Skip to main content

Photoreception in Protozoa, An Overview

  • Chapter
Photoreception and Vision in Invertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

I remember Lynn Margulis showing in a seminar, that the lowly Prokaryotes, Bacteria and blue-green Algae, had invented most everything in Biochemistry, well before we, the Eukaryotes, came onto the scene. Photosynthesis, glycolysis, protein synthesis, dicarboxylic acid cycle, oxidative phosphorylation, you name it and some microbe has it!

Cease to persuade, my loving Proteus. The Two Gentlemen of Verona, Act I, Sc. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. (Ed.) (1978) Sensory Ecology: Review and Perspectives. New York, Plenum Press. 597 pages.

    Google Scholar 

  • Benedetti, P.A. & Checcucci, A. (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy in Euglena gracilis. Plant Sei. Lett. 4: 47–51.

    Article  Google Scholar 

  • Benedetti, A. & Lenci, F. (1977) In vivo microspectrofluorometry of photoreceptor pigment in Euglena gracilis. Photochem. Photobiol. 26: 315–318

    Article  Google Scholar 

  • Berger, J. (1980) Feeding behaviour of Didinium nasutum on Paramecium bursaria with normal or apochlorotic zoochlorellae. J. Gen. Microbiol. 118: 379–404.

    Google Scholar 

  • Borle, A.B. (1973) Calcium metabolism at the cellular level. Fed. Prod. 32: 1944–1950.

    Google Scholar 

  • Bound K.E. & Tollin, G. (1967) Phototactic response of Euglena gracilis to polarized light. Nature (Lond.) 216: 1042–1044.

    Article  Google Scholar 

  • Brown, J.A. & Nielsen, P.J. (1974) Transfer of photosynthetically produced carbohydrate from endosymbiotic chiorellae to Paramecium bursaria. J. Protozool. 21: 469–470.

    Google Scholar 

  • Carlile, M.J. (1980) Sensory transduction in aneural organisms. In: Photoreception and Sensory Transduction in Aneural Organisms. Ed. Lenci, F. & Colombetti, G. New York, Plenum Press, p. 1–22.

    Chapter  Google Scholar 

  • Checcucci, A., Colombetti, G., Ferrari, R. & Lenci, F. (1976) Action spectra for photoaccumulation of green and colorless Euglena. Evidence for identification of photoreceptor pigments. Photochem. Photobiol. 23: 51–54.

    Article  Google Scholar 

  • Couillard, P. (1978) Taxes in unicells. Especially protozoa. In: Sensory Ecology. Ed. Ali, M.A. New York, Plenum Press, p. 31–54.

    Chapter  Google Scholar 

  • Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E. & Lenci, F. (1977) Terminology of behavioural response of motile microorganisms. Photochem. Photobiol. 26: 559–560.

    Article  Google Scholar 

  • Dodge, J.D. (1969) A review of the fine structure of algal eyespots. Br. Phycol. J. 4: 199–210.

    Google Scholar 

  • Doughty, M.D. & Diehn, B. (1980) Flavins as photoreceptor pigments for behavioral responses. In: Structural Bonding, n°41, Sensory Physiology. Ed. Dunitz et al. New York, Springer Verlag.

    Google Scholar 

  • Durham, A.C.H. (1974) A unified theory of the control of actin and myosin in non-muscle movements. Cell 2: 123–136.

    Article  Google Scholar 

  • Forget, J. & Couillard, P. (1983) La cinetique de la vacuole contractile chez Amoeba proteus: Effets de la lumiere panchromatique. Can. J. Zool. 61: 518–523.

    Article  Google Scholar 

  • Foster, K.W. & Smyth, R.D. (1980) Light antennae in photosynthetic algae. Microbiol. Rev. 44: 572–630.

    Google Scholar 

  • Francis, D. (1967) On the eyespot of the Dinoflagellate Nematodinium. J. Exp. Biol. 47: 495–501.

    Google Scholar 

  • Gelber, B. (1956) Investigations of the behavior of Paramecium aurelia. III. The effect of the presence and absence of light on the occurrence of a response. J. Genet. Psychol. 88: 31–36.

    Google Scholar 

  • Gerisch, G. (1959) Die Zelldifferenzierung bei Pleodorina californica und die organization der Phytomonadenkolonien. Arch. Ptotistenk. 104: 292–358.

    Google Scholar 

  • Giese, A.C. (1973) Blepharisma. Stanford, Stanford University Press, 366 pages.

    Google Scholar 

  • Grebecka, L. (1982) Local contraction and the new front formation site in Amoeba proteus. Protistologica 18: 397–402.

    Google Scholar 

  • Grebecki, A. (1981) Effects of localized photic stimulations in amoeboid movement and their theoretical implications. Eur. J. Cell Biol. 24: 163–175.

    Google Scholar 

  • Grenet, C. (1968) Leucopsis cylindrica nov. gen. nov. sp. Peridimia Warnowiidae Lindemann: Considerations phylogénétiques sur les Warnowiidae. Protistologica 4: 419–422.

    Google Scholar 

  • Greuet, C. (1968) Organisation ultrastructurale de l’ocelle de deux Péridiniens Warnowiidae, Erythropsis pavillardi, Kofoid et Sweeney et Warnowia pulchra Schiller. Protistologica 4: 209–230.

    Google Scholar 

  • Greuet, C. (1978) Organisation ultrastructurale de l’ocelloïde de Nematodinium. Aspect phylogénétique de l’évolution du photorécepteur des Péridiniens Warnowiidae Lindemann. Cytobiologie 17: 114–136.

    Google Scholar 

  • Greuet, C. (1982) Photorécepteurs et phototaxie des Flagellés et des stades unicellulaires d’organismes inférieurs. Ann. Biol. 21: 98–141.

    Google Scholar 

  • Halldal, P. (1964) Phototaxis in Protozoa. In: Biochemistry and Physiology of Protozoa. III. Ed. S.H. Hunter. New York, Academic Press, p. 277–296.

    Google Scholar 

  • Harrington, N.R. & Learning, E. (1900) The reactions of Amoeba to light of different colors. Am. J. Physiol. 3: 9–66

    Google Scholar 

  • Heelis, D.V., Heelis, P.F., Bradshaw, F., & Phillips, G.O. (1981) Does the stigma of Euglena gracilis play an active role in the photoreception processes of this organism? A photochemical investigation of isolated stigmata. Photobiochem. Photobiophys. 3: 77–81.

    Google Scholar 

  • Heelis, D.V., Heelis, P.F., Kernick, N.A. & Phillips, G O. (1980) The stigma of Euglena gracilis strain 2: An investigation into the possible occurrence of carotenoids and nucleic acids. Cytobios. 29: 135–143.

    Google Scholar 

  • Hitchcock, L. (1961) Color sensitivity of the amoeba revisited. J. Protozool. 8: 322–324.

    Google Scholar 

  • Holt, E.B. & Lee, F.S. (1901) The theory of phototactic response. Amer. J. Physiol. 4: 460–468.

    Google Scholar 

  • Hyams, J.S. & Borisy, G.G. (1978) Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J. Cell. Sei. 33: 235–253

    Google Scholar 

  • Jahn, T.L. & Bovee, E.C. (1968) Locomotion and motile responses of Euglena. In: The Biology of Euglena. Vol. I. Ed. D.E. Buetow. New York, Academic Press, p. 45–108.

    Google Scholar 

  • Karakashian, S.D., Karakashian, M.W. & Rudzinska, M.A. (1968) Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J. Protozool. 15: 113–128.

    Google Scholar 

  • Kato, M., Shinzawa, K. & Yoshikawa, S. (1981) Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem. Photobiophys. 2: 263–269.

    Google Scholar 

  • Lenci, F. & Colombetti, G. (1980) Photoreception and Sensory Transduction in Aneural Organisms. (NATO-ASI). New York, Plenum Press, 422 pages.

    Google Scholar 

  • Levine, N.D., Corliss, J.O., Cox, F.E.G., Deroux, G., Grain, J., Honigberg, B.M., Ceedale, G.F., Loeblich, A.R., Lom, J. Lynn D., Merinfeld, D., Page, E.G., Poljansky, G., Sprague, V., Vaura, J. & Wallace, F.G. (1980) A newly revised classification of the Protozoa. J. Protozool. 27: 37–58.

    Google Scholar 

  • Mast, S.O. (1906) Light reactions in lower organisms. I. Stentor coeruleus. J. Exp. Zool. 3: 359–399.

    Article  Google Scholar 

  • Mast, S.O. (1911) Light and the Behaviour of Organisms. London, New York, John Wiley & Sons.

    Book  Google Scholar 

  • Mast, S.O. (1930) Response of Amoeba to localized photic stimulation. Anat. Ree. 47: 283–284.

    Article  Google Scholar 

  • Mast, S.O. (1931) The nature of response to light in Amoeba proteus. Z. vergl. Physiol. 15: 137–147.

    Article  Google Scholar 

  • Mast, S.O. (1932) Localized stimulation, transmission of impulses and the nature of response in Amoeba. Physiol. Zool. 5: 1–15.

    Google Scholar 

  • Mast, S.O. (1964) Motor responses in unicellular animals. V. In: Protozoa in Biological Research. Ed. G.N. Calkins & F.M. Summers. New York, Hafner Publishing Co., p. 271–351.

    Google Scholar 

  • Mast, S.O. & Stahler, N. (1937) The relation between luminous intensity, adaptation to light and rate of locomotion in Amoeba proteus. Biol. Bull. 63: 126–133.

    Google Scholar 

  • Morel-Laurens, N.M.L. & Feinlab, M.E. (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem. Photobiol. 37: 189–194.

    Article  Google Scholar 

  • Naitoh, Y. (1974) Bioelectric basis of behavior in Protozoa. Am. Zool. 14: 883–893.

    Google Scholar 

  • Naitoh, Y. & Kaneko, H. (1972) Reactivated Triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions. Science 176: 523–524.

    Google Scholar 

  • Nichols, K.M. & Rikmenspoel, R. (1980) Flagellar waveform reversal in Euglena. Expt. Cell Res. 129: 337–381.

    Article  Google Scholar 

  • Ninnemann, H. (1980) Blue photoreceptors. BioSci. 30: 166–170.

    Article  Google Scholar 

  • Pado, R. (1972) Spectral activity of light and phototaxis in Paramecium bursaria. ActaProtozool.il: 387–393.

    Google Scholar 

  • Rogers, J. (1976) When did evolution take its biggest step? New Scientist 71: 333.

    Google Scholar 

  • Saji, M. & Oosawa, F. (1974) Mechanism of photoaccumulation in Paramecium bursaria. J. Protozool. 21: 556–561.

    Google Scholar 

  • Sakaguchi, H. & Tawada, K. (1977) Temperature effect on the photoaccumulation and phobic response of Volvox aureus. J. Protozool. 24: 284–288

    Google Scholar 

  • Schietz, K. (1976) Phototaxis bei Volvox pigment system der licht- richtungsperzeption. Z. Pflanzenphysiol. 77: 189–211.

    Google Scholar 

  • Schmidt, J.A. & Eckert, R. (1976) Calcium couples flagellar reversal to photostimulation in Chlamydonomas reinhardii. Nature (Lond.) 262: 713–715.

    Article  Google Scholar 

  • Song, P.S. (1981) Photosensory transduction in Stentor coeruleus and related organisms. Biochem. Biophys. Acta 639: 1–29.

    Google Scholar 

  • Song, P.S. (1981) Photosensory transduction in Stentor coeruleus and related organisms. Biochem. Biophys. Acta 639: 1–29.

    Google Scholar 

  • Song, P.S., Walker, E.B. & Yoon, M.J. (1980) Molecular aspects of photoreceptor functions in Stentor coeruleus. In: Photoreception and Sensory Transduction in Aneural Organisms. (NATO-ASI). Ed. F. Lenci & G. Colombetti. New York, Plenum Press, p. 241–252.

    Google Scholar 

  • Song, P.S., Walker, B., Auerbach, R.A. & Robinson, 3. (1981) Proton release from Stentor photoreceptors in the excited states. Biophy. 3. 35: 551 - 555.

    Article  Google Scholar 

  • Tartar, V. (1961) The Biology of Stentor. New York, Pergamon Press. 413 pages.

    Google Scholar 

  • Taylor, D.L., Condeelis, J.S., Moore, P.L. & Allen, R.D. The contractile basis of amoeboid movement. I. Chemical control of motility in isolated cytoplasm. 3. Cell. Biol. 59: 378–394.

    Google Scholar 

  • Tuffrau, M. (1957) Les facteurs essentiels du phototactisme chez le Cilié hétérotriche Stentor niger. Bull. Soc. Zool. Fr. 82: 354–356.

    Google Scholar 

  • Walne, P.L. & Arnott, H.J. (1967) The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydo-monas. Planta 77: 325–353.

    Article  Google Scholar 

  • Watanabe, M. & Furuya, M. (1974) Action spectrum of phototaxis in a cryptomonad alga, Cryptomonas sg. Plant Cell Physiol. 15: 413–420.

    Google Scholar 

  • Wolken, J.J. & Shih, E. (1958) Photomotion in Euglena gracilis. I. Photokinesis and phototaxis. J. Protozool. 5: 39–46.

    Google Scholar 

  • Wood, D.C. (1973) Stimulus specific habituation in a Protozoan. Physiol. Behav. 11: 345–354.

    Article  Google Scholar 

  • Wood, D.C. (1976) Action spectrum and electrophysiological responses correlated with the photophobic response of Stentor coeruleus. Photochem. Photobiol. 24: 261–266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Couillard, P. (1984). Photoreception in Protozoa, An Overview. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics