Skip to main content

Quantum Field Theories with Spontaneous Symmetry Breaking in External Gravitational Fields of Cosmological Type

  • Chapter
  • 431 Accesses

Abstract

In the framework of the standard hot big bang cosmological model, the present density, temperature (TO ≈ 3°K) and Hubble constant (HO ≈ 10-10 years-1) are extrapolated back in time according to the Friedmann expansion law a(t) ~ t1/2 (or a(t) ~ t2/3). In this way one is able to describe the physical processes in the early Universe at least up to the “hadronic stage” characterized by the temperature T ~ 1 GeV. However, within this theory one has to postulate the values of some dimensionless parameters, e.g. nB/nY ~ 10-8 and aT ≳ 1028 (a is the radius of the curvature of the Universe), which are adiabatic invariants. Moreover, the very existence of the nonzero (and very high) temperature in the early Universe cannot be explained in the hot big bang model. The description of matter by spontaneously broken gauge theories allows one to consider much earlier stages of the evolution up to T ≈ TP l ≈ 1019 GeV, and to raise a question whether the temperature of the Universe could have been originated from vacuum phase transitions.1,2

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.H. Guth. Phys. Rev. D23, 347, 1981.

    ADS  Google Scholar 

  2. V.G. Lapchinsky, V.A. Rubakov, A. V. Veryaskin. Inst. Nucl. Res. preprint, Moscow, 1981.

    Google Scholar 

  3. V. Ts. Gurovich, A.A. Starobinsky. Zh.E.T.F. 71, 1683, 1979.

    Google Scholar 

  4. A.A. Starobinsky. Phys. Lett.

    Google Scholar 

  5. S.G. Mamayev, V.M. Mostepanenko. Zh.E.T.F. 78, 20, 1980.

    Google Scholar 

  6. A.D. Linde. Rep. Progr. Phys. 42, 389, 1979.

    Article  ADS  Google Scholar 

  7. M.A. Sher. Phys. Rev. D22, 2989, 1980.

    ADS  Google Scholar 

  8. A.H. Guth, E.J. Weinberg. Phys. Rev. D23, 876, 1981.

    ADS  Google Scholar 

  9. E.S. Abers, B.W. Lee. Phys. Reports. 9, 1, 1973.

    Article  ADS  Google Scholar 

  10. S. Coleman. In “Laws of Hadronic Matter”, New York, Academic Press, ed. A. Zichichi, 1975.

    Google Scholar 

  11. S. Coleman, E. Weinberg. Phys. Rev. D7, 1888, 1973.

    ADS  Google Scholar 

  12. A.A. Grib, V.M. Mostepanenko, V.M. Frolov, Teor. Mat. Fiz. 33, 42, 1977.

    Google Scholar 

  13. A.A. Grib, V.M. Mostepanenko, Pis’ma Zh.E.T.F. 25, 302, 1977.

    Google Scholar 

  14. V.G. Krechet, V.G. Lapchinsky. Proc. Intern.“Neutrino-77”, Moscow, Nauka, vol. 2, p. 335, 1978.

    Google Scholar 

  15. V.G. Lapchinsky, V.I. Nekrasov, V.A. Rubakov. Abstr. 9th Intern. Conf. on Gen. Rel. and Grav. 1980, Jena, 1980, p. 289.

    Google Scholar 

  16. V.G. Lapchinsky, V.A. Rubakov. Teor. Mat. Fiz. 42, 37, 1980.

    Google Scholar 

  17. K. Symanzik. Comm. Math. Phys. 16, 48, 1970.

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Weinberg. Phys. Rev. D9, 3357, 1974.

    ADS  Google Scholar 

  19. N.V. Krasnikov, V.A. Matveev, A.N. Tavkhelidze, K.G. Chetyrkin. Teor. Mat. Fiz. 26, 172, 1976.

    Google Scholar 

  20. A.V. Veryaskin, V.G. Lapchinsky, V.A. Rubakov. Teor. Mat. Fiz. 45, 407, 1980.

    Google Scholar 

  21. N.N. Bogolubov. In “Statistical Physics and Quantum Field Theory ”, Moscow, Nauka, 1973.

    Google Scholar 

  22. A.V. Veryaskin, V.G. Lapchinsky, V.I. Nekrasov, V.A. Rubakov. In “Problems of Theory of Gravity and Elementary Particles ”, vol. 12, p.59, 1981.

    Google Scholar 

  23. V.G. Lapchinsky, V. I. Nekrasov, V.A. Rubakov. Inst. Nucl. Res. preprint, 1981.

    Google Scholar 

  24. A.V. Veryaskin, V.G. Lapchinsky, V.A. Rubakov. Inst. Nucl. Res. Preprint, 1981.

    Google Scholar 

  25. A.A. Anselm, D.I. Dyakonov. Zh.E.T.F. 68, 1614, 1975.

    Google Scholar 

  26. L.N. Lipatov. Zh.E.T.F. 72, 411, 1977.

    MathSciNet  Google Scholar 

  27. G. Parisi. Phys. Lett. 66B, 167, 1977.

    ADS  Google Scholar 

  28. E.B. Bogomol’ny. Phys. Lett. 67B, 193, 1977.

    MathSciNet  ADS  Google Scholar 

  29. D. Gross, F. Wilczek. Phys. Rev. D8, 3633, 1973.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lapchinsky, V.G., Nekrasov, V.I., Rubakov, V.A., Veryaskin, A.V. (1984). Quantum Field Theories with Spontaneous Symmetry Breaking in External Gravitational Fields of Cosmological Type. In: Markov, M.A., West, P.C. (eds) Quantum Gravity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2701-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2701-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9678-2

  • Online ISBN: 978-1-4613-2701-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics