NTD Germanium: A Novel Material for Low Temperature Bolometers

  • E. E. Haller
  • N. P. Palaio
  • M. Rodder
  • W. L. Hansen
  • E. Kreysa


Six samples of ultra-pure (|NA − ND| ≤ 1011 cm-3), single-crystal germanium have been neutron transmutation doped to p-type with neutron doses between 7.5 × 1016 and 1.88 × 1018 cm-2. After thermal annealing at 400°C for six hours in a pure argon atmosphere, the samples were characterized with Hall effect and resistivity measurements between 300 and 0.3 K. The results show that the resistivity in the low temperature, hopping conduction regime can be approximated by ρ = ρoexp(Δ/T). The three more heavily-doped samples show values for ρo and Δ ranging from 430 to 3.3 Ω cm and from 4.9 to 2.8 K respectively. The excellent reproducibility of neutron transmutation doping and the values of ρo and Δ make NTD germanium a prime candidate for the fabrication of low-temperature, low-noise bolometers. The large variation in the tabulated values of the termal neutron cross sections for the different germanium isotopes makes it clear that accurate measurements of these cross sections for well defined neutron energy spectra would be highly desirable.


Lawrence Berkeley Laboratory Neutron Transmutation Doping Nuclear Radiation Detector Thermal Neutron Capture Cross Section Thermal Neutron Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Putley “Topics in Applied Physics, Volume 19: Optical and Infrared Detectors,” R. J. Keyes, ed., Springer-Verlag, New York (1977).Google Scholar
  2. 2.
    R. G. Rhodes, “Imperfections and Active Centres in Semiconductors,” The MacMillan Co., New York (1964)Google Scholar
  3. 3.
    R. G. Rhodes, “Imperfections and Active Centres in Semiconductors,” The MacMillan Co., New York (1964).Google Scholar
  4. 4.
    . P. M. Downey, Ph.D. thesis, Dept. of Physics, Massachusetts Institute of Technology (1980).Google Scholar
  5. 5.
    H. Fritzsche and M. Cuevas, Phys. Rev., 119: 1238 (1960).CrossRefGoogle Scholar
  6. 6.
    N. S. Nishioka, P. L. Richards, and D. P. Woody, Appl. Opt., 17: 1562 (1978).CrossRefGoogle Scholar
  7. 7.
    N. F. Mott, “Metal-Insulator Transitions,” Barnes and Nobles Books, New York (1974).Google Scholar
  8. 8.
    H. Fritzsche, “The Metal Non-Metal Transition in Disordered Systems,” L. R. Friedman and D. P. Tunstall, eds., Scottish Universities Summer School in Physics, St. Andrews, Scotland (1978).Google Scholar
  9. 9.
    “Neutron Transmutation Doping in Semiconductors,” J. Meese, ed., Plenum Press, New York (1979).Google Scholar
  10. 10.
    “Neutron-Transmutation-Doped Silicon,” J. Guldberg, ed., Plenum Press, New York (1981).Google Scholar
  11. 11.
    H. C. Schweinler, J. Appl. Phys., 30:1125 (1959).Google Scholar
  12. 12.
    “Table of Isotopes,” Sixth Edition, C. M. Lederer, J. M. Hollander, and I. Perlman, eds., John Wiley and Sons, Inc., New York (1967).Google Scholar
  13. 13.
    “Table of Isotopes,” Seventh Edition, C. M. Lederer and V. S. Shirley, eds., John Wiley and Sons, Inc., New York (1978).Google Scholar
  14. 14.
    E. E. Haller, W. L. Hansen, and F.S Goulding, Adv. Phys., 30, No. 1, 93 (1981)Google Scholar
  15. 15.
    Dept. of Instrument Science and Engineering, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.Google Scholar
  16. 16.
    E. E. Haller and F. S. Goulding, Nuclear Radiation Detectors, in: “Handbook on Semiconductors,” Vol. 4, C. Hilsum, ed., North Holland Publishing Co. (1981).Google Scholar
  17. 17.
    W. L. Hansen, Nucl. Instr. and Methods, 94: 377 (1971).CrossRefGoogle Scholar
  18. 18.
    J. Meese, University of Missouri Research Reactor Facility.Google Scholar
  19. 19.
    L. J. van der Pauw, Philips Res. Repts., 13: 1 (1958).Google Scholar
  20. 20.
    NASA Progress Reports, Contract W-14,606. Copies available from E. E. Haller, Lawrence Berkeley Laboratory.Google Scholar
  21. 21.
    Helium cryostat Model 310 Cryotran Refrigerator, Lakeshore Electronics Inc., Westerville, Ohio 43081.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • E. E. Haller
    • 1
  • N. P. Palaio
    • 1
  • M. Rodder
    • 1
  • W. L. Hansen
    • 2
  • E. Kreysa
    • 3
  1. 1.Dept. of Materials Science and Mineral Engineering and Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA
  3. 3.Max-Planck-Institute for RadioastronomyBonnGermany

Personalised recommendations