Advertisement

Influence of Demographic Factors on Scheduled DNA Synthesis as Measured in Human Peripheral Leukocytes and Fibroblasts

  • John J. Madden
  • Arthur Falek
  • David A. Shafer
  • Robert M. Donahoe
  • Deborah C. Eltzroth
  • Felicia Hollingsworth
  • Peter J. Bokos
Part of the Environmental Science Research book series (ESRH, volume 30)

Abstract

In a population study of leukocytes from 140 human subjects, far UV-induced unscheduled DNA synthesis (UDS) variation correlated with at least three demographic factors — smoking tobacco, season of sample obtainment and “street opiate” addiction. The ability to correlate UDS variability with these factors demonstrates the importance of environmental influences in control of DNA repair processes and the need to include the effect of demographics in genetic risk assessment models. In addition, mutagen-induced UDS patterns for mononuclear leukocytes from a single subject did not match the UDS pattern for fibroblasts grown from a forearm skin biopsy from the same individual which suggests that UDS may be tissue specific.

Keywords

Repair Capacity Risk Assessment Model Mononuclear Leukocyte Heroin Addiction Opiate Addiction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. J. Madden, A. Falek, D. A. Shafer, and J. H. Glick, Effects of opiates and demographic factors on DNA repair synthesis in human leukocytes, Proc. Natl. Acad. Sci., U.S.A., 76:5769–5773 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    B. Lambert, U. Ringborg, and L. Skoog, Age-related decrease in UV light-induced DNA repair synthesis in human peripheral leukocytes, Cancer Res., 39:2792–2795 (1979).Google Scholar
  3. 3.
    B. Lambert, K. Hansson, T. H. Bui, F. Funes-Cravioto, J. Lindsten, M. Holmberg, and R. Strausmanis, DNA repair and frequency of x-ray and UV-induced chromosome aberrations in leukocytes from patients with Down’s Syndrome, Ann. Hum. Genet., London, 39:293–303 (1976).CrossRefGoogle Scholar
  4. 4.
    M. Frey-Wettstein, R. Longmire, and C. G. Craddock, Deoxyribonucleic acid (DNA) repair replication of ultraviolet (UV) irradiated normal and leukemic leukocytes, J. Lab. Clin. Med., 74:109–118 (1972).Google Scholar
  5. 5.
    F. H. Yew and R. T. Johnson, Human B and T lymphocytes differ in UV-induced repair capacity, Exp. Cell Res., 113:227–231 (1978).CrossRefGoogle Scholar
  6. 6.
    F.-H. Yew and R. T. Johnson, Ultraviolet-induced DNA excision repair in human B and T lymphocytes. III. Repair in lymphocytes from chronic lymphocytic leukaemia, J. Cell Sci., 39:329–337 (1979).Google Scholar
  7. 7.
    R. W. Pero and H. 0. Sjogren, The influence of monocyte (adherent cell) content in human mononuclear blood cell populations on the estimation of individual levels of N-acetoxy-2-acetylaminofluorene induced unscheduled DNA synthesis, Carcinogenesis, 3:39–43 (1982).CrossRefGoogle Scholar
  8. 8.
    T. J. Lampidis and J. B. Little, Enhancement of UV-induced unscheduled DNA synthesis by hydroxyurea, Exp. Cell Res., 110:41–46 (1977).CrossRefGoogle Scholar
  9. 9.
    R. W. Pero and C. Vopat, A human platelet-derived inhibitor of unscheduled DNA synthesis in resting lymphocytes, Carcinogenesis, 2:1103–10 (1981).CrossRefGoogle Scholar
  10. 10.
    A. R. S. Collins, S. L. Schor, and R. T. Johnson, The inhibition of repair in UV irradiated human cells, Mutat. Res., 42:413–432 (1977).CrossRefGoogle Scholar
  11. 11.
    K. Erixon and G. Ahnstrom, Single strand breaks in DNA during repair of UV-induced damage in normal human and xeroderma pigmentosum cells as determined by alkaline DNA unwinding and hydroxylapatite chromatography. Effects of hydroxyurea, 5-fluoro-deoxyuridine and 1-3-D-arabinofuranosylcytosine on the kinetics of repair, Mutat. Res., 59:257–271 (1979).CrossRefGoogle Scholar
  12. 12.
    R. W. Pero and C. Ostlund, Direct comparison, in human resting lymphocytes, of the interindividual variations in U.D.S. induced by N-acetoxy-2-acetylaminofluorene and UV irradiation, Mutat. Res., 73:349–61 (1980).CrossRefGoogle Scholar
  13. 13.
    N. Prashad and R. Cutler, Percent satellite DNA as a function of tissue and age of mice, Biochem. Biophys. Act., 418:1–23 (1976).Google Scholar
  14. 14.
    K. W. Giles and A. Myers, An improved diphenylamine method for the estimation of DNA, Nature, 4979:93 (1965).Google Scholar
  15. 15.
    R. W. Pero and F. Mitelman, Another approach to in vivo estimation of genetic damage in humans, Proc. Natl. Acad. Sci., U.S.A., 76:462–3 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    B. Paigen, E. Ward, A. Reilly, L. Horton, H. L. Gurtoo, J. Minowada, K. Steenland, M. B. Havens, and P. Sartori, Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes, Cancer Res., 41:2757–2761 (1981).Google Scholar
  17. 17.
    E. W. Van Carter, E. Virasoro, R. Le Clercq, and G. Copinschi, Seasonal, circadian, and episodic variations of human immunereactive β-MSH, ACTH, and Cortisol, Int. J. Pept. Protein Res., 17:3–13 (1981).Google Scholar
  18. 18.
    P. B. Curtis-Prior, Seasonal variation in the responses of adipose tissue to a serum fat-mobilizing factor may be explained in terms of reduced availability of fat cell receptors, Horm. Metab. Res., 13:686–688 (1981).CrossRefGoogle Scholar
  19. 19.
    E. E. Codd and W. L. Byrne, Seasonal variation in the apparent number of binding sites for 3H-opioid agonists and antagonists, Life Sci., 28:2577–2583 (1981).CrossRefGoogle Scholar
  20. 20.
    R. J. McDonough, J. J. Madden, A. Falek, D. A. Shafer, M. Pline, D. Gordon, P. Bokos, J. C. Kuehnle, and J. Mendelson, Alteration of T and null lymphocyte frequencies in the peripheral blood of human opiate addicts:in vivo evidence for opiate receptor sites on T lymphocytes, J. Immunol., 125:2539–2543 (1980).Google Scholar
  21. 21.
    A. Melander, E. Nordenskjold, B. Lundh, J. Thorell, Influence of smoking on thyroid activity, Acata Med. Scan., 209 (1–2):41–43 (1981).Google Scholar
  22. 22.
    A. Beaumont and J. Hughes, Biology of opioid peptides, Ann. Ref. Pharmacol. Toxicol., 19:245–267 (1979).CrossRefGoogle Scholar
  23. 23.
    N. A. Berger, G. W. Sikorski, S. J. Petzold, and K. K. Kurohara, Defective poly (adenosine diphosphoribose) synthesis in xeroderma pigmentosum, Biochem., 19:289–293 (1980).CrossRefGoogle Scholar
  24. 24.
    H. Juarez-Salinas, J. L. Sims, and M. K. Jacobson, Poly(ADP-ribose) levels in carcinogen-treated cells, Nature, 282:740–1 (1979).ADSCrossRefGoogle Scholar
  25. 25.
    B. W. Durkacz, O. Omidiji, D. A. Gray, and S. Shall, (ADP- ribose)n participates in DNA excision repair, Nature, 283:593– 596 (1980).ADSCrossRefGoogle Scholar
  26. 26.
    J. D. Roberts and M. W. Lieberman, Deoxyribonucleic acid repair synthesis in permeable human fibroblasts exposed to ultraviolet radiation and N-acetoxy-2-(acetylamino) florene, Biochem., 18:4499–4505 (1979).CrossRefGoogle Scholar
  27. 27.
    P. P. W. Van Buul, Absence of correlation between the chromosomal radiosensitivity of peripheral blood lymphocytes and stem-cell spermatogonia in mammals, Mutat. Res., 95:69–77 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • John J. Madden
    • 1
    • 2
    • 3
  • Arthur Falek
    • 1
    • 2
  • David A. Shafer
    • 1
    • 2
  • Robert M. Donahoe
    • 1
    • 2
  • Deborah C. Eltzroth
    • 1
    • 2
  • Felicia Hollingsworth
    • 1
    • 2
  • Peter J. Bokos
    • 4
  1. 1.Dept. of PsychiatryEmory UniversityAtlantaUSA
  2. 2.Human and Behavioral Genetics Research LaboratoryGeorgia Mental Health InstituteAtlantaUSA
  3. 3.Dept. BiochemistryEmory UniversityAtlantaUSA
  4. 4.InterventionsChicagoUSA

Personalised recommendations