Advertisement

The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour

  • Klaus Hausen
Part of the NATO ASI Series book series (NSSA, volume 74)

Abstract

The lobula-complex of flies consists of the highest order visual neuropils of the optic lobe, the lobula plate and the lobula. Anatomical and electrophysiological investigations of the lobula plate have revealed that it contains a system of large directionally selective motion sensitive interneurons. The structure, response characteristics and synaptic interactions of these interneurons are described. There is strong evidence that the lobula plate is the main motion computation centre of the optic lobe controlling the optomotor responses of the fly. Additional functions in the visual fixation and tracking behaviour and in the figure-ground discrimination seem likely. The lobula has so far been studied only anatomically but not physiologically. Rather indirect evidence suggests that it computes visual signals initiating escape behaviour. The existence of male specific interneurons in this neuropil indicates that it is additionally involved in the control of chasing behaviour typical of males.

Keywords

Receptive Field Horizontal Cell Optic Lobe Thoracic Ganglion Directional Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman, J.S.& Tyrer, N.M. (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J. Comp. Neurol. 172: 431–439.Google Scholar
  2. Arnett, D.W. (1972) Spatial and temporal integration properties of units in the first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444.Google Scholar
  3. Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1975) Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. Comp. Physiol. 102: 305–320.Google Scholar
  4. Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1977) Retinal lattice, visual field and binocularities in flies. J. Comp. Physiol. 119: 207–220.Google Scholar
  5. Bishop, C.A.& Bishop, L.G. (1981) Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. J. Neurobiol. 12: 281–296.Google Scholar
  6. Bishop, L.G. (1969) A search for color encoding in the responses of a class of fly interneurons. Z. vergl. Physiol. 64: 355–371.Google Scholar
  7. Bishop, L.G.& Keehn, D.G. (1966) Two types of neurones sensitive to motion in the optic lobe of the fly. Nature (Lond.) 212: 1374–1376.Google Scholar
  8. Bishop, L.G., Keehn, D.G.& McCann, G.D. (1968) Motion detection by interneurons of optic lobes and brain of the flies, Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31: 509–525.Google Scholar
  9. Blondeau, J. (1977) Electrically evoked motor activity in the fly (Calliphora erythrocephala). Dissertation, Eberhard-Karls-Universität Tübingen.Google Scholar
  10. Blondeau, J. (1981) Electrically evoked course control in the fly Calliphora erythrocephala. J. Exp. Biol. 92: 143–153.Google Scholar
  11. Blondeau, J.& Heisenberg, M. (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wild-type and the mutant optomotor blind H31. J. Comp. Physiol. 145: 321–329.Google Scholar
  12. Bloom, J.W.& Atwood, H.L. (1980) Effects of altered sensory experience on the responsiveness of the locust descending contralateral movement detector neuron. J. Comp. Physiol. 135: 191–199.Google Scholar
  13. Braitenberg, V. (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3: 271–298.Google Scholar
  14. Braitenberg, V. (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7: 235–242.Google Scholar
  15. Braitenberg, V. (1972) Periodic structures and structural gradients in the visual ganglia of the fly. In: Information Processing in the Visual Systems of Arthropods. Ed. R Wehner. Berlin, Heidelberg, New York, Springer-Verlag, p. 3–15.Google Scholar
  16. Braitenberg, V.& Hauser-Holshuch, H. (1972) Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurones in relation to models of movement perception. Exp. Brain Res. 16: 184–209.Google Scholar
  17. Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.Google Scholar
  18. Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).Google Scholar
  19. Buchner, E., Götz, K.G.& Straub, C. (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235–242.Google Scholar
  20. Burrows, M. (1973) The morphology of an levator and a depresser motoneuron of the hindwing of a locust. J. Comp. Physiol. 83: 165–178.Google Scholar
  21. DeVoe, R.D. (1980) Movement sensitivities of cells in the fly’s medulla. J. Comp. Physiol. 138: 93–119.Google Scholar
  22. DeVoe, R.D.& Ockleford, E.M. (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol. Cybern. 23: 13–24.Google Scholar
  23. Dvorak, D.R., Bishop, L.G.& Eckert, H.E. (1975) On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100: 5–23.Google Scholar
  24. Dvorak, D., Srinivasan, M.V.& French, A.S. (1980) The contrast sensitivity of fly movement-detecting neurons. Vision Res. 20: 397–407.Google Scholar
  25. Eckert, H. (1978) Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour. Nature (Lond.) 271: 358–360.Google Scholar
  26. Eckert, H. (1979) Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Insekten (Phaenicia). Habilitationsschrift, Universität Bochum.Google Scholar
  27. Eckert, H. (1980) Functional properties of the HI-neurone in the third optic ganglion of the blowfly, Phaenicia. J. Comp. Physiol. 135: 29–39.Google Scholar
  28. Eckert, H. (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J. Comp. Physiol. 143: 511–526.Google Scholar
  29. Eckert, H.& Bishop, L.G. (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata ( Diptera, Calliphoridae). J. Comp. Physiol. 126: 57–86.Google Scholar
  30. Eckert, H.E.A.& Hamdorf, K. (1981) Action potentials in “non-spiking” visual interneurones. Z. Naturforsch. 36c: 470–474.Google Scholar
  31. Eckert, H.& Meiler, K. (1981) Synaptic structures of identified, motion- sensitive interneurones in the brain of the fly, Phaenicia. Verh. Dtsch. Zool. Ges. 1981: 179.Google Scholar
  32. Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder& R. Menzel. Berlin, Heidelberg, New York, Springer Verlag, p. 98–125.Google Scholar
  33. Franceschini, N. (1983) The retinal mosaic of the fly compound eye (This volume).Google Scholar
  34. Franceschini, N., Hardie, R, Ribi, W.& Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature (Lond.) 291: 241–244.Google Scholar
  35. Franceschini, N., Münster, A.& Heurkens, G. (1979) Äquatoriales und binokulares Sehen bei der Fliege Calliphora erythrocephala. Verh. Dtsch. Zool. Ges. 1979: 209.Google Scholar
  36. Geiger, G. (1981) Is there a motion independent position computation of an object in the visual system of the housefly? Biol. Cybern. 40: 71–75.Google Scholar
  37. Geiger, G& Nässei, D.R. (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature (Lond.) 293: 398–399.Google Scholar
  38. Geiger, G. & Nässel, D. (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol. Cybern. 44: 141–149.Google Scholar
  39. Goodman, C. (1974) Anatomy of locust ocellar interneurons: Constancy and variability. J. Comp. Physiol. 95: 185–201.Google Scholar
  40. Götz, K.G. (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208.Google Scholar
  41. Götz, K.G. (1982) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. BIONA-report 2. Ed. W. Nachtigall. Stuttgart, New York, Gustav Fischer, p. 21–33.Google Scholar
  42. Götz, K.G.& Buchner, E. (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybern. 31: 243–248.Google Scholar
  43. Götz, K.G., Hengstenberg, B.& Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol. Cybern. 35: 101–112.Google Scholar
  44. Hardie, R.C. (1979) Electrophysiological analysis of the fly retina. I. Comparative properties of Rl-6 and R7 and 8. J. Comp. Physiol. 129: 19–33.Google Scholar
  45. Hardie, R.C., Franceschini, N.& Mein tyre, P.D. (1979) Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–29.Google Scholar
  46. Hardie, R.C., Franceschini, N., Ribi, W.& Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.Google Scholar
  47. Hausen, K. ( 1976 a) Struktur, Funktion und Konektivität bewegungsempfindlicher Interneuroney im dritten optischen Neuropil der Schmeissfliege Calliphora erythrocephala. Dissertation, Eberhard-Karls-Universität Tübingen.Google Scholar
  48. Hausen, K. (1976 b) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31 c: 629–633.Google Scholar
  49. Hausen, K. (1976 c) Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 1976: 254.Google Scholar
  50. Hausen, K. (1977) Signal processing in the insect eye. In: Function and Formation of Neural Systems. Ed. G.S. Stent. Berlin, Dahlem Konferenzen, p. 81–110.Google Scholar
  51. Hausen, K. (1979) Neural circuitry of visual orientation behavior in flies: structure and function of the lobula complex. Invest. Ophthalmol. Visual Sei. ( Suppl. ) 18: 109.Google Scholar
  52. Hausen, K. (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 1981: 49–70.Google Scholar
  53. Hausen, K. ( 1982 a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45: 143–156.Google Scholar
  54. Hausen, K. ( 1982 b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46: 67–79.Google Scholar
  55. Hausen, K. ( 1983 a) Motion sensitive interneurons in the optomotor system of the fly. I II. The centrifugal horizontal cells. ( In prep. )Google Scholar
  56. Hausen, K. (1983 b) Motion sensitive interneurons in the optomotor system of the fly. IV. The Hl, H2 and H3 cells. (In prep.)Google Scholar
  57. Hausen, K. ( 1983 c) Motion sensitive interneurons in the optomotor system of the fly. V. Monocular and binocular interactions. ( In prep. )Google Scholar
  58. Hausen, K. &: Wehrhahn, C. (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc. R. Soc. Lond. (In press)Google Scholar
  59. Hausen, K.& Wolburg-Buchholz, K. (1980) An improved cobalt-sulfide silver-intensification method for electron microscopy. Brain Res. 187: 462–466.Google Scholar
  60. Hausen, K., Wolburg-Buchholz, K.& Ribi, W.A. (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208: 371–387.Google Scholar
  61. Heide, G. (1975) Properties of a motor output system involved in the optomotor responses in flies. Biol. Cybern. 20: 99–112.Google Scholar
  62. Heide, G. (1982) Neural mechanism of flight control in diptera. BIONA-report. (In press)Google Scholar
  63. Heisenberg, M.& Buchner, E. (1977) The role of retinula cell types in visual behaviour of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162.Google Scholar
  64. Heisenberg, M., Wonneberger, R.& Wolf, R. (1978) Optomotor-blind — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124: 287–296.Google Scholar
  65. Hengstenberg, R. (1977) Spike responses of ‘non-spiking’ visual interneurone. Nature (Lond.) 270: 338–340.Google Scholar
  66. Hengstenberg, R. (1981) Rotatory visual responses of vertical cells in the lobula plate of Calliphora. Verh. Dtsch. Zool. Ges. 1981: 180.Google Scholar
  67. Hengstenberg, R. ( 1982 a) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149: 179–193.Google Scholar
  68. Hengstenberg, R. (1982 b) Characteristic visual response properties of particular giant vertical cells in the lobula plate of Calliphora. (In prep.)Google Scholar
  69. Hengstenberg, R.& Hengstenberg, B. (1980) Intracellular staining of insect neurons with Procion Yellow. In: Neuroanatomical Techniques. Insect Nervous System. Ed. N.J. Strausfeld& T.A. Miller. New York, Heidelberg, Berlin, Springer-Verlag, p. 307–324.Google Scholar
  70. Hengstenberg, R., Hausen, K.& Hengstenberg, B. (1982) The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol, 149: 163–177.Google Scholar
  71. Hubel, D.H.& Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154.Google Scholar
  72. Kirschfeld, K. (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3: 248–270.Google Scholar
  73. Kirschfeld, K. (1972) The visual system of Musca: Studies on optics, structure and function. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer Verlag, p. 61–74.Google Scholar
  74. Koto, M., Tanouye, M.A., Ferrus, A., Thomas, J.B.& Wyman, R.J. (1981) The morphology of the cervical giant fiber neuron of Drosophila. Brain Res. 221: 213-–217.Google Scholar
  75. Laughlin, S. (1981) Neural principles in the peripheral visual system of invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Heidelberg, Berlin, New York, Springer Verlag, p. 135–280.Google Scholar
  76. Laughlin, S. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye. (This volume)Google Scholar
  77. Levine, J.& Tracey, D. (1973) Structure and function of the giant motoneuron of Drosophila melanogaster. J. Comp. Physiol. 87: 213–235.Google Scholar
  78. Lilly white, P.G.& Dvorak, D.R. (1981) Responses to single photons in a fly optomotor neurone. Vision Res. 21: 279–290.Google Scholar
  79. Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1980) Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res. 20: 467–474.Google Scholar
  80. Mastebroek, H.A.K., Zaagman, W.H.& Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.Google Scholar
  81. McCann, G.D. (1973) The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12: 64–73.Google Scholar
  82. McCann, G.D. & Arnett, D.W. (1972) Spectral and polarization sensitivity of the dipteran visual systems. J. Gen. Physiol. 59: 534–558.Google Scholar
  83. Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.Google Scholar
  84. McCann, G.D.& Dill, J.C. (1969) Fundamental properties of intensity, form, and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53: 385–413.Google Scholar
  85. McCann, G.D.& Foster, S.F. (1971) Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8: 193–203.Google Scholar
  86. Mimura, K. (1971) Movement discrimination by the visual system of flies. Z. vergl. Physiol. 73: 105–138.Google Scholar
  87. Mimura, K. (1972) Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80: 409–437.Google Scholar
  88. Murphey, R.K., Matsumoto, S.G.& Levine, R.D. (1977) Does experience play a role in the development of insect neuronal circuitry? In: Identified Neurons and Behavior of Arthropods. Ed. G. Hoyle. New York, London, Plenum Press, p. 495–506.Google Scholar
  89. O’Shea, M.& Rowell, C.H.F. (1977) Complex neural integration and identified interneurons in the locust brain. In: Identified Neurons and Behavior. Ed. G. Hoyle. New York, London, Plenum Press, p. 307–328.Google Scholar
  90. O’Shea, M., Rowell, C.H.F.& Williams, J.L.D. (1974) The anatomy of a locust visual interneurone: the descending contralateral movement detector. J. Exp. Biol. 60: 1–12.Google Scholar
  91. Pick, B. (1976) Visual pattern discrimination as an element of the fly’s orientation behaviour. Biol. Cybern. 23: 171–180.Google Scholar
  92. Pierantoni, R. (1976) A look into the cock-pit of the fly. The architecture of the lobular plate. Cell Tissue Res. 171: 101–122.Google Scholar
  93. Poggio, T.& Reichardt, W. (1973) Considerations on models of movement detection. Kybernetik 13: 223–227.Google Scholar
  94. Poggio, T.& Reichardt, W. (1976) Visual control of orientation behaviour in the fly. Part II: Toward the underlying neural interactions. Quart. Rev. Biophys. 9: 377–438.Google Scholar
  95. Poggio, T., Reichardt, W.& Hausen, K. (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwiss. 68: 443–446.Google Scholar
  96. Power, M. (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J. Comp. Neurol. 88: 347–409.Google Scholar
  97. Reichardt, W. (1973) Musterinduzierte Flugorientierung. Verhaltens-Versuche an der Fliege Musca domestica. Naturwiss. 60: 122–138.Google Scholar
  98. Reichardt, W.& Poggio, T. (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart. Rev. Biophys. 9: 311–375.Google Scholar
  99. Reichardt, W.& Poggio, T. (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol. Cybern. 35: 81–100.Google Scholar
  100. Reichardt, W., Poggio, T.& Hausen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol. Cybern. 46 (suppl.): 1–30.Google Scholar
  101. Riehle, A. & Franceschini, N. (1982) Response of a movement-sensitive neuron to microstimulation of two photoreceptor cells. (In prep.)Google Scholar
  102. Soohoo, S.L.& Bishop, L.G. (1980) Intensity and motion responses of giant vertical neurons of the fly eye. J. Neurobiol. 11: 159–177.Google Scholar
  103. Spüler, M. (1980) Erregende und hemmende Wirkungen visueller Bewegungsreize auf das Flugsteuersystem von Fliegen-Elektro-physiologische und verhaltensphysiologische Untersuchungen an Musca und Calliphora. Dissertation, Universität Düsseldorf.Google Scholar
  104. Srinivasan, M.V.& Dvorak, D.R. (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. 140: 1–23.Google Scholar
  105. Stavenga, D.G. (1975) The neural superposition eye and its optical demands. J. Comp. Physiol. 102: 297–304.Google Scholar
  106. Strausfeld, N.J. ( 1976 a) Atlas of an Insect Brain. Berlin, Heidelberg, New York, Springer Verlag.Google Scholar
  107. Strausfeld, N.J. ( 1976 b) Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural Principles in Vision. Ed. F. Zettler& R. Weiler. Berlin, Heidelberg, New York, Springer Verlag, p. 245–279.Google Scholar
  108. Strausfeld, N.J. (1980) Male and female visual neurones in dipteran insects. Nature (Lond.) 283: 381–383.Google Scholar
  109. Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume)Google Scholar
  110. Strausfeld, N.J.& Nässel, D. (1981) Neuroarchitectures serving compound eyes of crustacea and insects. In: Handbook of Sensory Physiology. Ed. H. Autrum. Vol. VII/6B. Berlin, Heidelberg, New York, Springer Verlag, p. 1–138.Google Scholar
  111. Strausfeld, N.J.& Obermayer, M.L. (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and nervous system. J. Comp. Physiol. 110: 1–12.Google Scholar
  112. Tanouye, M.& Wyman, R.J. (1980) Motor outputs of giant nerve fibre in Drosophila. J. Neurophysiol. 44: 405–421.Google Scholar
  113. Wehrhahn, C. (1978) Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern. 29: 237–247.Google Scholar
  114. Wehrhahn, C. (1979) Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol. Cybern. 32: 239–241.Google Scholar
  115. Wehrhahn, C.& Hausen, K. (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol. Cybern. 38: 179–186.Google Scholar
  116. Wehrhahn, C.& Reichardt, W. (1975) Visually induced height orientation of the fly Musca domestica. Biol. Cybern. 20: 37–50.Google Scholar
  117. Wiesel, T.N.& Hubel, D.H. (1963) Effects of visual deprivation of morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26: 978–993.Google Scholar
  118. Zaagman, W.H., Mastebroek, H.A.K., Buyse, T.& Kuiper, J.W. (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. Comp. Physiol. 116: 39–50.Google Scholar
  119. Zaagman, W.H., Mastebroek, H.A.K.& Kuiper, J.W. (1978) On the correlation model: Performance of a movement detecting neural element in the fly visual system. Biol. Cybern. 31: 163–168.Google Scholar

Copyright information

© Springer-Verlag US 1984

Authors and Affiliations

  • Klaus Hausen
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenFederal Republic of Germany

Personalised recommendations