Advertisement

Visual Pigments of Invertebrates

  • D. G. Stavenga
  • J. Schwemer
Part of the NATO ASI Series book series (NSSA, volume 74)

Abstract

An understanding of the photopigments is indispensable as, the primary process in photoreception starts with the absorption of light quanta by the photopigment molecules, which in turn triggers the long train of the visual process: molecular transformation, production of transmitter, ionic movements, and often substantial structural changes within the visual cells. Subsequently synaptic transmission of the electric signal to higher order neurons occurs and eventually a behavioural response is elicited, all this being the result of the initial absorption of light quanta.

Keywords

Spectral Sensitivity Visual Pigment Sensory Physiology Visual Cell Photoreceptor Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, M.A. (1975) Temperature and vision. Rev. Can. Biol. 34: 131–186.Google Scholar
  2. Autrum, H. (1981) Light and dark adaptation in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6C. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 1–91.Google Scholar
  3. Bader, C.R., Baumann, F., Bertrand, D., Carreras, J. & Fuortes, G. (1982). Diffuse and local effects of light adaptation in photoreceptors of the honey bee drone. Vision Res. 22: 311–317.Google Scholar
  4. Bernard, G.D. (1977) Discovery of red-receptors in butterfly retinas. Invest. Ophthalmol. Vis. Sei. 16: Suppl. 61.Google Scholar
  5. Bernard, G.D. (1979) Red-absorbing visual pigment of butterflies. Science 203: 1125–1127.Google Scholar
  6. Bernard, G.D. (1979) Red-absorbing visual pigment of butterflies. Science 203: 1125–1127.Google Scholar
  7. Bernard, G.D. (1982) Noninvasive optical techniques for probing insect photoreceptors. Meth. Enzymol. 81 (Part H): 752–763.Google Scholar
  8. Bernard, G.D. (1983) Bleaching of photoreceptors in eyes of intact butterflies. Science 219: 69–71.Google Scholar
  9. Bernard, G.D. & Stavenga, D.G. (1978) Spectral sensitivities of retinular cells measured in intact, living bumblebees by an optical method. Naturwissenschaften 65: 442–443.Google Scholar
  10. Bernard, G.D. & Stavenga, D.G. (1979) Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J. Comp. Physiol. 134: 95–107.Google Scholar
  11. Bernard, G.D. & Wehner, R. (1980) Intracellular optical physiology of the bee’s eye. I. Spectral sensitivity. J. Comp. Physiol. 137: 193–203.Google Scholar
  12. Bertrand, D., Fuortes, G. & Muri, R. (1979) Pigment transformations and electrical responses in retinula cells of drone, Apis mellifera ♂. J. Physiol. 296: 431–441.Google Scholar
  13. Blest,A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc. R. Soc. Lond. 200B: 463–483.Google Scholar
  14. Blest,A.D. (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implication. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum Press, p. 217–245.Google Scholar
  15. Blest,A.D. (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implication. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum Press, p. 217-245.Google Scholar
  16. Blest,A.D. & Day, W.A. (1978) The rhabdomere organization of some nocturnal spiders in light and darkness. Phil. Trans. R. Soc. Lond. 283B: 1–23.Google Scholar
  17. Boucher, F. & Leblanc, R.M. (1981) Photoacoustic spectroscopy of cattle visual pigment at low temperature. Biochem. Biophys. Res. Comm. 100: 385–390.Google Scholar
  18. Briggs, M.H. (1961) Visual pigment of grapsoid crabs. Nature (Lond.) 190: 784–786.Google Scholar
  19. Brown, P.K. & Brown, P.S. (1958) Visual pigments of the octopus and cuttlefish. Nature (Lond.) 182: 1288–1290.Google Scholar
  20. Brown, P.K. & White, R.H. (1972) Rhodopsin of the larval mosquito. J. Gen. Physiol. 59: 401–414.Google Scholar
  21. Bruno, M.S., Barnes, S.N. & Goldsmith, T.H. (1977) The visual pigment and visual cycle of the lobster Homarus. J. Comp. Physiol. 120: 123–142.Google Scholar
  22. Bruno, M.S. & Goldsmith, T.H. (1974) Rhodopsin of the blue crab Callinectes: evidence for absorption differences in vitro and in vivo. Vision Res. 14: 653 – 658.Google Scholar
  23. Callender, R.H. & Honig, B. (1977) Resonance Raman studies of visual pigments. Ann. Rev. Biophys. Bioeng. 6: 33–55.Google Scholar
  24. Cone,R.A. & Pak, W.L. (1971) The early receptor potential. In: Handbook of Sensory Physiology, Vol. 1. Ed. W.R. Loewenstein. Berlin, Heidelberg, New York, Springer, p. 345–365.Google Scholar
  25. Cornwall, M.C. & Gorman, A.L.F. (1979) Thermally stable photointerconvertible pigment states in scallop photoreceptor. Invest. Ophthalmol. (Suppl.) 16: 177.Google Scholar
  26. Cronin, T.W. & Goldsmith, T.H. (1981) Fluorescence of crayfish metarhodopsin studied in single rhabdoms. Biophys. J. 35: 653–664.Google Scholar
  27. Cronin, T.W. & Goldsmith, T.H. ( 1982 a) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J. Gen. Physiol. 79: 313–332.Google Scholar
  28. Cronin, T.W. & Goldsmith, T.H. (1982b) Quantum efficiency and photosensitivity of the rhodopsin £ metarhodopsin conversion in crayfish photoreceptors. Photochem. Photobiol. 36: 447–554.Google Scholar
  29. Dartnall, H.J.A. (1953) The interpretation of spectral sensitivity curves. Br. Med. Bull. 9: 24–30.Google Scholar
  30. Denys, C.J. & Brown, P.K. (1982) Euphausiid visual pigments: the rhodopsins of Euphausia superba and Meganyctiphanes norvegica (Crustacea, Euphausiacea). J. Gen. Physiol. 80: 451–472.Google Scholar
  31. Doukas, A.G., Stefancic, V., Suzuki, T., Callender, R.H. & Alfano, R.R. (1980) Squid bathorhodopsin forms within 10 picoseconds. Photobio- chem. Photobiophys. Is 305–308.Google Scholar
  32. Ebina, Y., Nagasawa, N. & Tsukahara, Y. (1975) An intermediate in the photolytic process of extracted squid rhodopsin. Jap. J. Physiol. 25: 217–226.Google Scholar
  33. Ebrey, T.G. & Honig, B. (1977) New wavelength-dependent visual pigment nomograms. Vision Res. 17: 147–151.Google Scholar
  34. Eguchi, E. & Waterman, T.H. (1976) Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell. Tissue Res. 169: 419–434.Google Scholar
  35. Fernandez, H.R. (1965) A Survey of the Visual Pigments of Decapod Crustacea of South Florida. Ph.D. Thesis, University of Miami, Coral Gables, Florida.Google Scholar
  36. Franceschini, N. (1972) Sur le Traitement Optique de Information Visuelle dans I’Oeil a Facettes de la Drosophile. Thesis, Grenoble.Google Scholar
  37. Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidel¬berg, New York, Springer, p. 98–125.Google Scholar
  38. Franceschini, N. (1977) In vivo fluorescence of the rhabdomeres in an insect eye. Proc. Int. Union Physiol. Sc. XIII, 237. XXVIIth Int. Congr. Paris.Google Scholar
  39. Franceschini, N. (1983a) In vivo microspectrofluorimetry of visual pigments. Symp. Soc. Exp. Biol. (In press).Google Scholar
  40. Franceschini, N. (1983b) The retinal mosaic of the fly compound eye. (This volume).Google Scholar
  41. Franceschini, N., Kirschfeld, K. & Minke, B. (1981) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264 - 1267.Google Scholar
  42. Frisch, K. von (1967) The Dance Language and Orientation of Bees. Cambridge, Belknap/Harvard University Press.Google Scholar
  43. Gemperlein, R., Paul, R., Lindauer, E. & Steiner, A. (1980) UV fine structure of the spectral sensitivity of flies visual cells, revealed by FIS ( Fourier Interferometric Stimulation ). Naturwissenschaften 67: 565–566.Google Scholar
  44. Gogala, M., Hamdorf, K. & Schwemer, J. (1970) UV-Sehfarbstoff bei Insekten. Z. vergl. Physiol. 70: 410–413.Google Scholar
  45. Goldman, L.J., Barnes, S.N. & Goldsmith, T.H. (1975) Microspectrophoto- metry of rhodopsin and metarhodopsin in the moth Galleria. J. Gen. Physiol. 66: 383–404.Google Scholar
  46. Goldsmith, T.H. (1972) The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 685–719.Google Scholar
  47. Goldsmith, T.H. (1975) Photoreceptor processes: some problems and perspectives. J. Exp. Zool. 194: 89-102.Google Scholar
  48. Goldsmith, T.H. (1978a) The spectral absorption of crayfish rhabdoms: Pigment, photoproduct and pH sensitivity. Vision Res. 18: 463–473.Google Scholar
  49. Goldsmith, T.H. & Bruno, M.S. (1973) Behaviour of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 147–153.Google Scholar
  50. Goldsmith, T.H. & Bruno, M.S. (1973) Behaviour of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 147 – 153.Google Scholar
  51. Hagins, W.A. & McGaughy, R.E. (1967) Molecular and thermal origins of fast photoelectric effects in squid retina. Science 157: 813–816.Google Scholar
  52. Gribakin, F.G. (1979) Cellular mechanisms of insect photoreception. Int. Rev. Cytol. 57: 127–184.Google Scholar
  53. Hagins, W.A. & McGaughy, R.E. (1967) Molecular and thermal origins of fast photoelectric effects in squid retina. Science 157: 813–816.Google Scholar
  54. Hamacher, K.J. & Kohl, K.D. (1981) Spectroscopical studies of the Astacus visual pigment. Biophys. Struct. Mech. 7: 338.Google Scholar
  55. Hamann, B. & Langer, H. (1980) Sehfarbstoffe im Auge des Wasserlauf er Gerris lacustris. Verh. Dtsch. Zool. G., p. 337.Google Scholar
  56. Hamdorf, K. (1979) The physiology of invertebrate visual pigments. In: Handbook of Sensory physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 145 – 224.Google Scholar
  57. Hamdorf, K., Gogala, M. & Schwemer, J. (1971) Beschleunigung der “Dunkeladaptation” eines UV-Rezeptors durch sichtbare Strahlung. Z. vergl. Physiol. 75: 189–199.Google Scholar
  58. Hamdorf, K. & Langer, H. (1965) Veränderungen der Lichtabsorption im Fazettenaugen bei Belichtung, Z. vergi. Physiol. 51: 172–184.Google Scholar
  59. Hamdorf, K. & Langer, H. (1965) Veränderungen der Lichtabsorption im Fazettenaugen bei Belichtung, Z. vergi. Physiol. 51: 172–184.Google Scholar
  60. Hamdorf, K., Paulsen, R. & Schwemer, J. (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochem¬istry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 155 – 166.Google Scholar
  61. Hamdorf, K., Paulsen, R., Schwemer, J. & Täuber, U. (1972) Photo- reconversion of invertebrate visual pigments. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer, p. 97 – 108.Google Scholar
  62. Hamdorf, K. & Schwemer, J. (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer, p. 263 – 289.Google Scholar
  63. Hamdorf, K., Schwemer, J. & Täuber, U. (1968) Der Sehfarbstoff, die Absorption der Rezeptoren und die spektrale Empfindlichkeit der Retina von Eledone moschata. Z. vergi. Physiol. 60: 375–415.Google Scholar
  64. Hara, T. & Hara, R. (1966) Photosensitive pigments found in cephalopod retina. Zool. Mag. Tokyo 75: 264–269.Google Scholar
  65. Hara, T. & Hara, R. (1972) Cephalopod retinochrome. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 720 – 746.Google Scholar
  66. Hara, T. & Hara, R. (1973) Biochemical properties of retinochrome. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 181 – 191.Google Scholar
  67. Hara, T. & Hara, R. (1982) Cephalopod retinochrome. Meth. Enzymol. 81 (Part H): 827 – 833.Google Scholar
  68. Hardie, R.C. (1979) Electrophysiological analysis of fly retina. I. Comparative properties of Rl-6 and R7 and R8. J. Comp. Physiol. 129: 19–33.Google Scholar
  69. Hardie, R.C., Franceschini, N. & Mein tyre, P.D. (1979) Electrophysiol¬ogical analysis of fly retina. II. Spectral mechanisms in R7 and R8. J. Comp. Physiol. 133: 23–39.Google Scholar
  70. Hays, D. & Goldsmith, T.H. (1969) Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergi. Physiol. 65: 218–232.Google Scholar
  71. Helversen, O. von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. Comp. Physiol. 80: 439–472.Google Scholar
  72. Hertel, H. (1980) The compound eye of Artemia salina (Crustacea). II. Analysis by electrophysiological methods. Zool. Jb. Physiol. 84: 15–25.Google Scholar
  73. Hillman, P., Dodge, F.A., Hochstein, S., Knight, B.W. & Minke, B. (1973) Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62: 77–86.Google Scholar
  74. Hillman, P., Hochstein, S. & Minke, B. (1972) A visual pigment with two physiologically active stable states. Science 175: 1486–1488.Google Scholar
  75. Horridge, G.A., Duniec, J. & Marçelja, L. (1981) A 24–hour cycle in single locust and mantis photoreceptors. J. Exp. Biol. 91: 307–322.Google Scholar
  76. Horridge, G.A., Duniec, J. & Marçelja, L. (1981) A 24-hour cycle in single locust and mantis photoreceptors. J. Exp. Biol. 91: 307–322.Google Scholar
  77. Horridge, G.A. & McLean, M. (1978) The dorsal eye of the mayfly Atelophlebia (Ephemeroptera). Proc. R. Soc. Lond. 200B: 137–150.Google Scholar
  78. Hubbard, R. & St. George, R.C.C. (1958) The rhodopsin system of the squid. J. Gen. Physiol. 41: 501–528.Google Scholar
  79. Hubbard, R. & St. George, R.C.C. (1958) The rhodopsin system of the squid. J. Gen. Physiol. 41: 501–528.Google Scholar
  80. Järvilehto, M. (1979) Receptor potentials in invertebrate visual cells. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 315 – 356.Google Scholar
  81. Kirschfeld, K. (1979) The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mech. 5: 117–128Google Scholar
  82. Kirschfeld, K., Feiler, R. & Minke, B. (1978) The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z. Naturforsch. 33c: 1009 – 1010.Google Scholar
  83. Kirschfeld, K. & Franceschini, N. (1977) Photostable pigments within the membrane of photoreceptors and their possible role. Biophys. Struct. Mech. 3: 191–194.Google Scholar
  84. Kito, Y., Naito, T. & Nashima, K. (1982) Purification of squid and octopus rhodopsin. Meth. Enzymol. 81 (Part H): 167–171.Google Scholar
  85. Kito, Y., Naito, T. & Nashima, K. (1982) Purification of squid and octopus rhodopsin. Meth. Enzymol. 81 (Part H): 167 – 171.Google Scholar
  86. Kong,K.-L., Fung, Y.M. & Wasserman, G.S. (1980) Filter-mediated colour vision with one visual pigment. Science 207: 783 – 786.Google Scholar
  87. Kropf, A., Brown, P.K. & Hubbard, R. (1959) Lumi- and meta-rhodopsins of squid and octopus. Nature (Lond.) 183: 446 – 450.Google Scholar
  88. Kruizinga, B., Kamman, R.L. & Stavenga, D.G. (1983) Laser-induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys. Struct. Mech. 9: 299–307.Google Scholar
  89. Lall, A.B., Lord, E.T. & Trouth, C.O. (1982) Vision in the firefly Photuris lucrescens (Coleoptera: Lampyridae): spectral sensitivity and selective adaptation in the compound eye. J. Comp. Physiol. 147: 195–200.Google Scholar
  90. Lall, A.B., Seliger, H.H., Biggley, W.H. & Lloyd, J.E. (1980) Ecology of colours of firefly bioluminescence. Science 210: 560 – 562.Google Scholar
  91. Land, M.F. (1981) Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 471 – 592.Google Scholar
  92. Langer, H. (1975) Properties and functions of screening pigments in insect eyes. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer, p. 429 – 455.Google Scholar
  93. Langer, H., Hamann, B. & Meinecke, C.C. (1979) Tetrachromatic visual system in the moth Spodoptera exempta. ( Insecta: Noctuidae). J. Comp. Physiol. 129: 235–239.Google Scholar
  94. Langer, H., Schlecht, P. & Schwemer, J. (1982) Microspectrophotometric investigation of insect visual pigments. Meth. Enzymol. 81 (Part H): 729 – 742.Google Scholar
  95. Langer, H. & Thorell, B. (1966) Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41: 673–677.Google Scholar
  96. Laughlin, S.B. & McGinness, S. (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res. 188: 427–447.Google Scholar
  97. Leggett, L.M.W. (1979) A retinal substrate for colour discrimination in crabs. J. Comp. Physiol. 133: 159–166.Google Scholar
  98. Leggett, L.M.W. & Stavenga, D.G. (1981) Diurnal changes in angular sensitivity of crab photoreceptors. J. Comp. Physiol. 144: 99–109.Google Scholar
  99. Lisman, J.E. & Sheline, Y. (1976) Analysis of the rhodopsin cycle in Limulus ventral photoreceptors using the early receptor potential. J. Gen. Physiol. 68: 487–501.Google Scholar
  100. Liu, R.S.H. & Matsumoto, H. (1982) Fluorine - labeled retinals and rhodopsins. Meth. Enzymol. 81 (Part H): 694–698Google Scholar
  101. Lythgoe, J.N. (1972) The adaptation of visual pigment to their photic environment. In: Handbook of Sensory Physiology, Vol. VII/1 • Ed. H.J.A. Dartna 11. Berlin, Heidelberg, New York, p. 566–624.Google Scholar
  102. Lythgoe, J.N. (1979) The Ecology of Vision. Oxford, Clarendon.Google Scholar
  103. Mclntyre, P. & Kirschfeld, K. (1981) Absorption properties of a photostable pigment (P456) in rhabdomere 7 of the fly. J. Comp. Physiol. 143: 3–15.Google Scholar
  104. Menzel, R. (1979) Spectral sensitivity and colour vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 503–580.Google Scholar
  105. Messenger, J.B. (1981) Comparative physiology of vision in molluscs. In: Handbook of Sensory Physiology, Vol. VII/6C. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 93–200.Google Scholar
  106. Miller, W.H. (1979) Ocular optical filtering. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 69–143.Google Scholar
  107. Miller, W.H. & Bernard, G.D. (1968) Butterfly glow. J. Ultrastruct. Res. 24: 286–294.Google Scholar
  108. Minke, B., Hochstein, S. & Hillman, P. (1973) Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. Gen. Physiol. 62: 87–104.Google Scholar
  109. Minke, B., Hochstein, S. & Hillman, P. (1974) Derivation of a quantitative kinetic model for a visual pigment from observations of early receptor potential. Biophys. J. 14: 490–512.Google Scholar
  110. Minke, B. & Kirschfeld, K. (1978) Microspectrophotometric evidence for two photo-interconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol. 71: 37–45.Google Scholar
  111. Minke, B. & Kirschfeld, K. (1979) The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J. Gen. Physiol. 73: 517–540.Google Scholar
  112. Minke, B. & Kirschfeld, K. (1980) Fast electrical potentials arising from activation of metarhodopsin in the fly. J. Gen. Physiol. 75: 381–402.Google Scholar
  113. Morton, R.A. (1972) The chemistry of the visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 33–68.Google Scholar
  114. Muri, R.B. (1978) Microspectrophotometry of rhabdomes in the honeybee drone. Neurosci. Lett. Suppl. 1: S410.Google Scholar
  115. Muri, R.B. (1979) Microspectrophotometrie visible et UV des rhabdomes isolés de la rétine du faux-bourdon (Apis mellifera). Ph.D. Thesis, University of Geneva.Google Scholar
  116. Nässei, D.R. & Waterman, T.H. (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J. Comp. Physiol. 131: 205–216.Google Scholar
  117. Naito, T., Nashima-Hayama, K., Ohtsu, K. & Kito, Y. (1981) Photo- reactions of cephalopod rhodopsin. Vision Res. 21: 935 – 941.Google Scholar
  118. Nashima, K., Mitsudo, M. & Kito, Y. (1979) Molecular weight and structural studies on cephalopod rhodopsin. Biochim. Biophys. Acta 579: 155–168.Google Scholar
  119. Nowikoff, M. (1931) Untersuchungen über die Komplexeaugen von Lepidopteren nebst einigen Bemerkungen über die Rhabdome der Arthropoden im Allgemeinen. Z. Wiss. Zool. 138: 1–67.Google Scholar
  120. Nowikoff, M. (1931) Untersuchungen über die Komplexeaugen von Lepidopteren nebst einigen Bemerkungen über die Rhabdome der Arthropoden im Allgemeinen. Z. Wiss. Zool. 138: 1–67.Google Scholar
  121. Olivo, R.F. & Chrismer, K.L. (1980) Spectral sensitivity of screening pigment migration in retinula cells of the crayfish Procambarus. Vision Res. 20: 385 – 389.Google Scholar
  122. Ostroy, S.E. (1977) Rhodopsin and the visual process. Biochim. Biophys. Acta 463: 91–125.Google Scholar
  123. Ostroy, S.E. (1978) The characteristics of Drosophila rhodopsin in wild type and norp A vision transduction mutant. J. Gen. Physiol. 72: 717–732.Google Scholar
  124. Ostroy, S.E., Wilson, M. & Pak, W.L. (1974) Drosophila rhodopsin: Photochemistry, extraction and differences in the norp A phototransduction mutant. Biochem. Biophys. Res. Commun. 59: 960–966.Google Scholar
  125. Packer, L. (Ed.) (1982) Methods in Enzymology, Vol. 81, Biomembranes, Part H. Visual Pigments and Purple Membranes, I. New York, Academic Press.Google Scholar
  126. Pak, W.L. & Lidington, K.J. (1974) Fast electrical potential from a long- lived, long-wavelength photoproduct of fly visual pigment. J. Gen. Physiol. 63: 740–756.Google Scholar
  127. Pask, C. & Barr ell, K.F. ( 1980 a) Photoreceptor optics Is Introduction to formalism and excitation in a lens-photoreceptor system. Biol. Cybern. 36: 1–8.Google Scholar
  128. Pask, C. & Barrell, K.F. ( 1980 b) Photoreceptor optics lis Application to angular sensitivity and other properties of a lens-photoreceptor system. Biol. Cybern. 36: 9–18.Google Scholar
  129. Paulsen, R. & Schwemer, J. (1972) Studies on the insect visual pigment sensitive to ultraviolet light: retinal as the chromophoric group. Biochim. Biophys. Acta 283: 520–529.Google Scholar
  130. Paulsen, R. ic Schwemer, J. (1973) Proteins of invertebrate photoreceptor membranes. Characterization of visual-pigment preparations by gel electrophoresis. Eur. J. Biochem. 40: 577–583.Google Scholar
  131. Paulsen, R. & Schwemer, J. (1979) Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim. Biophys. Acta 557: 385–390.Google Scholar
  132. Pepe, I.M. & Cugnoli, C. (1980) Isolation and characterization of a water-soluble photopigment from honeybee compound eye. Vision Res. 20: 97 - 102.Google Scholar
  133. Razmjoo, S. & Hamdorf, K. (1976) Visual sensitivity and the variation of total pigment content in the blowfly photoreceptor membrane. J. Comp. Physiol. 105: 279–286.Google Scholar
  134. Razmjoo, S. & Hamdorf, K. (1976) Visual sensitivity and the variation of total pigment content in the blowfly photoreceptor membrane. J. Comp. Physiol. 105: 279–286.Google Scholar
  135. Schlecht, P., Hamdorf, K. & Langer, H. (1978) The arrangement of colour receptors in a fused rhabdom of an insect. J. Comp. Physiol. 123: 239–243.Google Scholar
  136. Schwemer, J. (1979) Molekulare Grundlagen der Photorezeption bei der Schmeissfliege Calliphora erythrocephala Meig. Habilitationsschrift, Bochum.Google Scholar
  137. Schwemer, J. (1979) Molekulare Grundlagen der Photorezeption bei der Schmeissfliege Calliphora erythrocephala Meig. Habilitationsschrift, Bochum.Google Scholar
  138. Schwemer, J., Gogala, M. & Hamdorf, K. (1971) Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z. vergl. Physiol. 75: 174–188.Google Scholar
  139. Schwemer, J. & Langer, H. (1982) Insect visual pigments. Meth. Enzymol. 81 (Part H): 182 – 190.Google Scholar
  140. Schwemer, J. & Paulsen, R. (1973) Three visual pigments in Deilephila elpenor ( Lepidoptera, Sphingidae). J. Comp. Physiol. 86: 215–229.Google Scholar
  141. Shichida, Y., Kobayashi, T., Ohtani, H., Yoshizawa, T. & Nagakura, S. (1978) Picosecond laser photolysis of squid rhodopsin at room and low temperatures. Photochem. Photobiol. 27: 335–341.Google Scholar
  142. Shriver, J.W., Mateescu, G.D. & Abrahamson, E.W. (1982) C NMR spectroscopy of the chromophore of rhodopsin. Meth. Enzymol. 81 (PartH): 698 – 703.Google Scholar
  143. Snyder, A.W., Menzel, R. & Laughlin, S.B. (1973) Structure and function of the fused rhabdom. J. Comp. Physiol. 87: 99–135.Google Scholar
  144. Snyder, A.W. & Miller, W.H. (1972) Fly colour vision. Vision Res. 12: 1389 – 1396.Google Scholar
  145. Snyder, A.W. & Pask, C. (1973) Spectral sensitivity of dipteran retinula cells. J. Comp. Physiol. 84: 59–76.Google Scholar
  146. Stark, W.S., Ivanyshyn, A.M. & Greenberg, R.M. (1977) Sensitivity and photopigments of Rl-6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca. J. Comp. Physiol. 121: 289–305.Google Scholar
  147. Stark, W.S. & Johnson, M.A. (1980) Microspectrophotometry of Drosophila visual pigments: determinations of conversion efficiency in Rl-6 receptors. J. Comp. Physiol. 140: 275–286.Google Scholar
  148. Stavenga, D.G. (1975) Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem. Photobiol. 21: 105–110.Google Scholar
  149. Stavenga, D.G. (1975) Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem. Photobiol. 21: 105–110.Google Scholar
  150. Stavenga, D.G. (1976) Fly visual pigments. Difference in visual pigments of blowfly and dronefly peripheral retinula cells. 3. Comp. Physiol. Ill: 137 – 152.Google Scholar
  151. Stavenga, D.G. (1979) Pseudopupils of compound eyes. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 357 – 439.Google Scholar
  152. Stavenga, D.G. (1980) Short wavelength light in invertebrate visual sense cells - Pigments, potentials and problems. In: The Blue Light Syndrome. Ed. H. Senger. Berlin, Heidelberg, New York, Springer, p. 5 – 24.Google Scholar
  153. Stavenga, D.G. & Barneveld, H.H. van. (1975) On dispersion in visual photoreceptors. Vision Res. 15: 1091 – 1095.Google Scholar
  154. Stavenga, D.G. & Franceschini, N. (1981) Fly visual pigment states, rhodopsin R490, metarhodopsins M and Mf, studied by transmission and fluorescence microspectrophotometry in vivo. Invest. Ophth. Vis. Sei. ( Suppl. ) 20: 111.Google Scholar
  155. Stavenga, D.G., Franceschini, N. & Kirschfeld, K. (1983) Fluorescence of visual pigments studied in the eye of intact flies. (Submitted).Google Scholar
  156. Stavenga, D.G., Numan, J.A.J., Tinbergen, J. & Kuiper, J.W. (1977) Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J. Comp. Physiol. 113: 73–93.Google Scholar
  157. Stavenga, D.G., Zantema, A. & Kuiper, 3.W. (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 175 – 180.Google Scholar
  158. Stein,P.J., Brammer, J.D. & Ostroy, S.E. (1978) Renewal of opsin in the photoreceptor cells of the mosquito. J. Gen. Physiol. 74: 565–582.Google Scholar
  159. Stephenson, R.S. & Pak, W.L. (1980) Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J. Gen. Physiol. 75: 353–379.Google Scholar
  160. Suzuki, T., Sugahara, M. & Kito, Y. (1972) An intermediate in the photoregeneration of squid rhodopsin. Biochim. Biophys. Acta 275: 260–270.Google Scholar
  161. Suzuki, T., Sugahara, M. & Kito, Y. (1972) An intermediate in the photoregeneration of squid rhodopsin. Biochim. Biophys. Acta 275: 260–270.Google Scholar
  162. Suzuki, T., Uji, K. & Kito, Y. (1976) Studies on cephalopod rhodopsin: photoisomerization of the chromophore. Biochim. Biophys. Acta 428: 321–338.Google Scholar
  163. Takeuchi, J. (1966) Photosensitive pigments in the cephalopod retina. J. Nara Med. Assoc. 17: 433 – 448.Google Scholar
  164. Tokunaga, F., Shichida, Y. & Yoshizawa, T. (1975) A new intermediate between lumirhodopsin and metarhodopsin in squid. FEBS Lett. 55: 229 – 232.Google Scholar
  165. Tsukahara, Y. & Horridge, G.A. (1977) Visual pigment spectra from sensitivity measurements after chromatic adaptation of single fly retinula cells. J. Comp. Physiol. 114: 233–251.Google Scholar
  166. Tsukahara, Y., Horridge, G.A. & Stavenga, D.G. (1977) Afterpotentials in dronefly retinula cells. J. Comp. Physiol. 114: 253–266.Google Scholar
  167. Vogt, K. (1980) Die Spiegeloptik des Flusskrebsauge. J. Comp. Physiol. 135: 1–19.Google Scholar
  168. Vogt, K., Kirschfeld, K. & Stavenga, D.G. (1982) Spectral effects of the pupil in fly photoreceptors. J. Comp. Physiol. 146: 145–152.Google Scholar
  169. Vries,H. de & Kuiper J.W. (1958) Optics of the insect eye. Ann. N. Y. Acad. Sei. 74: 196 – 203.Google Scholar
  170. Wald, G. & Hubbard, R. (1957) Visual pigment of a decapod crustacean: the lobster. Nature (Lond.) 180: 278 – 280.Google Scholar
  171. Waterman, T.H. (1982) Fine structure and turnover of photoreceptor membranes. In: Visual Cells in Evolution. Ed. J.A. Westfall. New York, Raven Press, p. 23 – 41.Google Scholar
  172. White, R.H. (1968) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. III. Multivesicular bodies and protein uptake. J. Exp. Zool. 169: 261–278.Google Scholar
  173. White, R.H., Gifford, D. & Michaud, N.A. (1980) Turnover of photoreceptor membrane in the larval mosquite ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum, p. 271 – 296.Google Scholar
  174. White, R.H. & Sundeen, C.D. (1967) The effect of light and dark deprivation upon the ultrastructure of the larval mosquito eye. I. Polyribosomes and endoplasmatic reticulum. J. Exp. Zool. 164: 461– 478.Google Scholar
  175. Yoshizawa, T. & Shichida, Y. (1982a) Low-temperature spectrophotometry of intermediates of rhodopsin. Meth. Enzymol. 81 (Part H): 333–353Google Scholar
  176. Yoshizawa, T. & Shichida, Y. (1982 b) Low-temperature circular dichroism of intermediates of rhodopsin. Meth. Enzymol. 81 (Part H): 634–642.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. G. Stavenga
    • 1
  • J. Schwemer
    • 2
  1. 1.Department of BiophysicsLaboratorium voor Algemene Natuurkunde Rijksuniversiteit GroningenThe Netherlands
  2. 2.Institute for ZoophysiologyRuhr-Universität BochumFederal Republic of Germany

Personalised recommendations