Skip to main content

Liquid Crystal Polymers: VI. Liquid Crystalline Polyesters of Substituted Hydroquinones

  • Chapter
Contemporary Topics in Polymer Science

Synopsis

The use of monosubstituted hydroquinones enables the preparation of liquid crystalline polyesters with lower melting points than can be obtained with hydroquinone. When the substituent is chloro, methyl, tert-butyl, or 1,1-dimethylhexyl, the polyterephthalate homopolyesters still melt at too high a temperature to be injection-molded or melt spun without thermal degradation, but additional modification with a flexible aliphatic component, a kinked rigid group, or 2,6-naphthalenedicarboxylic acid reduces the melting point further and enables the preparation of melt processable liquid crystalline polyesters. The stability of substituted hydroquinone polyesters in air at 150ºC decreases with various substituents in the order of phenyl, tert-butyl, chloro, methyl. At 300ºC in air, the hydroquinone polyesters containing phenyl or tert-butyl substituents are the most stable. The effects of composition on liquid crystallinity and on the properties of injection-molded plastics and melt spun fibers also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a). W. J. Jackson, Jr., Br. Polym. J., 12, No. 4, 153 (1980).

    Google Scholar 

  2. V. V. Korshak, Russ. Chem. Rev., 29, 269 (1960).

    Article  Google Scholar 

  3. W. M. Eareckson, J. Polym. Sci., 40, 399 (1959).

    Article  CAS  Google Scholar 

  4. I. Goodman, J. E. McIntyre, and J. W.. Stimpson (to ICI), British Patent 989,552 (1965), U.S. Patent 3,321, 437 (1967).

    Google Scholar 

  5. I. Goodman, J. E. McIntyre, and D. H. Aldred (to ICI), British Patent 993,272 (1965), U.S. Patent 3,368, 998 (1967).

    Google Scholar 

  6. H. F. Kuhfuss and W. J. Jackson, Jr. (to Eastman Kodak Co.), U.S. Patent 3, 778, 410 (1973).

    Google Scholar 

  7. H. F. Kuhfuss and W. J. Jackson, Jr. (to Eastman Kodak Co.), U.S. Patent 3, 804, 805 (1974).

    Google Scholar 

  8. W. J. Jackson, Jr., and H. F. Kuhfuss, J. Polym. Sci., Polym. Chem. Ed., 14, 2043 (1976).

    Article  CAS  Google Scholar 

  9. F. E. McFarlane, V. A. Nicely, and To Go Davis, “Contemporary Topics in Polymer Science,” Vol. 2, E. M. Pierce and J. R. Schaefgen, Eds., Plenum, New York, 1977, p 109.

    Google Scholar 

  10. J. J. Kleinschuster, T. C. Pletcher, and J. R. Schaefgen (to Du Pont), Belg. Patent 828, 935 (1975).

    Google Scholar 

  11. J. R. Schaefgen (to Du Pont), U.S. Patent 4,118, 372 (1978).

    Google Scholar 

  12. C. R. Payet (to Du Pont), U.S. Patent 4,159, 365 (1979).

    Google Scholar 

  13. W. J. Jackson, Jr., and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 360, 658 (1982).

    Google Scholar 

  14. W. J. Jackson, Jr., and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 238, 600 (1980).

    Google Scholar 

  15. R. R. Luise (to Du Pont), U.S. Patent 4,183, 895 (1980).

    Google Scholar 

  16. W. J. Jackson, Jr., G. G. Gebeau, and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 153, 779 (1979).

    Google Scholar 

  17. J.-I. Jin, So Antoun, Co Ober, and Ro W. Lenz, Br. Polymo Jo, 12, No. 4, 132 (1980).

    Article  CAS  Google Scholar 

  18. S. Antoun, R. W. Lenz, and J.-I. Jin, J. Polym. Sci., Polym. Chem. Ed., 19, 1901 (1981).

    Article  CAS  Google Scholar 

  19. J. R. Schaefgen (to Du Pont), U.S. Patent 4,075, 262 (1978).

    Google Scholar 

  20. W. J. Jackson, Jr., G. G. Gebeau, and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 242, 496 (1980).

    Google Scholar 

  21. W. J. Jackson, Jr., Macromolecules, in press.

    Google Scholar 

  22. W. J. Jackson, Jr., and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 156, 070 (1979).

    Google Scholar 

  23. J. C. Morris and W. J. Jackson, Jr. (to Eastman Kodak Co.), U.S. Patent 4, 146, 702 (1979).

    Google Scholar 

  24. F. E. McFarlane and T. G. Davis (to Eastman Kodak Co.), U.S. Patent 4,011, 199 (1977).

    Google Scholar 

  25. R. W. Lenz, private communication.

    Google Scholar 

  26. W. J. Jackson, Jr., and H. F. Kuhfuss (to Eastman Kodak Co.), U.S. Patent 4, 287, 332 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Jackson, W.J. (1984). Liquid Crystal Polymers: VI. Liquid Crystalline Polyesters of Substituted Hydroquinones. In: Vandenberg, E.J. (eds) Contemporary Topics in Polymer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2759-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2759-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9706-2

  • Online ISBN: 978-1-4613-2759-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics