osawa, S. (1979) Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S species, Proc. Natl. Acad. Sci. USA 76:381-385.

    Google Scholar 

  • Mereschkowsky, C. (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen, Biol. Centralbl. 30:353–367. (German reprint of original paper published 1905 in Russian.)

    Google Scholar 

  • Olson, J. M. (1981) Evolution of photosynthetic and respiratory prokaryotes and organelles, Ann. N. Y. Acad. Sci. 361:8–17.

    Article  PubMed  CAS  Google Scholar 

  • Schimper, A. F. W. (1883) Uber die Entwickelung der Chlorophyllkorner und Farbkorper, Botanische Zeitung 41:105–114.

    Google Scholar 

  • Schwartz, R. M., and Dayhoff, M. O. (1978) Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts, Science 199: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K., Yamada, C., Takahata, N., and Sugiura, M. (1983) Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-l, 5-bisphosphate carboxylase/oxygenase, Proc. Natl. Acad. Sci. USA 80:4050–4054.

    Article  PubMed  CAS  Google Scholar 

  • Stern, D. B., and Lonsdale, D. M. (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common, Nature (London) 299:698–702.

    Article  CAS  Google Scholar 

  • Timmis, J. N., and Scott, N. S. (1983) Sequence homology between spinach nuclear and chloroplast genomes, Nature (London) 305:65–67.

    Article  CAS  Google Scholar 

  • Wallace, D. C. (1982) Structure and evolution of organelle genomes, Microbial. Rev. 46:208–240.

    CAS  Google Scholar 

  • Whatley, J. M. (1981) Chloroplast evolution—Ancient and modern, Ann. N. Y. Acad. Sci. 361:154–164.

    Article  PubMed  CAS  Google Scholar 

Additional Reading

  • Cavalier-Smith, T. (1981) The origin and early evolution of the eukaryotic cell, Symp. Soc. Gen. Microbiol. 32:33–84.

    Google Scholar 

  • Doolittle, W. F. (1980) Revolutionary concepts in evolutionary cell biology, Trends Biochem. Sci. 5:146–149.

    Article  CAS  Google Scholar 

  • Fredrick, J. F. (ed.) Origins and evolution of eukaryotic intracellular organelles, Ann. N. Y. Acad. Sci. 361.

    Google Scholar 

  • Jukes, T. H. (1980) Silent nucleotide substitutions and the molecular evolutionary clock, Science 210:973–978.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P. D. (1982) Evolution of photosynthetic pathways in flowering plants, Nature (London) 295:647–648.

    Article  Google Scholar 

  • Schiff, J. A. (ed.) (1982) On the Origins of Chloroplasts, Elsevier, Amsterdam.

    Google Scholar 

  • Stackebrandt, E., and Woese, C. R. (1981) The evolution of prokaryotes, Symp. Soc. Gen. Microbiol. 32:1–31.

    Google Scholar 

  • Van Valen, L. M. (1982) Phylogenies in molecular evolution: Prochloron, Nature (London) 298:493–494.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Hoober, J.K. (1984). Evolutionary Aspects of Chloroplast Development. In: Chloroplasts. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2767-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2767-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-41686-6

  • Online ISBN: 978-1-4613-2767-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics