Compensation Effects in N.T.D. Indium Doped Silicon

  • Bernard Pajot
  • Armand Tardella


The infrared absorption spectrum of indium-doped silicon has been investigated in N.T.D. compensated material and compared with the spectrum in the uncompensated material. Besides the decrease in the equilibrium concentration of optically active indium, the presence of ionized donors and acceptors produces a broadening and a shift of the absorption lines, and makes it possible to detect a forbidden transition. Gradual neutralization of the ionized impurities by controlled optical pumping shows the influence of compensation on the detectability of the highly excited levels. The decay with time of the out-of-equilibrium indium absorption is recorded and attributed to pair recombination. Finally, a brief comparison of the optical calibration factors for indium concentration in silicon is given.


Compensation Effect Indium Concentration Dope Silicon Spectral Band Pass Neutron Transmutation Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. T. Braggins, H.M. Hobgood, J.C. Swartz, and R.N. Thomas, High infrared responsivity Indium-doped silicon detector material compensated by neutron transmutation, I.E.E.E. Transactions Electr. Dev. ED-27: 2 (1980).Google Scholar
  2. 2.
    B. Pajot, D. Debarre, and D. Roche, Neutron transmutation as a method to calibrate the infrared absorption of indium in silicon, J. Appl. Phys. 52:5774 0981).Google Scholar
  3. 3.
    A. Onton, P. Fisher, and A.K. Ramdas, Spectroscopic investigations of group-III acceptor states in silicon, Phys.Rev. 163:686 (1967).Google Scholar
  4. 4.
    B.C. Covington, R.J. Harris, and R.J. Spry, Observation of additional excited-state lines of indium in silicon, Phys. Rev.B 22:778 (1980).Google Scholar
  5. 5.
    A. Baldereschi and N.O. Lipari, Interpretation of acceptor spectra in Si and Ge, in: “Proc. 13th Conf. Phys. Semiconductors”, F.G. Fumi, Ed. Tipografia Marves, Rome (1976).Google Scholar
  6. 6.
    P. R. Bratt, Impurity germanium and silicon infrared detectors, in: “Semiconductors and Semimetals, Vol. 12”, R. K. Willardson and A. C. Beer, Eds. Academic Press, New York (1977).Google Scholar
  7. 7.
    N.Lipari, M.L.W. Thewalt, W.Andreoni, and A.Baldereschi, Central cell affects in the shallow acceptor spectra of Si and Ge, J. Phys. Soc. Japan 49:suppl.A 165 (1980).Google Scholar
  8. 8.
    B. 0. Sunstrom, L. Huldt, and N.G. Nilsson, Photoinduced infra-red absorption and luminescence in Indium-doped silicon, Physica Scripta18: 414 (1978).Google Scholar
  9. 9.
    U. 0. Ziemelis and R.R. Parsons, Sharp line donor-acceptor pair luminescence in silicon, Can. J. Phys. 59:T8U (1981).Google Scholar
  10. 10.
    C.E. Jones, D.Schafer, W.Scott, and R.J. Hager, Carbon acceptor pair centers (X centers) in silicon, J. Appl.Phys. 52:5148 (1981).CrossRefGoogle Scholar
  11. 11.
    A. Tardella and B. Pajot, The infrared spectrum of indium in silicon revisited, J. Physique 43:1789 (1982)CrossRefGoogle Scholar
  12. 12.
    W.R. Thurber, R.L. Mattis, Y.M. Liu, and J.J. Filliben, Resistivity-dopant density relationship for boron-doped silicon, J.Electrochem.Soc. 127:2291 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Bernard Pajot
    • 1
  • Armand Tardella
    • 1
  1. 1.Groupe de Physique des Solides de l’E.N.S. Université Paris VIIParis Cedex 05France

Personalised recommendations