Skip to main content

Neuroanatomical Mapping of Visually Induced Nervous Activity in Insects by 3H-Deoxyglucose

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

Physiological nervous activity can be visualized post mortem in neuroanatomical sections by the radioactive deoxyglucose technique. The visual system of flies Drosophila melanogaster and Musca domestica has been investigated by this method. By applying visual stimuli consisting of homogeneous flicker or striped patterns moving in a particular direction across the retina, movement-specific and direction-specific nervous activity has been localized in autoradiographs of semi-thin sections of Drosophila brains. Several layers in the second neuropil (medulla) respond to visual movement by enhanced uptake of radioactivity. Although directional specificity in these layers has not yet been detected by light microscopy, the corresponding nervous activity cannot simply be of the on-off type since visual flicker is considerably less effective. In the posterior part of the third visual neuropil (lobula plate) four layers can be identified, each of which responds to one particular spatial direction of movement, front-to-back, back-to-front, upward or downward. Similar direction-specific movement-sensitive labeling is found in the visual system of Musca where in addition axons and dendritic arborizations of individual labeled cells are clearly resolved. The relation of these findings to electrophysiological data on dipteran flies is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basinger, S.F, Gordon, W.C. & Lam D.M.K. (1979) Differential labeling of retinal neurones by 3H-2-deoxyglucose. Nature Lond.) 280: 682–684.

    Article  Google Scholar 

  • Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).

    Google Scholar 

  • Buchner, E. & Buchner, S. (1980) Mapping stimulus-induced nervous activity in small brains by 3H-2-deoxy-D-glucose. Cell Tissue Res. 211: 51–64.

    Article  Google Scholar 

  • Buchner, E. & Buchner, S. (1981) The deoxyglucose method for insects: Towards electron microscopical resolution. Eur. Neurol. 20: 152–156.

    Article  Google Scholar 

  • Buchner, E. & Buchner, S ( 1983 a) Anatomical localization of functional activity in insects by 3H-2-deoxy-D-glucose. In: Neuroanatomical Techniques, Vol. 2. Ed. N. 3. Strausfeld. Berlin Springer Verlag (In press).

    Google Scholar 

  • Buchner, E. & Büchner, S. (1983 b) Visual movement detection in Drosophila: A 3H-deoxyglucose study. (In prep.).

    Google Scholar 

  • Buchner, E., Buchner, S. & Hengstenberg, R. (1979) 2-deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Drosophila. Science 205: 687–688.

    Google Scholar 

  • Buchner, S. & Büchner, E. (1982) Functional neuroanatomical mapping in insects by 3H-2-deoxy-D-glucose at electron microscopical resolution. Neurosci. Lett. 28: 235–240.

    Article  Google Scholar 

  • Crone, C (1978) D-glucose - fuel for the brain. Trends Neursci. 1: 120–122.

    Article  Google Scholar 

  • Durham, D., Woolsey, T.A. & Kruger, L. (1981) Cellular localization of 2-3H-deoxy-D-glucose from paraffin-embedded brains. 3. Neurosci. 1: 519–526.

    Google Scholar 

  • Fehér, O. & Rojik, I. (1976) Fixation of traces of excitation at the cellular level. In: Neuron Concepts Today. Ed. J. Szentagothai, J. Hamori & E.S. Vizi. Symposium, Tihany, p. 213–230.

    Google Scholar 

  • Fischbach, K.F. & Heisenberg, M. (1981) Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc. Natl. Acad. Sei. USA 78: 1105–1109.

    Article  Google Scholar 

  • Franceschini, N. (1983) The retinal mosaic of the fly compound eye (This volume).

    Google Scholar 

  • Fromm, H.J. (1981) Mechanism and mode of regulation of brain hexokinase. In: The Regulation of Carbohydrate Formation and Utilization in Mammals. Ed. C.M. Veneziale. Univ. Park Press, Baltimore, p. 45–68.

    Google Scholar 

  • Hausen, K. (1983) The lobula-complex of the fly: Structure, function and significance in visual behaviour. (This volume).

    Google Scholar 

  • Heisenberg, M. (1983) Initiale Aktivität und Willkürverhalten bei Tieren. Naturwiss. 70: 70–78.

    Article  Google Scholar 

  • Hengstenberg, R. (1973) The effect of pattern movement on impulse activity of the cervical connective of Drosophila melanogaster. Z. Naturforsch. 28c: 593–596.

    Google Scholar 

  • Kai Kai, M.A. & Pentreath, V.W. (1981) High resolution analysis of 3H-2-deoxyglucose incorporation into neurons and glia cells in invertebrate ganglia: histological processing of nervous tissue for selective marking of glycogen. 3. Neurocytol. 10: 693–708.

    Google Scholar 

  • Lancet, D., Greer, C.A., Kauer, J. & Shepherd, G.M. (1982) Mapping of odor-related neuronal activity in the olfactory bulb by high- resolution 2-deoxyglucose autoradiography. Proc. Natl. Acad. Sci. USA 79: 670–674.

    Article  Google Scholar 

  • Laughlin, S.B. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye. (This volume).

    Google Scholar 

  • Mark, R.E, & Sperling, H.G. (1976) Color receptor identities of goldfish cones. Science 191: 487–489.

    Article  Google Scholar 

  • Meinertzhagen, I. (1983) The rules of synaptic assembly in the developing insect lamina. (This volume).

    Google Scholar 

  • Parducz, A. & Joo, F. (1976) Visualization of stimulated nerve endings by preferential calcium accumulation of mitochondria. J. Cell. Biol. 69: 513–517.

    Article  Google Scholar 

  • Pierantoni, R. (1978) A look into the cock-pit of the fly. The architecture of the lobula plate. Cell. Tissue Res. 171: 101–122.

    Google Scholar 

  • Sans, A., Pujol, R., Carlier, E. & Calas, A. (1980) Détection cellulaire de l’incorporation in vivo de 2-deoxyglucose tritie. Etude radioauto- graphique dans l’oreille interne. C.R. Acad. Sc. Paris 290D: 1225–1227.

    Google Scholar 

  • Sejnowski, T.J., Reingold, S.C., Kelley, D.B. & Gelperin, A. (1980) Localization of 3H-2-deoxyglucose in single molluscan neurones. Nature 287: 449–451.

    Article  Google Scholar 

  • Sokoloff, L. (1982) The radioactive deoxyglucose method. Theory, procedure, and applications for the measurement of local glucose utilization in the central nervous system. Adv. Neurochem. 4: 1–82.

    Article  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, CUS., Pettigrew, K.D., Sakurada, O. & Shinohara, M. (1977) The C-deoxy-glucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. 3. Neurochem. 28: 897–916.

    Google Scholar 

  • Stavenga, D.G & Schwemer, J. (1983) Visual pigments of invertebrates. (This volume).

    Google Scholar 

  • Strausfeld, N J. (1976) Atlas of an Insect Brain. Springer, Berlin.

    Book  Google Scholar 

  • Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume).

    Google Scholar 

  • Strausfeld, N.J. & Bacon J.P. (1983) Multimodal convergence at the descending neurons in the central nervous system of the fly Musca domestica. In: Multimodal Convergence of Sensory Systems. Ed. E. Horn. Fortschr. Zool. 27. (In press).

    Google Scholar 

  • Wagner, H.J., Pilgrim, C. & Zwerger, H. (1979) A system of cells in the unstimulated rat brain characterized by preferential accumulation of H-deoxyglucose. Neurosci. Lett. 15: 181–186.

    Article  Google Scholar 

  • Wagner, H.J., Hoffmann, K.P. & Zwerger, H. (1981) Layer specific labelling of cat visual cortex after stimulation with visual noise: a 3H-2-deoxy-D-glucose study. Brain Res. 224: 31–43.

    Article  Google Scholar 

  • Wegener, G. (1981) Comparative aspects of energy metabolism in non- mammalian brains under normoxic and hypoxic conditions. In: Animal Models and Hypoxia. Ed. V. Stefanovich. Pergamon Press, Oxford, p. 87–109.

    Google Scholar 

  • Witkovsky, P. & Yang, C.Y. (1982) Uptake and localization of 3H-2-deoxy D-glucose by retinal photoreceptors. 3. Comp. Neurol. 204: 105-116.Laughlin, S.B. ( 1983 ) The roles of parallel channels in early visual processing by the arthropod compound eye. ( This volume ).

    Google Scholar 

  • Mark, R.E, & Sperling, H.G. (1976) Color receptor identities of goldfish cones. Science 191: 487–489.

    Article  Google Scholar 

  • Meinertzhagen, I. (1983) The rules of synaptic assembly in the developing insect lamina. (This volume).

    Google Scholar 

  • Parducz, A. & Joo, F. (1976) Visualization of stimulated nerve endings by preferential calcium accumulation of mitochondria. J. Cell. Biol. 69: 513–517.

    Article  Google Scholar 

  • Pierantoni, R. (1978) A look into the cock–pit of the fly. The architecture of the lobula plate. Cell. Tissue Res. 171: 101–122.

    Google Scholar 

  • Sans, A., Pujol, R., Carlier, E. & Calas, A. (1980) Détection cellulaire de l’incorporation in vivo de 2-deoxyglucose tritie. Etude radioauto-graphique dans l’oreille interne. C.R. Acad. Sc. Paris 290D: 1225–1227.

    Google Scholar 

  • Sejnowski, T.J., Reingold, S.C., Kelley, D.B. & Gelperin, A. (1980) Localization of 3H–2–deoxyglucose in single molluscan neurones. Nature 287: 449–451.

    Article  Google Scholar 

  • Sokoloff, L. (1982) The radioactive deoxyglucose method. Theory, procedure, and applications for the measurement of local glucose utilization in the central nervous system. Adv. Neurochem. 4: 1–82.

    Article  Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M.H., Patlak, CUS., Pettigrew, K.D., Sakurada, O. & Shinohara, M. (1977) The C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. 3. Neurochem. 28: 897–916.

    Google Scholar 

  • Stavenga, D.G & Schwemer, J. (1983) Visual pigments of invertebrates. (This volume).

    Google Scholar 

  • Strausfeld, N J. (1976) Atlas of an Insect Brain. Springer, Berlin.

    Book  Google Scholar 

  • Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume).

    Google Scholar 

  • Strausfeld, N.J. & Bacon J.P. (1983) Multimodal convergence at the descending neurons in the central nervous system of the fly Musca domestica. In: Multimodal Convergence of Sensory Systems. Ed. E. Horn. Fortschr. Zool. 27. (In press).

    Google Scholar 

  • Wagner, H.J., Pilgrim, C. & Zwerger, H. (1979) A system of cells in the unstimulated rat brain characterized by preferential accumulation of H–deoxyglucose. Neurosci. Lett. 15: 181–186.

    Article  Google Scholar 

  • Wagner, H.J., Hoffmann, K.P. & Zwerger, H. (1981) Layer specific labelling of cat visual cortex after stimulation with visual noise: a 3H-2-deoxy-D-glucose study. Brain Res. 224: 31–43.

    Article  Google Scholar 

  • Wegener, G. (1981) Comparative aspects of energy metabolism in non–mammalian brains under normoxic and hypoxic conditions. In: Animal Models and Hypoxia. Ed. V. Stefanovich. Pergamon Press, Oxford, p. 87–109.

    Google Scholar 

  • Witkovsky, P. & Yang, C.Y. (1982) Uptake and localization of 3H-2-deoxy D-glucose by retinal photoreceptors. J. Comp. Neurol. 204: 105–116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Buchner, E., Buchner, S. (1984). Neuroanatomical Mapping of Visually Induced Nervous Activity in Insects by 3H-Deoxyglucose. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics