Quantitative Evaluation of the Gibbs-Dimarzio Theory of the Glass Transition for Polystyrene

  • A. R. Greenberg
  • R. P. Kusy


The applicability of the Gibbs-DiMarzio (G-DM) theory of the glass transition (Tg) is quantitatively evaluated for polystyrene (PS). The analysis was conducted under the assumption that both the inter- intramolecular energy ratio (r) and the effective chain segment density (n) remain constant while the fractional free volume at Tg(Vo) varies as a function of the reciprocal degree of polymerization (103/P). Based upon reduced parametric plots of Tg/Tg∞ versus 103/P, the results showed that the G-DM equations were satisfactory for PS; when 0.015 ≦ Vo ≦ 0.045, optimum agreement occurred at n = 1.80, r = 1.05.


Glass Transition Scatter Diagram Individual Data Point Fractional Free Volume Statistical Analysis Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. G. Fox and P. J. Flory, J. Appl. Phys., 21:581 (1950)CrossRefGoogle Scholar
  2. 2.
    J. H. Gibbs, J. Chem. Phys., 25: 185 (1956).CrossRefGoogle Scholar
  3. 3.
    J. H. Gibbs and E. A. DiMarzio, J. Chem. Phys., 28: 373 (1958).CrossRefGoogle Scholar
  4. 4.
    J. Moacanin and R. Simha, J. Chem. Phys., 45: 964 (1966).CrossRefGoogle Scholar
  5. 5.
    A. Eisenberg and S. Saito, J. Chem. Phys., 45: 1673 (1966).CrossRefGoogle Scholar
  6. 6.
    R. P. Kusy and A.. R. Greenberg, Polymer, 23: 36 (1982).CrossRefGoogle Scholar
  7. 7.
    E. A. DiMarzio Annals N. Y. Acad. Sci.370:1 (1981)CrossRefGoogle Scholar
  8. 8.
    A. R. Greenberg and R. P. Kusy, Polymerin pressGoogle Scholar
  9. 9.
    R. P. Kusy and A. R. Greenberg, Polymer, accepted for publication.Google Scholar
  10. 10.
    RR. Sokal and F. J. Rohlf, in “Biometry”, WH. Freeman, Ch. 7, 13 and 14 (1969).Google Scholar
  11. 11.
    J. Neter and W. Wasserman, “Applied Linear Statistical Models,” R. D. Irwin, Inc., Homewood, Illinois, Ch. 5 (1974).Google Scholar
  12. 12.
    J. B. Enns, R. R. Boyer and J. K. Gillham, Polym Preprints18(2):475 (1977).Google Scholar
  13. 13.
    T. G. Fox and P. J. Flory, J. Polym. Sci.14:315 (1954)CrossRefGoogle Scholar
  14. 14.
    C. A. Glandt, H. K. Toh, J. K. Gillman and R. F. Boyer,Polym. Preprints, 16 (2): 126 (1975).Google Scholar
  15. 15.
    S. Krause and M. Iskander, Proc. 10th N. Amer. Therm. Anal. Conf, Boston, 51 (1980).Google Scholar
  16. 16.
    M. J. Richardson and N. G. Savill, Polymer, 18: 3 (1977).CrossRefGoogle Scholar
  17. 17.
    A. Rudin and D. Burgin, Polymer, 16: 291 (1975).CrossRefGoogle Scholar
  18. 18.
    S. J. Stadnicki, J. K. Gillham, and R. F. Boyer, Polym. Preprints, 16 (1): 559 (1975).Google Scholar
  19. 19.
    K. Ueberreiter and G. Kanig, Z. Naturforsch., 6A: 551 (1951).Google Scholar
  20. 20.
    K. Ueberreiter and G. Kanig, J. Colloid Sci., 7: 569 (1952).CrossRefGoogle Scholar
  21. 21.
    A. A. Miller, J. Polym. SciA2:1095 (1964)CrossRefGoogle Scholar
  22. 22.
    M. L. Williams, R. F. Landel and J. D. Ferry, J. Amer. Chem. Soc.77:3701 (1955)CrossRefGoogle Scholar
  23. 23.
    M. L. Williams, J. Appl. Phys.29:1395 (1958).CrossRefGoogle Scholar
  24. 24.
    Y. S. Lipatov, V. F. Rosovizky and V. F. Babich, Eur. Polym. J.13:651 (1977).CrossRefGoogle Scholar
  25. 25.
    JMG Cowie and SAE. Henshall, Eur. Polym. J.12:215 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. R. Greenberg
    • 1
  • R. P. Kusy
    • 2
  1. 1.Dept. of Mechanical EngineeringUniversity of Colorado BoulderUSA
  2. 2.Dental Research CenterUniv. of North Carolina Chapel HillUSA

Personalised recommendations