Skip to main content

Abstract

The term ellipsometry means analysis of the change in the polarization state of a light beam when it is reflected from a surface. It is therefore a kind of reflectance spectroscopy in which complete information about the reflected light is obtained. The term became necessary to distinguish the technique from other more rudimentary kinds of reflectance spectroscopy where the polarization state is ignored or where incomplete information is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

d:

thickness of a film

D:

phase delay of light

E :

Jones vector characterizing a pure polarization state

E†:

Hermitian adjoint of the Jones vector

E*:

complex conjugate of the Jones vector E

Ex,Ey :

instantaneous values of the electric field in the direction Jt and y

|Ex|,|Ey|:

amplitudes of electric field

Eip,Eis :

complex amplitude of a beam incident in the planes parallel and perpendicular to the plane of incidence

Etp,Ets :

complex amplitudes of the transmitted beam

I:

intensity of a beam of light

Imax :

maximum intensity of a light beam

J:

coherency matrix derived from the Jones vector

k1 :

extinction coefficient i.e., the complex part of the refractive index of substance 1

M:

Mueller matrix representing a depolarizing or nondepolarizing system

n1 :

real part of the refractive index of substance 1

N1 :

complex refractive index of substance 1

P:

degree of polarization

rp,rs :

complex Fresnel reflection coefficient in directions parallel and perpendicular to the plane of incidence

S:

Stokes vector composed of four real elements S0, Su S2, S3 representing any state of polarized or unpolarized light

T:

Jones matrix representing a non-depolarizing optical system

t :

time

tp,t:

complex Fresnel transmission coefficients

v 1 :

volume fraction of substance 1 in a composite film

α1 :

absorption coefficient of substance 1

Г:

surface excess of an adsorbed species

References

  1. A. Rothen, The ellipsometer, an apparatus to measure the thickness of thin surface films, Rev. Sci. Instr. 16, 26–30 (1945).

    Article  CAS  Google Scholar 

  2. Ellipsometry in the measurement of surfaces and thin films. U.S. Dept. of Commerce, National Bureau of Standards Miscellaneous Publication 256 (1963).

    Google Scholar 

  3. A. C. Hall, A century of ellipsometry, Surf. Sci. 16, 1–13 (1969).

    Article  Google Scholar 

  4. Proceedings of the symposium on recent developments in ellipsometry, Surf. Sci. 16, (1969).

    Google Scholar 

  5. Proceedings of the Third International Conference on Ellipsometry, Surf. Sci. 56, (1976).

    Google Scholar 

  6. Proceedings of the Fourth International Conference on Ellipsometry, Surf. Sci. 96 (1980).

    Google Scholar 

  7. R. H. Muller, In: Advances in Electrochemistry and Electrochemical Engineering, R. H. Muller, ed., Vol. 9, pp. 168–226, Wiley, New York (1973).

    Google Scholar 

  8. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North Holland, Amsterdam (1977).

    Google Scholar 

  9. J. Kruger, Application of ellipsometry to electrochemistry, In: Advances in Electrochemistry and Electrochemical Engineering, R. H. Muller, ed., Vol. 9, pp. 227–280, Wiley, New York (1973).

    Google Scholar 

  10. P. S. Hauge, R. H. Muller, and C. G. Smith, Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry, Surf. Sci. 96, 81–106 (1980).

    Article  CAS  Google Scholar 

  11. P. S. Hauge, Recent developments in instrumentation in ellipsometry, Surf Sci. 96, 108–140 (1980).

    Article  CAS  Google Scholar 

  12. W. E. J. Neal, Optical examination and monitoring of surfaces, Appl. Surf. Sci. 2, 445–501 (1979).

    CAS  Google Scholar 

  13. D. E. Aspnes, Interface ellipsometry; an overview, Surf. Sci. 101, 84–98 (1980).

    Article  CAS  Google Scholar 

  14. W. A. Shurcliff, Polarized light: production and use, O.U.P. London (1962).

    Google Scholar 

  15. F. L. Pilar, Elementary Quantum Chemistry, McGraw-Hill, New York (1978).

    Google Scholar 

  16. J. W. Simmons and M. J. Gutmann, States waves and photons: a modern introduction to light, Addison-Wesley, Reading, Mass. (1970).

    Google Scholar 

  17. R. J. King and S. P. Talim, Some aspects of polarizer performance, J. Phys. E: Scientific Instruments 4, 93–96 (1971).

    Article  Google Scholar 

  18. D. E. Aspnes, Effects of component optical activity in data reduction and calibration of rotating-analyzer ellipsometers, J. Opt. Soc. Am. 64, 812–819 (1974).

    Article  CAS  Google Scholar 

  19. R. J. King, Quarter-wave retardation systems based on the Fresnel rhomb principle, J. Sci. Instr. 43, 617–622 (1966).

    Article  Google Scholar 

  20. J. M. Bennett, A critical evaluation of rhomb-type quarter wave retarders, Appl. Optics. 9, 2123 - 2129 (1970).

    Article  CAS  Google Scholar 

  21. D. N. Henty and H. G. Jerrard, A universal ellipsometer, Surf. Sci. 56, 170–181 (1976).

    Article  CAS  Google Scholar 

  22. A. C. Lowe, Practical limitations to accuracy in a nulling automatic wavelength-scanning ellipsometer, Surf. Sci. 56, 134–147 (1976).

    Article  CAS  Google Scholar 

  23. W. Budde, Photoelectric analysis of polarized light, Appl. Optics. 1, 201–205 (1962).

    Article  Google Scholar 

  24. R. H. Muller, Present status of automatic ellipsometers, Surf. Sci. 56, 19–36 (1976).

    Article  CAS  Google Scholar 

  25. R. C. Thompson, J. R. Bottiger, and E. S. Fry, Measurement of polarized light interactions via the Mueller matrix, Appl. Optics 19, 1323–1332 (1980).

    Article  CAS  Google Scholar 

  26. F. L. McCrackin and J. Colson, A Fortran program for analysis of ellipsometer measurements and calculation of reflection coefficients from thin films, National Bureau of Standards Technical Note, 242 (1964).

    Google Scholar 

  27. F. Abelès, Optical properties of inhomogeneous films, in reference 2, above, pp. 41–58.

    Google Scholar 

  28. P. C. S. Hayfield and G. W. T. White, An assessment of the suitability of the Drude-Tronstad polarized light method for the study of film growth on polycrystalline metals, reference 2, pp. 157–199.

    Google Scholar 

  29. S. S. So and K. Vedam, Generalized ellipsometric method for the absorbing substrate covered with a transparent film system, J. Opt. Soc. Am. 62, 16–23 (1972).

    Article  CAS  Google Scholar 

  30. J. Pitha and R. N. Jones, A comparison of optimization methods for fitting curves to infrared envelopes, Can. J. Chem. 44, 3031–3050 (1966).

    Article  CAS  Google Scholar 

  31. P. S. Hauge, Mueller matrix ellipsometry with imperfect compensators, J. Opt. Soc. Am. 68, 1519–1528 (1978).

    Article  Google Scholar 

  32. T. Smith, Ellipsometry for measurements at and below monolayer coverage, J. Opt. Soc. Am. 58, 1069–1079 (1968).

    Article  CAS  Google Scholar 

  33. R. Steiger, Studies of oriented monolayers on solid surfaces by ellipsometry, Helv. Chim. Acta. 54, 2645–2658 (1971).

    Article  CAS  Google Scholar 

  34. D. den Engelsen, Ellipsometry of anisotropic films, J. Opt. Soc. Am. 61, 1460–1466 (1971).

    Article  Google Scholar 

  35. D. J. de Smet, Ellipsometry of anisotropic surfaces, J. Opt. Soc. Am. 63, 958–964 (1973).

    Article  Google Scholar 

  36. D. J. de Smet, Ellipsometry of anisotropic thin films, J. Opt. Soc. Am. 64, 631–638 (1974).

    Article  Google Scholar 

  37. D. den Engelsen, Optical anisotropy in ordered systems of lipids, Surf. Sci. 56, 272–280 (1976).

    Article  Google Scholar 

  38. R. M. A. Azzam and N. M. Bashara, Application of generalized ellipsometry to anisotropic crystals, J. Opt. Soc. Am. 64, 128–133 (1974).

    Article  CAS  Google Scholar 

  39. D. W. Berreman, Optics in stratified and anisotropic media: 4x4 matrix formulation, J. Opt. Soc. Am. 62 502–510 (1972).

    Article  CAS  Google Scholar 

  40. M. Elshazly-Zaghloul, R. M. A. Azzam, and N. M. Bashara, Explicit solution for the optical properties of a uniaxial crystal in generalized ellipsometry, Surf. Sci. 56, 281–292 (1976).

    Article  CAS  Google Scholar 

  41. D. J. de Smet, Generalized ellipsometry and the 4 x 4 matrix formalism, Surf. Sci. 56, 293–306 (1976).

    Article  Google Scholar 

  42. P. Yeh, Optics of anisotropic layered media: a new 4x4 matrix algebra, Surf. Sci. 96, 41–53 (1980).

    Article  CAS  Google Scholar 

  43. . D. den Engelsen and B. de Koning, Ellipsometric study of organic monolayers J. Chem. Soc. Faraday I (1974) 1603–1614.

    Google Scholar 

  44. G. T. Ayoub and N. M. Bashara, Characterization of a very thin uniaxial film on a nonabsorbing substrate by multiple wavelength ellipsometry: palmitic acid on water. J. Opt. Soc. Am. 68, 978–983 (1978).

    Article  CAS  Google Scholar 

  45. T. V. Vorburger and K. C. Ludema, Ellipsometry of rough surfaces, Appl. Opt. 19, 561–573 (1980).

    Article  CAS  Google Scholar 

  46. C. A. Fenstermaker and F. L. McCrackin, Errors arising from surface roughness in ellipsometric measurement of the refractive index of a surface, Surf. Sci. 16, 85–96 (1969).

    Article  Google Scholar 

  47. D. E. Aspnes, J. B. Theeten, and F. Hottier, Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry, Phys. Rev. B. 20, 3292–3302 (1979).

    Article  CAS  Google Scholar 

  48. D. E. Aspnes, E. Kinsbron, and D. D. Bacon, Optical properties of Au: sample effects, Phys. Rev. B 21 3290–3299 (1980).

    Article  CAS  Google Scholar 

  49. J. Kruger and J. R. Ambrose, Qualitative use of ellipsometry to study localized corrosion processes, Surf. Sci. 56, 394–412 (1976).

    Article  CAS  Google Scholar 

  50. J. A. Petit and F. Dabosi, An ellipsometric approach to localized corrosion processes, Corros. Sci. 20, 745–760 (1980).

    Article  CAS  Google Scholar 

  51. R. H. Muller and C. G. Smith, Use of film-formation models for the interpretation of ellipsometer observations, Surf. Sci. 96, 375–400 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Greef, R. (1984). Ellipsometry. In: White, R.E., Bockris, J.O., Conway, B.E., Yeager, E. (eds) Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2679-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2679-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9667-6

  • Online ISBN: 978-1-4613-2679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics