Skip to main content

Twistor Theory

  • Chapter
Quantum Gravity
  • 440 Accesses

Abstract

An overview of ideas and progress in twistor theory is presented. Penrose twistors describe more directly the structures of space-time thought to survive quantization than continuum properties. They also yield a complexified picture of spacetime. A twistor in complex Minkowski space-time is represented by a totally null 2-plane. The interpretation of twistors in complex curved space-times and some of their applications are discussed. A brief account is finally given of the description of massive particles in twistor theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Trautman, inLectures on General Relativity, Eds. S. Deser and K.W. Ford (Prentice-Hall, Englewood Cliffs, N.J., 1964), Chap. 5.1.

    Google Scholar 

  2. R.P. Feynman, Lectures on Gravitation (California institute of Technology, Pasadena, California, 1963 ).

    Google Scholar 

  3. F. Károlyházy, Nuovo Cimento42A, 390 (1966).

    Google Scholar 

  4. D. Bohm, Found. Phys. 1, 359 (1971).

    Article  ADS  Google Scholar 

  5. R. Penrose, inMagic Without Magic, Ed. J.R. Klauder (Freeman, San Francisco, 1972 ).

    Google Scholar 

  6. E.P. Wigner, Rev. Mod. Phys.29, 255 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. Salecker and E. Wigner, Phys. Rev.109, 571 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Cf., for example: R. Penrose, inBattelle Rencontres, Eds. C.M. DeWitt and J.A. Wheeler (Benjamin, N.Y., 1968 ).

    Google Scholar 

  9. R: Penrose, inRelativity, Groups and Topology, Eds.,B. DeWitt and C.M. DeWitt Blackie, London, 1964 ).

    Google Scholar 

  10. M.A.H. MacCallum and R. Penrose, Phys. Rep.6C, 241 (1973).

    MathSciNet  ADS  Google Scholar 

  11. R. Penrose, InProceedings of the Oxford Quantum Gravity Conference, Eds. C. Isham, R. Penrose and D. Sciama (Oxford Univ. Press, 1974 ).

    Google Scholar 

  12. R. Penrose, J. Math. Phys.8, 345 (1967).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. We are adopting the conventions of Penrose’s school. Thus, space-time metric has the signature (+—). Space-time indices a,b,c,... and twistor indices,,,... have the range 0, 1, 2 and 3. Capital Roman spinor indices and primed spinor indices are assigned the values 0 or 1 and 0’ or 1’, respectively. Twistor indices and constituent indicesa,b,... are raised and lowered by complex conjugation. Symmetrization and anti -symmetrization is denoted by putting the indices concerned in parentheses and brackets, respectively.

    Google Scholar 

  14. R. Penrose: Quantization of Generally Covariant Field Theories (preprint, 1963), E.T. Newman and R. Penrose, Proc. Roy. Soc. LondonA305, 175 (1968).

    Google Scholar 

  15. L.P. Hughston: Twistors and Particles, Lecture Notes in Physics, Vol. 97 (Springer, 1979), Chap. 4.

    Google Scholar 

  16. R. Penrose, Int. J. Theor. Phys.8, 345 (1967).

    MathSciNet  MATH  Google Scholar 

  17. R. Penrose and R. Ward, inGeneral Relativity and Gravitation, Ed. A. Held (Plenum, 1980 ).

    Google Scholar 

  18. K. Dighton, Int. Theor. Phys.11, 31 (1974).

    Article  MathSciNet  Google Scholar 

  19. R.O. Hansen, E.T. Newman, R. Penrose and K.P. Tod, Proc. Soc. LondonA363, 445 (1978).

    MathSciNet  ADS  Google Scholar 

  20. M. Ko, E.T. Newman and R. Penrose, J. Math. Phys.18, 58 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. M. Ko, M. Ludwigsen, E.T. Newman, K.P. Tod, Phys. Reports,C, (1981).

    Google Scholar 

  22. E.J. Flaherty: Hermitian and Kählerian Geometry in Relativity, Lecture Notes in Physics, Vol. 46 (Springer, 1976 ).

    Book  Google Scholar 

  23. E.T. Newman, inComplex Manifold Techniques in Theoretical Physics, Eds. D.E. Lerner and P.D. Sommers Pitman, 1979 ).

    Google Scholar 

  24. R. Penrose, Reps. Math. Phys.12, 65 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  25. C.P. Boyer, J.D. Finley, III and J.F. Plebanski, in the volume of Ref. 17.

    Google Scholar 

  26. R. Penrose, GRG Journal7, 171 (1976).

    MathSciNet  Google Scholar 

  27. R.S. Ward, Proc. Roy. Soc. LondonA363, 289 (1978).

    ADS  Google Scholar 

  28. K.P. Tod and R.S. Ward, Proc. Roy. Soc. LondonA368, 411 (1979).

    MathSciNet  ADS  Google Scholar 

  29. R.S. Ward, Phys. LettersA61, 81 (1977).

    ADS  Google Scholar 

  30. M.F. Atiyah and R.S. Ward, Common. Math. Phys.55, 117 (1917).

    Article  MathSciNet  ADS  Google Scholar 

  31. M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld, Yu. I. Manin, Phys. LettersA65, 185 (1978).

    MathSciNet  ADS  Google Scholar 

  32. E.F. Corrigan, D.B. Fairlie, R.G. Yates and P. Goddard, Common. Math. Phys.58, 223 (1978) and Phys. LettersB72, 354 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  33. V.G. Drinfeld and Yu. I. Manin, Comnun. Math. Phys.63, 177 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. J.H. Ramsley, Math. Ann.241, 43 (1979).

    Article  MathSciNet  Google Scholar 

  35. R. Penrose and G.A. Sparling; L.P. Hughston inAdvances in Twistor Theory, Eds. L.P. Hughston and R.S. Ward Pitman, 1979.

    Google Scholar 

  36. A.P. Hodges, Ph.D. thesis, London, 1975.

    Google Scholar 

  37. R. Penrose, inQuantum Theory and the Structures of Time and Space, Eds. L. Castell, M. Drieschner and C.F. von Weizsacker (Carl Hanser, 1975 ).

    Google Scholar 

  38. A.S. Popovich, M.Sc. thesis, Oxford, 1978.

    Google Scholar 

  39. K.P. Tod, D. Phil. thesis, Oxford, 1975.

    Google Scholar 

  40. K.P. Tod and Z. Perjés, GRG Journal7, 903 (1976).

    Google Scholar 

  41. Z. Perjés, Phys. Rev.D11, 2031 (1975).

    ADS  Google Scholar 

  42. Z. Perjés, Phys. Rev.D20, 1857 (1979).

    ADS  Google Scholar 

  43. Z. Perjés and G.A.J. Sparling, in the volume of Ref. 35.

    Google Scholar 

  44. Z. Perjés, Reps. Math. Phys.12, 193 (1977).

    Article  ADS  Google Scholar 

  45. A. Qadir, Phys. Reports39C, 131 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  46. H.S.M. Coxeter: Regular Complex Polytopes (Cambridge Univ. Press, 1974 ).

    MATH  Google Scholar 

  47. M.G. Eastwood, Proc. Roy. Soc. LondonA374, 431 (1981).

    MathSciNet  ADS  Google Scholar 

  48. L.P. Hughston and T.R. Hurd: A Cohomological Description of Massive Fields, preprint, Oxford University (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Perjés, Z. (1984). Twistor Theory. In: Markov, M.A., West, P.C. (eds) Quantum Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2701-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2701-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9678-2

  • Online ISBN: 978-1-4613-2701-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics