Interindividual Differences in Monooxygenase Activities of Human Liver

  • G. Clare Kahn
  • Alan R. Boobis
  • Donald S. Davies
Part of the Environmental Science Research book series (ESRH, volume 30)

Abstract

A large number of drugs and environmental chemicals can cause cancer when administered to experimental animals [1] and evidence from a variety of sources suggests that at least some of these compounds can cause cancer in man [2]. It has recently been estimated that as much as 90% of cancer in man is environmental in origin, the vast majority of this due to chemicals [3]. The development of a neoplasm following exposure to a chemical carcinogen is obviously a complex, multi-stage process [4]. A schematic diagram, with some of the steps involved, is shown in Fig. 1. The first step is initiation, in which the chemical carcinogen interacts with the target macromolecule, usually believed to be DNA [5]. The resultant damage to the DNA may or may not be repaired by specific DNA repair processes [6]. If repair does not occur then the damaged DNA may be miss-coded, leading to a somatic mutation [4]. The error is then ’fixed’ in some way during the promotion stage of tumorigenesis [7]. Interindividual differences in susceptibility to chemical carcinogenesis can obviously come about through variation in any one of the stages shown in Fig. 1.

Keywords

Hydrocarbon Theophylline Epoxide Biphenyl Phenobarbital 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IARC, Chemicals with Sufficient Evidence of Carcinogenicity in Experimental Animals: IARC Monographs 1–17. IARC Intern. Tech. Rep. No. 70/003, International Agency for Research on Cancer, Lyon (1978).Google Scholar
  2. 2.
    L. Tomatis, C. Agthe, H. Bartsch, J. Huff, R. Montesano, R. Saracci, E. Walker, and J. Willbourn, Evaluation of the carcinogenicity of chemicals: A review of the monograph program of the International Agency for Research on Cancer (1971–1977), Cancer Res., 38: 877–885 (1978).Google Scholar
  3. 3.
    L. Tomatis, The predictive value of rodent carcinogenicity tests in the evaluation of human risk, Ann. Rev. Pharmacol. Toxicol., 19: 511–530 (1979).CrossRefGoogle Scholar
  4. 4.
    H. C. Pitot and A. E. Sirica, The stages of initiation and promotion in hepatocarcinogenesis, Biochim. Biophys. Acta, 605: 191–215 (1980).Google Scholar
  5. 5.
    E. C. Miller and J. A. Miller, Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules, Pharmacol. Rev., 18: 805–838 (1966).Google Scholar
  6. 6.
    B. A. Bridges, in: Environmental Chemicals, Enzyme Function and Human Disease, pp. 67–81, Excerpta Medica, Amsterdam (1980).Google Scholar
  7. 7.
    I. Berenblum, in: Mechanisms of Tumor Promotion and Co-car- cinogenesis ( T. J. Slaga, A. Sivak, and R. K. Boutwell, eds.), pp. 1–39, Raven Press, New York (1978).Google Scholar
  8. 8.
    E. C. Miller and J. A. Miller, in: Molecular Biology of Cancer ( H. Busch, ed.), pp. 377–402, Academic Press, New York (1974).Google Scholar
  9. 9.
    J. A. Miller, Carcinogenesis by chemicals: An overview – G. H. A. Clowes Memorial Lecture, Cancer Res., 30: 559–576 (1970).Google Scholar
  10. 10.
    J. H. Weisburger and E. K. Weisburger, Biochemical formation and pharmacological, toxicological, and pathological properties of hydroxylamines and hydroxamic acids, Pharmacol. Rev., 25: 1–66 (1973).Google Scholar
  11. 11.
    B. C. van Duuren, On the possible mechanism of carcinogenic action of vinyl chloride, Ann. N. Y. Acad. Sci., 246: 258–267 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    P. N. Magee and J. M. Barnes, Carcinogenic nitroso compounds, Adv. Cancer Res., 10: 163–246 (1967).CrossRefGoogle Scholar
  13. 13.
    E. Kriek, Carcinogenesis by aromatic amines, Biochim. Biophys. Acta, 355: 177–203 (1974).Google Scholar
  14. 14.
    R. Schoental, Hepatotoxic activity of retrorsine, senkirkine and hydroxysenkirkine in newborn rats, and the role of epoxides in the carcinogenesis by pyrrolizidine alkaloids and aflatoxins, Nature, 227: 401–402 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    W. F. Benedict, M. S. Baker, L. Haroun, E. Choi, and B. N. Ames, Mutagenicity of cancer chemotherapeutic agents in the Salmonella/microsome test, Cancer Res., 37: 2209–2213 (1977).Google Scholar
  16. 16.
    R. T. Williams, Detoxication Mechanisms, Chapman and Hall, London (1973).Google Scholar
  17. 17.
    J. W. Bridges, in: Environmental Chemicals, Enzyme Function, and Human Disease, pp. 5–24, Excerpta Medica, Amsterdam (1980).Google Scholar
  18. 18.
    E. C. Miller and J. A. Miller, in: Biological Reactive Intermediates – II. Chemical Mechanisms and Biological Effects (R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, C. G. Gibson, and C. W. Witmer, eds.), Part A, pp. 1–21, Plenum Press, New York (1982).Google Scholar
  19. 19.
    D. W. Nebert, Genetic control of carcinogen metabolism leading to cancer risk, Biochimie, 60: 1019–1029 (1978).CrossRefGoogle Scholar
  20. 20.
    W. Levin, A. W. Wood, P. G. Wislocki, R. L. Chang, J. Kapitulnik, H. D. Mah, H. Yagi, D. M. Jerina, and A. H. Conney, in: Poly- cyclic Hydrocarbons and Cancer (H. V. Gelboin and P. 0. P. Ts’o, eds.), Vol. 1, pp. 189–202, Academic Press, New York (1978).Google Scholar
  21. 21.
    D. Hoffmann and E. L. Wynder, A study of tobacco carcinogenesis, XI. Tumor Initiators, tumor accelerators and tumor promoting activity of condensate fractions, Cancer, 27: 848–864 (1971).CrossRefGoogle Scholar
  22. 22.
    M. R. Boyd, in: Organ-directed Toxicity, Chemical Indices and Mechanisms ( S. S. Brown and D. S. Davies, eds.), pp. 267–272, Pergamon Press, Oxford (1981).Google Scholar
  23. 23.
    H. Remmer, The role of the liver in drug metabolism, Am. J. Med., 49: 617–629 (1970).CrossRefGoogle Scholar
  24. 24.
    T. C. Butler, Termination of drug action by elimination of unchanged drug, Fed. Proc., 17: 1158–1162 (1958).Google Scholar
  25. 25.
    J. R. Mitchell, D. J. Jollow, J. R. Gillette, and B. B. Brodie, Drug metabolism as a cause of drug toxicity, Drug Metab. Dis- pos., 1: 418–423 (1973).Google Scholar
  26. 26.
    C. Heidelberger, Chemical carcinogenesis, Ann. Rev. Biochem., 44: 79–121 (1975).CrossRefGoogle Scholar
  27. 27.
    J. J. Burns, T. F. Yu, P. G. Dayton, A. B. Gutman, and B. B. Brodie, Biochemical pharmacological considerations of phenyl¬butazone and its analogues, Ann. N. Y. Acad. Sci., 86: 253–262 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    N. Brock and J. H. Hohorst, Metabolism of cyclophosphamide, Cancer, 29: 900–904 (1967).CrossRefGoogle Scholar
  29. 29.
    Biological Reactive Intermediates (D. J. Jollow, J. J. Kocsis, R. Snyder, and H. Vainio, eds.), Plenum Press, New York (1977).Google Scholar
  30. 30.
    H. S. Mason, Oxidases, Ann. Rev. Biochem., 34: 595–634 (1965).CrossRefGoogle Scholar
  31. 31.
    O. Hayaishi, in: International Congress of Biochemistry, 6th, New York, Proceedings of the Plenary Sessions and the Program, Vol. 33, pp. 31–43, Washington, D.C. (1964).Google Scholar
  32. 32.
    D. W. Nebert, H. J. Eisen, M. Negishi, M. A. Lang, and L. M. Hjelmeland, Genetic mechanisms controlling the induction of polysubstrate monooxygenase (P-450) activities, Ann. Rev. Pharmacol. Toxicol., 21: 431–462 (1981).CrossRefGoogle Scholar
  33. 33.
    C. L. Litterst, E. G. Mimnaugh, R. L. Reagan, and T. E. Gram, Comparison of in vitro drug metabolism by lung, liver, and kid¬ney of several common laboratory species, Drug Metab. Dispos., 3: 259–265 (1975).Google Scholar
  34. 34.
    R. S. Chhabra and J. R. Fouts, Biochemical properties of some microsomal xenobiotic-metabolising enzymes in rabbit small in-testine, Drug Metab. Dispos., 4: 208–214 (1976).Google Scholar
  35. 35.
    B. B. Brodie, J. Axelrod, J. R. Cooper, L. Gaudette, B. N. La Du, C. Mitoma, and S. Udenfriend, Detoxication of drugs and other foreign compounds by liver microsomes, Science, 121: 603–604 (1955).ADSCrossRefGoogle Scholar
  36. 36.
    T. M. Guenthner, D. W. Nebert, and R. H. Menard, Microsomal aryl hydrocarbon hydroxylase in rat adrenal: Regulation by ACTH but not by polycyclic hydrocarbons, Mol. Pharmacol., 15: 719–728 (1979).Google Scholar
  37. 37.
    C. B. Kasper, Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes, J. Biol. Chem., 246: 577–581 (1971).Google Scholar
  38. 38.
    J. R. Gillette, Metabolism of drugs and other foreign compounds by enzymatic mechanisms, Prog. Drug. Res., 6: 13–73 (1963).Google Scholar
  39. 39.
    R. W. Estabrook and B. Cohen, in: Microsomes and Drug Oxidations ( J. R. Gillette, A. H. Conney, G. J. Cosmides, R. W. Estabrook, J. R. Fouts, and G. J. Mannering, eds.), pp. 95–109, Academic Press, New York (1969).Google Scholar
  40. 40.
    T. Omura and R. Sato, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem., 239: 2370–2378 (1964).Google Scholar
  41. 41.
    H. Remmer, J. Schenkman, R. W. Estabrook, H. Sasame, J. Gillette, S. Narasimhulu, D. Y. Cooper, and 0. Rosenthal, Drug interaction with hepatic microsomal cytochrome, Mol. Pharmacol., 2: 187–190 (1966).Google Scholar
  42. 42.
    R. W. Estabrook, J. Baron, J. Peterson, and Y. Ishimura, in: Biological Hydroxylation Mechanisms ( G. S. Boyd and R. M. S. Smellie, eds.), pp. 159–182, Academic Press, London (1972).Google Scholar
  43. 43.
    J. R. Gillette, Biochemistry of drug oxidation and reduction by enzymes in hepatic endoplasmic reticulum, Adv. Pharmacol., 4: 219–261 (1966).CrossRefGoogle Scholar
  44. 44.
    A. Y. H. Lu and W. Levin, Partial purification of cytochromes P-450 and P-448 from rat liver microsomes, Biochem. Biophys. Res. Commun., 46: 1334–1339 (1972).CrossRefGoogle Scholar
  45. 45.
    A. P. Alvares and P. Siekevitz, Gel electrophoresis of par¬tially purified cytochromes P-450 from liver microsomes of vari- ously-treated rats, Biochem. Biophys. Res. Commun., 54: 923–929 (1973).CrossRefGoogle Scholar
  46. 46.
    K. Comai and J. L. Gaylor, Existence and separation of three forms of cytochrome P-450 from rat liver microsomes, J. Biol. Chem., 248: 4947–4955 (1973).Google Scholar
  47. 47.
    T. Fujita, D. W. Shoeman, and G. J. Mannering, Differences in P-450 cytochromes from livers of rats treated with pheno- barbital and with 3-methylcholanthrene, J. Biol. Chem., 248: 2192–2201 (1973).Google Scholar
  48. 48.
    A. F. Welton and S. D. Aust, Multiplicity of cytochrome P-450 hemoproteins in rat liver microsomes, Biochem. Biophys. Res. Commun., 56: 898–906 (1974).CrossRefGoogle Scholar
  49. 49.
    D. A. Haugen, T. A. van der Hoeven, and M. J. Coon, Purified liver microsomal cytochrome P-450. Separation and characterization of multiple forms, J. Biol. Chem., 250: 3537–3570 (1975).Google Scholar
  50. 50.
    D. Ryan, A. Y. H. Lu, J. Kawalek, S. B. West, and W. Levin, Highly purified cytochrome P-448 and P-450 from rat liver microsomes, Biochem. Biophys. Res. Commun., 64: 1134–1141 (1975).CrossRefGoogle Scholar
  51. 51.
    P. E. Thomas, A. Y. H. Lu, D. Ryan, S. B. West, J. Kawalek, and W. Levin, Immunochemical evidence for six forms of rat liver cytochrome P-450 obtained using antibodies against purified rat liver cytochromes P-450 and P-448, Mol. Pharmacol., 12: 746–758 (1976).Google Scholar
  52. 52.
    R. M. Philpot and E. Arinc, Separation and purification of two forms of hepatic cytochrome P-450 from untreated rabbits, Mol. Pharmacol., 12: 483–493 (1976).Google Scholar
  53. 53.
    E. F. Johnson, G. E. Schwab, and U. Muller-Eberhard, Multiple forms of cytochrome P-450: Catalytic differences exhibited by two homogeneous forms of rabbit cytochrome P-450, Mol. Pharmacol., 15: 708–718 (1979).Google Scholar
  54. 54.
    K. T. Shiverick and A. H. Neims, Multiplicity of testosterone hydroxylases in a reconstituted hepatic cytochrome P-450 system from uninduced male rats, Drug Metab. Dispos., 7: 290–295 (1979).Google Scholar
  55. 55.
    D. E. Ryan, P. E. Thomas, D. Korzeniowski, and W. Levin, Separation and characterization of highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlor- inated biphenyls, phenobarbital, and 3-methylcholanthrene, J. Biol. Chem., 254: 1365–1374 (1979).Google Scholar
  56. 56.
    E. F. Johnson, Isolation and characterization of a consitutive form of rabbit liver microsomal cytochrome P-450, J. Biol. Chem., 255: 304–309 (1980).Google Scholar
  57. 57.
    H. H. Liem, U. Muller-Eberhard, and E. F. Johnson, Differential induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin of multiple forms of rabbit microsomal cytochrome P-450: Evidence for tissue specificity, Mol. Pharmacol., 18: 565–570 (1980).Google Scholar
  58. 58.
    N. A. Elshourbagy and P. S. Guzelian, Separation, purification, and characterization of a novel form of hepatic cytochrome P-450 from rats treated with pregnanolone-16a-carbonitrile, J. Biol. Chem., 255: 1279–1285 (1980).Google Scholar
  59. 59.
    D. E. Ryan, P. E. Thomas, and W. Levin, Hepatic microsomal cytochrome P-450 from rats treated with isosafrole. Purifica¬tion and characterization of four enzymic forms, J. Biol. Chem., 255: 7941–7955 (1980).Google Scholar
  60. 60.
    P. P. Lau and H. W. Strobel, Multiple forms of cytochrome P-450 in liver microsomes from 3-naphtlioflavone-pretreated rats. Separation, purification, and characterization of five forms, J. Biol. Chem., 257: 5257–5262 (1982).Google Scholar
  61. 61.
    F. P. Guengerich, Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest, J. Biol. Chem., 252: 3970–3979 (1977).Google Scholar
  62. 62.
    S. S. Lau and V. G. Zannoni, Bromobenzene metabolism in the rabbit. Specific forms of cytochrome P-450 involved in 2,3- and 3,4-epoxidation, Mol. Pharmacol., 20: 234–235 (1981).Google Scholar
  63. 63.
    D. A. Haugen and M. J. Coon, Properties of electrophoretically homogeneous phenobarbital-inducible and 3-naphthoflavone-in- ducible forms of liver microsomal cytochrome P-450, J. Biol. Chem., 251: 7929–7939 (1976).Google Scholar
  64. 64.
    R. L. Norman, E. F. Johnson, and U. Muller-Eberhard, Identification of the major cytochrome P-450 form transplacentally in¬duced in neonatal rabbits by 2,3,7,8-tetrachlorodibenzo-p- dioxin, J. Biol. Chem., 253: 8640–8647 (1978).Google Scholar
  65. 65.
    M. J. Coon, The 1980 Bernard B. Brodie Award Lecture, Drug metabolism by cytochrome P-450: Progess and perspectives, Drug Metab. Dispos., 9: 1–4 (1981).Google Scholar
  66. 66.
    D. Ryan and W. Levin, Comparisons between a major and minor form of liver microsomal cytochrome P-450 from rats treated with Aroclor 1545, Fed. Proc., 40: 1640 (1981).Google Scholar
  67. 67.
    G. P. Vlasuk, J. Ghrayeb, D. E. Ryan, L. Reik, P. E. Thomas,W. Levin, and F. G. Walz, Jr., Multiplicity, strain differences, and topology of phenobarbital-induced cytochromes P-450 in rat liver microsomes, Biochemistry, 21: 789–798 (1982).CrossRefGoogle Scholar
  68. 68.
    A. R. Dahl, W. M. Hadley, F. F. Hahn, J. M. Benson, and R. 0. McClellan, Cytochrome P-450-dependent monooxygenases in ole- factory epithelium of dogs: Possible role in tumorigenicity, Science, 216: 57–59 (1982).ADSCrossRefGoogle Scholar
  69. 69.
    W. Levin, D. Ryan, R. Kuntzman, and A. H. Conney, Neonatal imprinting and the turnover of microsomal cytochrome P-450 in rat liver, Mol. Pharmacol., 11: 190–200 (1975).Google Scholar
  70. 70.
    H. Chao and L. W. K. Chung, Neonatal imprinting and hepatic cytochrome P-450. Immunochemical evidence for the presence of a sex-dependent and neonatally imprinted form(s) of hepatic cytochrome P-450, Mol. Pharmacol., 21: 744–752 (1982).Google Scholar
  71. 71.
    B. G. Lake, J. M. Tredger, M. D. Burke, J. Chakraborty, and J. W. Bridges, The circadian variation of hepatic microsomal and steroid metabolism in the golden hamster, Chem.-Biol. Interact., 12: 81–90 (1976).CrossRefGoogle Scholar
  72. 72.
    G. C. Farrell, W. G. E. Cooksley, and L. W. Powell, Drug metab¬olism in liver disease: Activity of hepatic microsomal metab¬olizing enzymes, Clin. Pharmacol. Ther., 26: 483–492 (1979).Google Scholar
  73. 73.
    A. Rubin, T. R. Tephly, and G. J. Mannering, Kinetics of drug metabolism by hepatic microsomes, Biochem. Pharmacol., 13: 1007–1016 (1964).CrossRefGoogle Scholar
  74. 74.
    F. J. Wiebel, J. C. Leutz, L. Diamond, and H. V. Gelboin, Aryl hydrocarbon (benzo[a]pyrene) hydroxylase in microsomes from rat tissues: Differential inhibition and stimulation by benzo- flavone and organic solvents, Arch. Biochem. Biophys., 144: 78–86 (1971).CrossRefGoogle Scholar
  75. 75.
    B. N. Ames, E. G. Gurney, J. A. Miller, and H. Bartsch, Car¬cinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens, Proc. Nat. Acad. Sci. USA, 69: 3128–3132 (1972).ADSCrossRefGoogle Scholar
  76. 76.
    S. S. Thorgeirsson, P. J. Wirth, N. Staiano, and C. L. Smith, in: Biological Reactive Intermediates — II. Chemical Mecha¬nisms and Biological Effects (R. Snyder, D. V. Park, J. J. Kocsis, D. J. Jollow, C. G. Gibson, and C. W. Witmer, eds.), Part B, pp. 897–919, Plenum Press, New York (1982).Google Scholar
  77. 77.
    H. Bartsch, C. Malaveille, H. F. Stich, E. C. Miller, and J. A. Miller, Comparative electrophilicity, mutagenicity, DNA repair induction activity, and carcinogenicity of some N- and O-acyl derivatives of N-hydroxy-2-aminofluorene, Cancer Res., 37: 1461–1467 (1977).Google Scholar
  78. 78.
    J. A. Miller and E. C. Miller, in: Progress in Experimental Tumor Research (F. Hamburger, ed.), Vol. 11, pp. 273–301, S. Karger, Basel/New York (1969).Google Scholar
  79. 79.
    C. C. Harris, Individual differences in cancer susceptibility, Ann. Intern. Med., 92: 809–825 (1980).Google Scholar
  80. 80.
    H. Autrup, J. M. Essigmann, R. G. Croy, B. F. Trump, G. N. Wogan, and C. C. Harris, Metabolism of aflatoxin Bi and identification of the major aflatoxin BX-DNA adducts formed in cultured human bronchus and colon, Cancer Res., 39: 394–398 (1979).Google Scholar
  81. 81.
    H. Autrup, F. C. Wefald, A. M. Jeffrey, H. Tate, R. D. Schwartz, B. F. Trump, and C. C. Harris, Metabolism of benzo[a]pyrene by cultured tracheobronchial tissues from mice, rats, hamsters, bovines, and humans, Intl. J. Cancer, 25: 293–300 (1980).CrossRefGoogle Scholar
  82. 82.
    D. W. Nebert and N. M. Jensen, The Ah locus: Genetic regulation of the metabolism of carcinogens, drugs, and other environ¬mental chemicals by cytochrome P-450-mediated monooxygenases, Crit. Rev. Biochem., 6: 401–437 (1979).CrossRefGoogle Scholar
  83. 83.
    D. M. Morton, in: Testing for Toxicity ( J. W. Gorrod, ed.), pp. 11–19, Taylor and Francis, London (1981).Google Scholar
  84. 84.
    T. H. Maugh, II, Chemicals: How many are there? Science, 199: 162 (1978).ADSCrossRefGoogle Scholar
  85. 85.
    J. Caldwell, in: Enzymatic Basis of Detoxication (W. B. Jakoby, ed.), Vol. 1, pp. 85–114, Academic Press, New York (1980).Google Scholar
  86. 86.
    R. L. Smith and J. Caldwell, in: Drug Metobolism — From Microbe to Man ( D. V. Parke and R. L. Smith, eds.), pp. 332–356, Taylor and Francis, London (1977).Google Scholar
  87. 87.
    A. E. M. McLean, in: Long-term Hazards from Environmental Chemicals, pp. 179–197, The Royal Society, London (1979).Google Scholar
  88. 88.
    A. R. Boobis, M. J. Brodie, G. C. Kahn, D. R. Fletcher, J. H. Saunders, and D. S. Davies, Monooxygenase activity of human liver in microsomal fractions of needle biopsy specimens, Br. J. Clin. Pharmacol., 9: 11–19 (1980).Google Scholar
  89. 89.
    C. von Bahr, C.-G. Groth, H. Jansson, G. Lundgren, M. Lind, and H. Glaumann, Drug metabolism in human liver in vitro: Establishment of a human liver bank, Clin. Pharmacol. Ther., 27: 711–725 (1980).CrossRefGoogle Scholar
  90. 90.
    A. R. Boobis, M. J. Brodie, G. C. Kahn, and D. S. Davies, in: Microsomes, Drug Oxidations, and Chemical Carcinogenesis (M. J. Coon, A. H. Conney, R. W. Estabrook, H. V, Gelboin, J. R. Gillette, and P. J. O’Brien, eds.), Vol. II, pp. 957–960, Academic Press, New York (1980).Google Scholar
  91. 91.
    R. Kato and J. R. Gillette, Sex differences in the effects of abnormal physiological states on the metabolism of drugs by rat liver microsomes, J. Pharmacol. Exp. Ther., 150: 285–291 (1965).Google Scholar
  92. 92.
    J. C. A. Knott and E. D. Wills, Effects of whole-body irradiation and hormones on drug metabolism in the liver endoplasmic reticulum, Rad. Res., 53: 65–76 (1973).CrossRefGoogle Scholar
  93. 93.
    D. S. Davies, in: Drug Metabolism — From Microbe to Man ( D. V. Parke and R. L. Smith, eds.), pp. 357–368, Taylor and Francis, London (1977).Google Scholar
  94. 94.
    A. R. Boobis, M. J. Brodie, M. E. McManus, N. Staiano, S. S. Thorgeirsson, and D. S. Davies, in: Biological Reactive Inter¬mediates — II. Chemical Mechanisms and Biological Effects (R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, C. G. Gibson, and C. W. Witmer, eds.), Part B, pp. 1193–1201, Plenum Press, New York (1982).Google Scholar
  95. 95.
    D. J. Benford, J. W. Bridges, A. R. Boobis, G. C. Kahn, M. J. Brodie, and D. S. Davies, The selective activation of cytochrome P-450 dependent microsomal hydroxylases in human and rat liver microsomes, Biochem. Pharmacol., 30: 1702–1703 (1981).CrossRefGoogle Scholar
  96. 96.
    G. M. Pacifici, A. R. Boobis, M. J. Brodie, M. E. McManus, and D. S. Davies, Tissue and species differences in enzymes of epoxide metabolism, Xenobiotica, 11: 73–79 (1981).CrossRefGoogle Scholar
  97. 97.
    J. W. Cramer, J. A. Miller, and E. C. Miller, N-Hydroxylation: A new metabolic reaction observed in the rat with the car¬cinogen 2-acetylaminofluorene, J. Biol. Chem., 235: 885–888 (1960).Google Scholar
  98. 98.
    S. S. Thorgeirsson, D. J. Jollow, H. A. Sasame, I. Green, and J. R. Mitchell, The role of cytochrome P-450 in N-hydroxylation of 2-acetylaminofluorene, Mol. Pharmacol., 9: 398–404 (1973).Google Scholar
  99. 99.
    E. C. Miller, J. A. Miller, and M. Enomoto, The comparative carcinogenicities of 2-acetylaminofluorene and its N-hydroxy metabolite in mice, hamsters, and guinea pigs, Cancer Res., 24: 2018–2031 (1964).Google Scholar
  100. 100.
    J. S. Felton, D. W. Nebert, and S. S. Thorgeirsson, Genetic differences in 2-acetylaminofluorene mutagenicity in vitro associated with mouse hepatic aryl hydrocarbon hydroxylase induced by polycyclic aromatic compounds, Mol. Pharmacol., 12: 225–233 (1976).Google Scholar
  101. 101.
    C. C. Irving, Enzymatic N-hydroxylation of the carcinogen 2-acetylaminofluorene and the metabolism of N-hydroxy-2- acetylaminofluorene-9-C14 in vitro, J. Biol. Chem., 239: 1589–1596 (1964).Google Scholar
  102. 102.
    S. S. Thorgeirsson, S. Sakai, and R. H. Adamson, Induction of monooxygenase in Rhesus monkeys by 3-methylcholanthrene: Metabolism and mutagenic activation of N-2-acetylaminofluorene and benzo[a]pyrene, J. Nat. Cancer Inst., 60: 365–369 (1978).Google Scholar
  103. 103.
    E. F. Johnson, D. S. Levitt, U. Muller-Eberhard, and S. S. Thorgeirsson, Catalysis of divergent pathways of 2-acetyl- amino-fluorene metabolism by multiple forms of cytochrome P-450, Cancer Res., 40: 4456–4459 (1980).Google Scholar
  104. 104.
    E. C. Miller, J. A. Miller, and H. A. Hartmann, N-Hydroxy-2- acetylaminofluorene: A metabolite of 2-acetylaminofluorene with increased activity in the rat, Cancer Res., 21: 815–824 (1961).Google Scholar
  105. 105.
    E. Dybing, C. von Bahr, T. Aune, H. Glaumann, D. S. Levitt, and S. S. Thorgeirsson, In vitro metabolism and activation of carcinogenic aromatic amines by subcellular fractions of human liver, Cancer Res., 39: 4206–4211 (1978).Google Scholar
  106. 106.
    M. E. McManus, A. R. Boobis, G. M. Pacifici, R. Y. Frempong, M. J. Brodie, G. C. Kahn, C. Whyte, and D. S. Davies, Xeno- biotic metabolism in the human lung, Life Sci., 26: 481–487 (1980).CrossRefGoogle Scholar
  107. 107.
    S. S. Thorgeirsson, J. S. Felton, and D. W. Nebert, Genetic differences in the aromatic hydrocarbon-inducible N-hydroxyla¬tion of 2-acetylaminofluorene and acetaminophen-produced hepatotoxicity in mice, Mol. Pharmacol., 11: 159–165 (1975).Google Scholar
  108. 108.
    P. B. Lotlikar, M. Enomoto, J. A. Miller, and E. C. Miller, Species variations in the N- and ring-hydroxylation of 2- acetyl-aminofluorene and effect of 3-methylcholanthrene pre- treatment, Proc. Soc. Exp. Biol. Med., 125: 341–346 (1976).Google Scholar
  109. 109.
    S. S. Thorgeirsson, S. A. Atlas, A. R. Boobis, and J. S. Felton, Species differences in the substrate specificity of hepatic cytochrome P-448 from polycyclic hydrocarbon-treated animals, Biochem. Pharmacol., 28: 217–226 (1979).CrossRefGoogle Scholar
  110. 110.
    J. E. Gielen, F. M. Goujon, and D. W. Nebert, Genetic regula¬tion of aryl hydrocarbon hydroxylase induction, II. Simple Mendelian expression in mouse tissue in vivo, J. Biol. Chem., 247: 1125–1137 (1972).Google Scholar
  111. 111.
    D. W. Nebert and H. V. Gelboin, The in vivo and in vitro induction of aryl hydrocarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states, Arch. Biochem. Biophys., 134: 76–89 (1969).CrossRefGoogle Scholar
  112. 112.
    A. P. Poland, E. Glover, J. R. Robinson, and D. W. Nebert, Genetic expression of aryl hydrocarbon hydroxylase activity. Induction of monooxygenase activities and cytochrome Pi-450 formation by 2,3,7 8-tetrachlorodibenzo-p-dioxin in mice genetically “nonresponsive” to other aromatic hydrocarbons, J. Biol. Chem., 249: 5599–5606 (1974).Google Scholar
  113. 113.
    O. Pelkonen, A. R. Boobis, R. C. Levitt, R. E. Kouri, and D. W. Nebert, Genetic differences in the metabolic activation of benzo[a]pyrene in mice. Attempts to correlate tumorigenesis with binding of reactive intermediates to DNA and with mutagenesis in vitro, Pharmacology, 18: 281–293 (1979).CrossRefGoogle Scholar
  114. 114.
    S. A. Atlas, A. R. Boobis, J. S. Felton, S. S. Thorgeirsson, and D. W. Nebert, Ontogenetic expression of polycyclic aroma¬tic compound-inducible monooxygenase activities and forms of cytochrome P-450 in rabbit, J. Biol. Chem., 252: 4712–4721 (1977).Google Scholar
  115. 115.
    D. Hoffmann, I. Schmeltz, S. S. Hecht, and E. L. Wynder, in: Polycyclic Hydrocarbons and Cancer. Environment, Chemistry, and Metabolism (H. V. Gelboin and P. 0. P. Ts’o, eds.), Vol. 1, pp. 85–117, Academic Press, New York (1978).Google Scholar
  116. 116.
    O. Pelkonen, P. Jouppila, E. H. Kaltiala, and N. T. Kärki, Aryl hydrocarbon hydroxylase and cytochrome P-450 in the human liver: Fetal development and cigarette smoking, in: Proc. Eur. Soc. Toxicol. Developmental and Genetic Aspects of Drug and Environmental Toxicity (W. A. M. Duncan, D. Julou, and M. Kramer, eds.), Vol. XVI, pp. 181–185, Excerpta Medica, Amsterdam (1975).Google Scholar
  117. 117.
    A. H. Conney and R. Kato, in: Clinical Pharmacology and Therapeutics ( P. Turner, ed.), pp. 49–85, MacMillan Publishers, London (1980).Google Scholar
  118. 118.
    M. Danhof, Antipyrine Metabolite Profile as a Tool in the Assessment of the Activity of Different Drug Oxidizing Enzymes in Man, Ph.D. Thesis, University of Leiden, The Netherlands (1980).Google Scholar
  119. 119.
    E. S. Vesell, The antipyrine test in clinical pharmacology: Conceptions and misconceptions, Clin Pharmacol. Ther., 26: 275–286 (1979).Google Scholar
  120. 120.
    J. J. Grygiel and D. J. Birkett, Effect of age on patterns of theophylline metabolism, Clin Pharmacol. Ther., 28: 456–462 (1980).CrossRefGoogle Scholar
  121. 121.
    W. Kalow, B. K. Tang, D. Kadar, L. Endrenyi, and F.-Y. Chan, A method for studying drug metabdlism in populations: Racial differences in amobarbital metabolism, Clin. Pharmacol. Ther., 26: 766–776 (1979).Google Scholar
  122. 122.
    E. S. Vesell and J. G. Page, Genetic control of drug levels in man: Antipyrine, Science, 161: 72–73 (1968).ADSCrossRefGoogle Scholar
  123. 123.
    E.-L. Toverud, A. R. Boobis, M. J. Brodie, S. Murray, P. N. Bennett, V. Whitmarsh, and D. S. Davies, Differential induction of antipyrine metabolism by rifampicin, Eur. J. Clin. Pharmacol., 21: 155–160 (1981).CrossRefGoogle Scholar
  124. 124.
    M. Danhof, A. van Zuilen, J. K. Boeijinga, and D. D. Breimer, Studies of the different metabolic pathways of antipyrine in man. Oral versus i.v. administration and the influence of urinary collection time, Eur. J. Clin. Pharmacol., 21: 433–441 (1982).CrossRefGoogle Scholar
  125. 125.
    B. B. Brodie and J. Axelrod, The fate of anitpyrine in man, J. Pharmacol. Exp. Ther., 98: 97–104 (1950).Google Scholar
  126. 126.
    H. Yoshimura, H. Shimeno, and H. Tsukamoto, Metabolism of drugs. LIX. A new metabolite of antipyrine, Biochem. Pharmacol., 17: 1511–1516 (1968).CrossRefGoogle Scholar
  127. 127.
    R. Schuppel, Die Stickstoff demethylierung am Phenazon, Naunyn-Schmiedeberg’s Arch. Pharmacol., 255: 71–72 (1966).Google Scholar
  128. 128.
    J. D. Baty and D. A. Price Evans, Norphenazone, a new metabolite of phenazone in human urine, J. Pharmacol. Exp. Ther., 25: 83–84 (1973).Google Scholar
  129. 129.
    D. H. Huffman, D. W. Shoeman, P. Pentikainen, and D. I. Azarnoff, The effect of spironolactone on antipyrine metab¬olism in man, Pharmacology, 10: 338–344 (1973).CrossRefGoogle Scholar
  130. 130.
    M. Danhof, D. P. Krom, and D. D. Breimer, Studies on the dif¬ferent metabolic pathways of antipyrine in rats: Influence of phenobarbital and 3-methylcholanthrene treatment, Xeno- biotica, 9: 695–702 (1979).Google Scholar
  131. 131.
    T. Inaba, M. Lucassen, and W. Kalow, Antipyrine metabolism in the rat by three hepatic monooxygenases, Life Sci., 26: 1977–1983 (1980).CrossRefGoogle Scholar
  132. 132.
    M. Danhof, R. M. A. Verbeek, C. J. van Boxtel, J. K. Boeijinga, and D. D. Breimer, Differential effects of enzyme induction on antipyrine metabolite formation, Br. J. Clin. Pharmacol., 13: 379–386 (1982).Google Scholar
  133. 133.
    G. C. Kahn, A. R. Boobis, S. Murray, and D. S. Davies, Differential effects of 3-methylcholanthrene and phenobarbitone treatment on the oxidative metabolism of antipyrine in vitro by microsomal fractions of rat liver, Xenobiotica (in press).Google Scholar
  134. 134.
    G. H. Kellermann and M. Luyten-Kellermann, Antipyrine metabolism in man, Life Sci., 23: 2485–2490 (1978).CrossRefGoogle Scholar
  135. 135.
    G. C. Kahn, A. R. Boobis, I. A. Blair, M. J. Brodie, and D. S. Davies, A radiometric high-pressure liquid chromatography assay for the simultaneous determination of the three main oxidative metabolites of antipyrine in studies in vitro, Anal. Biochem., 113: 292–300 (1981).CrossRefGoogle Scholar
  136. 136.
    A. R. Boobis, M. J. Brodie, G. C. Kahn, E.-L. Toverud, I. A. Blair, S. Murray, and D. S. Davies, Comparison of the in vivo and in vitro rates of formation of the three main oxidative metabolites of antipyrine in man, Br. J. Clin. Pharmacol., 12: 771–777 (1981).Google Scholar
  137. 137.
    A. Rane, G. R. Wilkinson, and D. G. Shand, Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance, J. Pharmacol. Exp. Ther., 200: 420–424 (1977).Google Scholar
  138. 138.
    J. M. Tredger, F. J. McPherson, J. Chakraborty, J. W. Bridges, and D. V. Parke, The effect of some glucocorticoids on hepatic microsomal hydroxylation in the rat and hamster, Naunyn- Schmiedeberg1s Arch. Pharmacol., 292: 267–270 (1976).Google Scholar
  139. 139.
    A. H. Conney, M. Sansur, F. Soroko, R. Koster, and J. J. Burns Enzyme induction and inhibition in studies on the pharmacological actions of acetophenetidin, J. Pharmacol. Exp. Ther. 151: 133–138 (1966).Google Scholar
  140. 140.
    P. J. Poppers, W. Levin, and A. H. Conney, Effects of 3-methyl cholanthrene treatment on phenacetin 0-dealkylation in several inbred mouse strains, Drug Metab. Dispos., 3: 502–506 (1975).Google Scholar
  141. 141.
    E. J. Pantuck, R. Kuntzman, and A. H. Conney, Decreased concentration of phenacetin in plasma of cigarette smokers, Science, 175: 1248–1250 (1972).ADSCrossRefGoogle Scholar
  142. 142.
    S. S. Thorgeirsson, P. J. Wirth, W. L. Nelson, and G. H. Lambert, in: Origins of Human Cancer ( H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 869–886, Cold Spring Harbor Laboratory, New York (1977).Google Scholar
  143. 143.
    T. P. Sloan, A Mahgoub, R. Lancaster, J. R. Idle, and R. L. Smith, Polymorphism of carbon oxidation of drugs and clinical implications, Br. Med. J., 2: 655–657 (1978).CrossRefGoogle Scholar
  144. 144.
    A. R. Boobis, G. C. Kahn, C. Whyte, M. J. Brodie, and D. S. Davies, Biphasic O-deethylation of phenacetin and 7-ethoxy- coumarin by human and rat liver microsomal fractions, Biochem. Pharmacol., 30: 2451–2456 (1981).CrossRefGoogle Scholar
  145. 145.
    F. P. Guengerich, Separation and purification of multiple forms of microsomal cytochrome P-450. Partial characteriza¬tion of three apparently homogeneous cytochromes P-450 prepared from livers of phenobarbital- and 3-methylcholanthrene- treated rats, J. Biol. Chem., 253: 7931–7939 (1978).Google Scholar
  146. 146.
    A. Mahgoub, J. R. Idle, L. G. Dring, R. Lancaster, and R. L. Smith, Polymorphic hydroxylation of debrisoquine in man, Lancet, ii: 584–586 (1977).CrossRefGoogle Scholar
  147. 147.
    G. C. Kahn, A. R. Boobis, S. Murray, M. J. Brodie, and D. S. Davies, Assay and characterization of debrisoquine 4-hydroxyl- ase activity of microsomal fractions of human liver, Br. J. Clin. Pharmacol., 13: 637–645 (1982).Google Scholar
  148. 148.
    D. S. Davies, G. C. Kahn, S. Murray, M. J. Brodie, and A. R. Boobis, Evidence for an enzymatic defect in the 4-hydroxyla- tion of debrisoquine by human liver, Br. J. Clin. Pharmacol., 11: 89–91 (1981).Google Scholar
  149. 149.
    T. Inaba, S. V. Otton, and W. Kalow, Deficient metabolism of debrisoquine and sparteine, Clin. Pharmacol. Ther., 27: 547–549 (1980).CrossRefGoogle Scholar
  150. 150.
    L. Bertilsson, H. J. Dengler, M. Eichelbaum, and H.-U. Schulz, Pharmacogenetic covariation of defective N-oxidation of sparteine and 4-hydroxylation of debrisoquine, Eur. J. Clin. Pharmacol., 17: 153–155 (1980).CrossRefGoogle Scholar
  151. 151.
    R. R. Shah, N. S. Oates, J. R. Idle, and R. L. Smith, Genetic impairment of phenformin metabolism, Lancet, i: 1147 (1980).CrossRefGoogle Scholar
  152. 152.
    L. A. Wakile, T. P. Sloan, J. R. Idle, and R. L. Smith, Genetic evidence for the involvement of different oxidative mechanisms in drug oxidation, J. Pharm. Pharmacol., 31: 350–352 (1979).CrossRefGoogle Scholar
  153. 153.
    H. S. Fraser, F. M. Williams, D. L. Davies, G. H. Draffan, and D. S. Davies, Amylobarbitone hydroxylation kinetics in small samples of rat and human liver, Xenobiotica, 6: 465–472 (1976).CrossRefGoogle Scholar
  154. 154.
    S. V. Otton, T. Inaba, W. A. Mahon, and W. Kalow, In vitro metabolism of sparteine by human liver: Competitive inhibition by debrisoquine, Can. J. Physiol. Pharmacol., 60: 102–105 (1982).CrossRefGoogle Scholar
  155. 155.
    D. S. Davies, G. C. Kahn, S. Murray, M. J. Brodie, and A. R. Boobis, Polymorphic oxidation of debrisoquine by human liver, in: Abstracts of the Eighth International Congress of Pharmacology, Tokyo, Japan (July 1981), p. 275.Google Scholar
  156. 156.
    J. C. Ritchie, T. P. Sloan, J. R. Idle, and R. L. Smith, in: Environmental Chemicals, Enzyme Function and Human Disease, pp. 219–244, Excerpta Medica, Amsterdam (1980).Google Scholar
  157. 157.
    M. Eichelbaum, Defective oxidation of drugs: Pharmacokinetic and therapeutic implications, Clin. Pharmacokinet., 7: 1–22 (1982).CrossRefGoogle Scholar
  158. 158.
    N. T. Shahidi, Acetophenetidin-induced methemoglobinemia, Ann. N.Y. Acad. Sci., 151: 822–832 (1968).ADSGoogle Scholar
  159. 159.
    M. J. Brodie, A. R. Boobis, C. J. Bulpitt, and D. S. Davies, Influence of liver disease and environmental factors on hepatic monooxygenase activity in vitro, Eur. J. Clin. Pharmacol., 20: 39–46 (1981).CrossRefGoogle Scholar
  160. 160.
    A. R. Boobis, M. J. Brodie, G. C. Kahn, C. Whyte, and D. S. Davies, Interindividual differences in enhancement and in¬hibition of human hepatic monooxygenase activity in vitro, in: Abstracts of the Seventh European Workshop on Drug Metabolism, Zurich, Switzerland (September 1980), Abstr. No. 422.Google Scholar
  161. 161.
    R. Kato and T. Kamataki, in: Clinical Pharmacology and Therapeutics ( P. Turner, ed.), pp. 80–85, MacMillan Publishers, London (1980).Google Scholar
  162. 162.
    G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256: 495–497 (1975).ADSCrossRefGoogle Scholar
  163. 163.
    A. R. Boobis, B. Slade, C. Stern, K. M. Lewis, and D. S. Davies, Monoclonal antibodies to rabbit liver cytochrome P-448, Life Sci., 29: 1443–1448 (1981).CrossRefGoogle Scholar
  164. 164.
    S. S. Park, S.-J. Cha, H. Miller, A. V. Persson, M. J. Coon, and H. V. Gelboin, Monoclonal antibodies to rabbit liver cyto¬chrome P-450LM2 and cytochrome P-450LM4, Mol. Pharmacol., 21: 248 - 258 (1982).Google Scholar
  165. 165.
    K. M. Lewis, A. R. Boobis, M. B. Slade, and D. S. Davies, Immunopurification of cytochrome P-448 from microsomal fractions of rabbit liver with retention of metabolic activity, Biochem. Pharmacol., 31: 1815–1817 (1982).CrossRefGoogle Scholar
  166. 166.
    T. Fujino, S. S. Park, D. West, and H. V. Gelboin, Phenotyping of cytochromes P-450 in human tissues with monoclonal anti¬bodies, Proc. Nat. Acad. Sci. USA, 79: 3682–3686 (1982).ADSCrossRefGoogle Scholar
  167. 167.
    F. G. Walz, G. P. Vlasuk, C. J. Omiecinski, E. Bresnick, P. E. Thomas, D. E. Ryan, and W. Levin, Multiple, immuno-identical forms of phenobarbital-induced rat liver cytochromes P-450 are encoded by different mRNAs, J. Biol. Chem., 257: 4023–4026 (1982).Google Scholar
  168. 168.
    R. M. Winslow and W. F. Anderson, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), 4th edn., pp. 1465–1507, McGraw-Hill, New York (1978).Google Scholar
  169. 169.
    E. Beutler, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), 4th edn., pp. 1430–1451, McGraw-Hill, New York (1978).Google Scholar
  170. 170.
    D. W. Nebert, Multiple forms of inducible drug-metabolizing enzymes. A reasonable mechanism by which any organism can cope with adversity, Mol. Cell Biochem., 27: 27–46 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. Clare Kahn
    • 1
  • Alan R. Boobis
    • 1
  • Donald S. Davies
    • 1
  1. 1.Department of Clinical PharmacologyRoyal Postgraduate Medical SchoolLondonUK

Personalised recommendations