Advertisement

Electron Spectroscopy for Chemical Analysis (ESCA) and Electrode Surface Chemistry

  • J. S. Hammond
  • N. Winograd

Abstract

The experimental objective of electrodic studies is to define electrode surface reactions through the measurable parameters of current, electrode potential, and reactant concentration at the electrode-electrolyte interface. However, the chemical characterization of electrosorbed and electrodeposited products on the electrode surface has been hampered by the lack of molecular specificity in the electrochemical measurements. In addition, the electro-catalytic behavior of electrode surfaces has remained a difficult parameter to quantify with conventional electrochemical measurements. The application of spectroscopic techniques such as ESCA, which can yield molecular information relevant to the electrode surface chemistry, is providing new insight into these problems.

Keywords

Electrode Surface Transpassive Region Initial State Charge Coulometric Measurement Integrate Charge Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Siegbahn, C. Nordling, A. Falham, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. Karlsson, I. Lindgreen, and B. Lindberg, ESCA-Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist and Wiksell, Uppsala, Sweden (1967).Google Scholar
  2. 2.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Wermer, R. Manne, and Y. Baer, Esca Applied to Free Molecules, American Elsevier, New York (1969).Google Scholar
  3. 3.
    D. A. Shirley, Ed., Electron Spectroscopy, p. 47, North Holland Publishing, Amsterdam (1972).Google Scholar
  4. 4.
    a) D. W. Davis, M. S. Banna, and D. A. Shirley, J. Chem. Phys. 60, 237 (1974). (b) P. H. Citrin and D. R. Hamann, Phys. Rev. B 10, 4948 (1974). (c) F. O. Ellison and M. G. White, J. Chem. Educ. 53, 430 (1976).Google Scholar
  5. 4.
    a) D. W. Davis, M. S. Banna, and D. A. Shirley, J. Chem. Phys. 60, 237 (1974). (b) P. H. Citrin and D. R. Hamann, Phys. Rev. B 10, 4948 (1974). (c) F. O. Ellison and M. G. White, J. Chem. Educ. 53, 430 (1976).CrossRefGoogle Scholar
  6. 4.
    a) D. W. Davis, M. S. Banna, and D. A. Shirley, J. Chem. Phys. 60, 237 (1974). (b) P. H. Citrin and D. R. Hamann, Phys. Rev. B 10, 4948 (1974). (c) F. O. Ellison and M. G. White, J. Chem. Educ. 53, 430 (1976).CrossRefGoogle Scholar
  7. 5.
    J. H. Scofield, J. Electron Spectrosc. 8, 129 (1976).CrossRefGoogle Scholar
  8. 6.
    R. C. G. Lecky, Phys. Rev. A 13, 1043 (1976).CrossRefGoogle Scholar
  9. 7.
    C. J. Powell, Surf. Sci. 44, 29 (1974).CrossRefGoogle Scholar
  10. 8.
    R. S. Swingle II, Anal. Chem. 47, 21 (1975).CrossRefGoogle Scholar
  11. 9.
    . (a) D. M. Hercules, Anal. Chem. 42, 20A (1970). (b) C. A. Luchesi and J. E. Lester, J. Chem. Educ. A205, A269 (1973). (c) R. S. Swingle II and W. M. Riggs, CRC Crit. Rev. Anal. Chem. 267 (1975).CrossRefGoogle Scholar
  12. 9.
    . (a) D. M. Hercules, Anal. Chem. 42, 20A (1970). (b) C. A. Luchesi and J. E. Lester, J. Chem. Educ. A205, A269 (1973). (c) R. S. Swingle II and W. M. Riggs, CRC Crit. Rev. Anal. Chem. 267 (1975).Google Scholar
  13. 9.
    . (a) D. M. Hercules, Anal. Chem. 42, 20A (1970). (b) C. A. Luchesi and J. E. Lester, J. Chem. Educ. A205, A269 (1973). (c) R. S. Swingle II and W. M. Riggs, CRC Crit. Rev. Anal. Chem. 267 (1975).Google Scholar
  14. 10.
    K. S. Kim, N. Winograd, and R. E. Davis, J. Am. Chem. Soc. 93, 6296 (1971).CrossRefGoogle Scholar
  15. 11.
    G. C. Allen, P. M. Tucker, A. Capon, and R. Parsons, J. Electroanal. Chem. 50, 335 (1974).CrossRefGoogle Scholar
  16. 12.
    T. Dickinson, A. F. Povey, and P. M. A. Sherwood, J. Chem. Soc. Faraday I 71, 298 (1975).CrossRefGoogle Scholar
  17. 13.
    J. S. Hammond and N. Winograd, J. Electroanal. Chem., in press.Google Scholar
  18. 14.
    . T. A. Carlson and G. E. McGuire, J. Electron Spectrosc. 1, 161 (1972/73).CrossRefGoogle Scholar
  19. 15.
    K. S. Kim, C. D. Sell, and N. Winograd, Proc. Symp. Electrocatal. 242 (1974).Google Scholar
  20. 16.
    K. S. Kim, A. F. Gossmann, and N. Winograd, Anal. Chem. 46, 197 (1974).CrossRefGoogle Scholar
  21. 17.
    . S. Eguchi, T. Hamaguchi, S. Sawada, A. Aoki, and Y. Sato, Kinzoku Hyomen Gijutsu 25, 428 (1974), C. A. 82, 130892 (1975).Google Scholar
  22. 18.
    . S. Eguchi, T. Hamaguchi, S. Sawada, T. Minzuno, and Y. Sato, Kinzoku Hyomen Gijutsu 25, 437 (1974), C. A. 82, 130893 (1975).Google Scholar
  23. 19.
    H. Imoto, T. Nakajima, and N. Watanabe, Bull. Chem. Soc. Jpn. 48, 1633 (1975).CrossRefGoogle Scholar
  24. 20.
    . L. D. Hulett, A. L. Bacarella, L. LiDonnici, and J. C. Griess, J. Electron Spectrosc, 1, 169 (1972/73).CrossRefGoogle Scholar
  25. 21.
    Y. Takasu, S. Maru, Y. Matsuda, and H. Shimizu, Bull. Chem. Soc. Jpn. 48, 219 (1975)CrossRefGoogle Scholar
  26. 22.
    Y. Takasu, H. Shimizu, S. Maru, M. Tomori, and Y. Matsuda, Corrosion Sci. 16, 159 (1976).CrossRefGoogle Scholar
  27. 23.
    G. Blondeau, M. Froelicher, M. Froment, A. H. Goff, and C. Vignaud, C. R. Acad. Sci. Ser. C 282, 407 (1976).Google Scholar
  28. 24.
    G. Okamoto, Corrosion Sci. 13, 471 (1973).CrossRefGoogle Scholar
  29. 25.
    . G. Okamoto, K. Tachibana, T. Shibato, and K. Hoshino, Nippon Kinzoku Gakkaishi 38,117 (1974), C.A. 81, 67065 (1974).Google Scholar
  30. 26.
    . S. Eguchi, T. Hamaguchi, S. Sawada, T. Mizuno, and Y. Sato, Kinzoku Hyomen Gijutsu 25, 492(1974), C.A. 83, 68716 (1975).Google Scholar
  31. 27.
    J. E. Castle and D. C. Epler, Surf. Sci. 53, 286 (1975).CrossRefGoogle Scholar
  32. 28.
    J. E. Castle, D. C. Epler, and D. B. Peplow, Corrosion Sci. 16, 145 (1976).CrossRefGoogle Scholar
  33. 29.
    I. Olefjord, J. Appl. Electrochem. 5, 145 (1975).CrossRefGoogle Scholar
  34. 30.
    K. Asami, K. Hashimoto, and S. Shimodaira, Corrosion Sci. 16, 387 (1976).CrossRefGoogle Scholar
  35. 31.
    J. S. Brinen and J. E. McClure, Anal. Lett. 5, 737 (1972).CrossRefGoogle Scholar
  36. 32.
    J. S. Brinen and J. E. McClure, J. Electron Spectrosc. 4, 243 (1974).CrossRefGoogle Scholar
  37. 33.
    J. S. Brinen, J. Electron Spectrosc. 5, 377 (1974).CrossRefGoogle Scholar
  38. 34.
    R. Adzic, E. Yeager, and B. D. Cahan, J. Electrochem. Soc. 121, 474 (1974).CrossRefGoogle Scholar
  39. 35.
    J. S. Hammond and N. Winograd, J. Electroanal. Chem., submitted for publication.Google Scholar
  40. 36.
    J. S. Hammond and N. Winograd, unpublished results.Google Scholar
  41. 37.
    K. S. Kim, T. J. O’Leary, and N. Winograd, Anal. Chem. 45, 2214 (1973).CrossRefGoogle Scholar
  42. 38.
    T. Dickinson, A. F. Povey, and P. M. A. Sherwood, J. Chem. Soc. Faraday Trans. I 72, 686 (1976).CrossRefGoogle Scholar
  43. 39.
    J. F. Evans, N. N. Blount, and C. R. Ginnard, J. Electroanal. Chem., 59, 169 (1975).CrossRefGoogle Scholar
  44. 40.
    M. Savy, C. Bernard, and G. Magner, Electrochim. Acta 20, 383 (1975).CrossRefGoogle Scholar
  45. 41.
    P. R. Moses, L. Wier, and R. W. Murray, Anal. Chem. 47, 1881 (1975).CrossRefGoogle Scholar
  46. 42.
    C. M. Elliot and R. W. Murray, Anal. Chem. 48, 1247 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. S. Hammond
    • 1
  • N. Winograd
    • 2
  1. 1.Physical Electronic Div.Perkin-Elmer Corp.Eden PrairieUSA
  2. 2.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations