Skip to main content

Temperature-Dependent G and Black Hole Thermodynamics

  • Chapter
  • 431 Accesses

Abstract

One of the most enduring and persuasive results of one-loop quantum gravity calculations is the unexpected connection between black holes and thermodynamics. The work of Bekenstein1 and Hawking2 indicates that one may assign an entropy to the spacetime structure represented by the hole, given in the Schwarzschild case by Sbh = 1/4 A/G= 4 GM2 (1) where A is the event horizon area, M the mass, and I have used units with K = c = k = 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Bekenstein. Phys. Rev. D7, 2333 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  2. S.W. Hawking. Coma. Math. Phys.43, 199 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Penrose. ‘Singularities and time-asymmetry’ in General Relativity: An Einstein Centenary Survey, eds. S.W. Hawking and W. Israel Cambridge: Cambridge University Press, 1979 ).

    Google Scholar 

  4. A.A. Grib, S.G. Mamaev and V.M. Mostepanenko.Quantum Effects in Strong External Fields Moscow: Atomizdat, 1980 ).

    Google Scholar 

  5. N.D. Birrell and P.C.W. Davies.Quantum Fields in Curved Space Cambridge: Cambridge University Press, 1982.

    MATH  Google Scholar 

  6. G.W. Gibbons and S.W. Hawking. Phys. Rev. D15, 2738 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  7. A.D. Linde. Rep. Prog. Phys.42, 389 (1979).

    Article  ADS  Google Scholar 

  8. A. Zee. Phys. Rev. Lett.42, 417 (1979).

    Article  ADS  Google Scholar 

  9. L. Smolin. Nucl. Phys. B160, 253 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Sakharov. Dokl. Akad. Nauk. SSSR177, 70 (1967)

    ADS  Google Scholar 

  11. [Sov. Phys. Dokl.12, 1040 (1968)].

    ADS  Google Scholar 

  12. A. Zee. Phys. Rev. Lett.44, 703 (1980).

    Article  ADS  Google Scholar 

  13. P.C.W. Davies. ‘Spontaneously generated gravity and the second law of thermodynamics’. University of Newcastle upon Tyne preprint (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Davies, P.C.W. (1984). Temperature-Dependent G and Black Hole Thermodynamics. In: Markov, M.A., West, P.C. (eds) Quantum Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2701-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2701-1_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9678-2

  • Online ISBN: 978-1-4613-2701-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics