Skip to main content

Classified Bibliography of Electroanalytical Applications

  • Chapter
  • 755 Accesses

Abstract

Classical polarographic technique, invented by the late Prof. J. Heyrovsky in 1922, is one of the few important electrochemical techniques that finds extensive applications in analytical chemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Theory of Current-Potential Curves

  1. Electrolysis with drops of mercury as the electrode, J. Heyrovsky,Chem. Listy 16, 256–264 (1922)

    Google Scholar 

  2. Electrolysis with a dropping mercury cathode. I. Deposition of alkali and alkaline-earth metals, J. Heyrovsky,Phil. Mag.45, 303–315 (1923)

    CAS  Google Scholar 

  3. Polarographic studies with the dropping mercury electrode. Part II. The absolute determination of reduction and depolarization potentials, J. Heyrovsky and D. Ilkovic,Collect. Czech. Chem. Commun.7, 198–214 (1935)

    CAS  Google Scholar 

  4. Polarographic studies with the dropping mercury cathode. Part LXIII. Verification of the equation of the polarographic wave in the reversible electro-deposition of free cations, J. Tomes,Collect. Czech. Chem. Commun.9, 12–21 (1937)

    CAS  Google Scholar 

  5. Thermodynamic significance of polarographic half wave potentials of simple metal ions at the dropping mercury electrode, J. J. Lingane,J. Am. Chem. Soc.61, 2099–2103 (1939)

    CAS  Google Scholar 

  6. Die wissenschaftlichen grundlagen der polarographie, M. V. Stackelberg, Z. Elektrochem. 45, 466–491 (1939)

    CAS  Google Scholar 

  7. Polarographic limiting currents, J. K. Taylor and S. W. Smith,J. Res. Nat. Bur. Stand.42, 387–395 (1949).

    CAS  Google Scholar 

  8. Zur theorie der polarographischen kurve, H. Strehlow and M. V. Stackelberg,Z. Elektrochem.54, 51–62 (1950)

    CAS  Google Scholar 

  9. Accurate potentials with the dropping mercury cathode, H. J. Gardner,Nature (London)167, 158–159 (1951)

    CAS  Google Scholar 

  10. Unified theory of polarographic waves, P. Delahay,J. Am. Chem. Soc.75, 1430–1435 (1953)

    CAS  Google Scholar 

  11. Verification of a theory of irreversible polarographic waves, P. Kivalo, K. B. Oldham, and H.A. Laitinen,J. Am. Chem. Soc.75, 4148–4152 (1953)

    CAS  Google Scholar 

  12. Polarographic half wave potentials. Method of measurements; half wave potentials of thallium, A. A. Vlcek,Collect. Czech. Chem. Commun.19, 862–867 (1954)

    CAS  Google Scholar 

  13. New Instrumental Methods in Electrochemistry, P. Delahay, Chapt. 3 and 4, pp. 46–48, Interscience Publishers, Inc., New York (1954)

    Google Scholar 

  14. Theory of the current potential curve, L. Meites,Polarographic Technique, Chapt. 4, pp. 203–266, Interscience Publishers, New York (1965)

    Google Scholar 

Processes Involving Salts of Mercury and Complexation with Mercury

  1. Polarographic studies with the dropping mercury electrode. Part I. Anodic polarisation and the influence of anions, J. Revenda,Collect. Czech. Chem. Commun.6, 453–467 (1934)

    CAS  Google Scholar 

  2. Polarographic studies with the dropping mercury cathode. Part LXIV. Equations of current voltage curves in the reversible electroreduction of a weak electrolyte, Hg (CN)2, J. Tomes,Collect. Czech. Chem. Commun.9, 81–103 (1937)

    CAS  Google Scholar 

  3. Anodic waves involving electrooxidation of mercury at the dropping mercury electrode, I.M. Kolthoff and C. S. Miller,J. Am. Chem. Soc.63, 1405–1411 (1941)

    CAS  Google Scholar 

  4. A polarographic study of mercuric cyanide and the stability of cyanomercuriate ions, L. Newman, J. Deo Cabral, and D. N. Hume,J. Am. Chem. Soc.80, 1814–1819 (1958)

    CAS  Google Scholar 

  5. Effects on polarographic waves of the formation of insoluble films on dropping mercury electrode, I. M. Kolthoff and Y. Okinaka,J. Am. Chem. Soc.83, 47–53 (1961)

    CAS  Google Scholar 

  6. Deposition of mercury ions, In:Principles of Polarography, J. Heyrovsky and J. Kuta, Chapter X, 167–179, Academic Press, New York (1966)

    Google Scholar 

Reversible Processes of Complex Ions

  1. Polarographic studies with the dropping mercury electrode. Part II. The absolute determination of reduction and depolarization potentials, J. Heyrovsky and D. Ilkovic,Collect. Czech. Chem. Commun.7, 198–214 (1935)

    CAS  Google Scholar 

  2. Polarographische untersuchungen an komplexen in waszriger losung, M. V. Stackelberg and H. V. Freyhold,Z. Elektrochem.46, 120–129 (1940)

    Google Scholar 

  3. Complex ions. XV. New derivatives of iminodiacetic acid and their alkaline earth complexes. Connection between acidity and complex formation, G. Schwarzenbach, G. Anderegg, W. Schneider, and H. Senn,Helv. Chim. Acta,32, 1175–1186 (1948)

    Google Scholar 

  4. The determination of consecutive formation constants of complex ions from polarographic data, D. D. Defrod and D. N. Hume,J. Am. Chem. Soc.73, 5321–5322 (1951)

    Google Scholar 

  5. The polarographic determination of relative formation constants of metal complexes of ethylenediaminetetra acetic acid, K. Bril and P. Krumholz,J. Phys. Chem.57, 874–879 (1953)

    CAS  Google Scholar 

  6. Polarography of complex compounds, J. Koryta,Chem. Tech (Berlin),7, 464–470 (1955).

    CAS  Google Scholar 

  7. Kinetik der elektordenvorgange bei komplexen in der polarographic. I. uber Gewisse polarographische methoden fur die ermittlung des mechanisms der metallabscheidung aus komplexen, J. Koryta,Collect. Czech. Chem. Commun.23, 1408–1411 (1958)

    Google Scholar 

  8. II. Bestimmung der komplexibildungs konstanten aus den halbstufen potentialen kinetischer strome, J. Koryta,Collect. Czech. Chem. Commun.24, 2903–2917 (1959)

    CAS  Google Scholar 

  9. III. Durchtritts und dissoziationsreaktion des komplexes, J. Koryta,Collect. Czech. Chem. Commun.24, 3057–3074 (1959)

    CAS  Google Scholar 

  10. New methods of estimating the stability constants of complexes, P. K. Kamalkar,Z. Phys. Chem.218, 189–196 (1961)

    Google Scholar 

  11. Principles of Polarography, J. Heyrovsky and J. Kuta, Chapter VIII, 147-160, Academic Press, New York and London (1966)

    Google Scholar 

Irreversible Electrode Processes: Reduction of Complexes

  1. Theory of concentration polarization of a dropping mercury electrode. I. N. Meiman,Zh. Fiz. Khim.22, 1454–1465 (1948)

    CAS  Google Scholar 

  2. Theory of polarographic currents controlled by rate of reaction and by diffusion, P. Delahay,J. Am. Chem. Soc.73, 4944–4949 (1951)

    CAS  Google Scholar 

  3. Slow electrode reactions, M. Smutek,Proc. 1st Internatl. Polarog. Congress, Prague, Vol. III, 677–683 (1951)

    Google Scholar 

  4. Unified theory of polarographic waves, P. Delahay,J. Am. Chem. Soc.75, 1430–1435 (1953)

    CAS  Google Scholar 

  5. Theorie langsamer elektroden reaktionen in der polarographie und polarographischs verhal ten eines systems, bei-welchem der depolarisator durch eine schnelle chemische reaktion aus einem elektroinaktivenstoff entsteht, J. Koutecky,Collect. Czech. Chem. Commun.18, 597–610 (1953)

    CAS  Google Scholar 

  6. Kinetic analysis of the discharge mechanism of complex ions, H. Gerisher,Z. Physik. Chem. (Leipzig)202, 292–301 (1953)

    Google Scholar 

  7. Uber die kinetik der elektrodenvorgange XV. Tabellen der funktion fur den polarographischen strom bei einem depolarisations vorgang mit vorgeschalteten oder nachfolgenden sehr schnelle monomolekularen chemischen reactionen, J. Weber and J. Koutecky,Collect. Czech. Chem. Commun.20, 980–982 (1955)

    CAS  Google Scholar 

  8. The exchange current on an amalgam drop electrode and the composition of the discharged complexes, A. G. Stromberg and M. K. Ivantsova,Dokl. Akad. Nauk SSSR 100, 303–306 (1955)

    CAS  Google Scholar 

  9. Relation between the electronic structure of inorganic depolarisers and their polarographic behaviour. I. Basic rules, A. A. Vleck,Collect. Czech. Chem. Commun.20, 894–901 (1955)

    Google Scholar 

  10. Theoretical analysis of polarographic waves. II. Reduction of complex metal ions, H. Matsuda and Y. Ayabe,Bull. Chem. Soc. Jap.29, 134–140 (1956)

    CAS  Google Scholar 

  11. Kinetik der elektroden vorgange von komplexen in der polarographic. III. Durchtritts und dissozaiations reaktion der komplexes, J. Koryta,Collect. Czech. Chem. Commun.24, 3057–3074 (1959)

    CAS  Google Scholar 

  12. The calculation of electrochemical kinetic parameters from polarographic current potential curves, L. Meites and Y. Israel,J. Am. Chem. Soc.83, 4903–4906 (1961)

    Google Scholar 

  13. Electrolysis with constant potential: Irreversible reactions at a hanging mercury drop electrode, I. Shain, K. J. Martin, and J. W. Ross,J. Phys. Chem.65, 259–261 (1961)

    CAS  Google Scholar 

  14. Principles of Polarography, J. Heyrovsky and J. Kuta, Chapter XIV, 205–266, Academic Press, New York (1966)

    Google Scholar 

Organic Electrode Processes

  1. Polarographic waves of organic substances, I. M. Kolthoff and J. J. Lingane, In:Polarography, Vol. I, Chap. XIV, pp. 246–267. Interscience Publishers, New York (1952)

    Google Scholar 

  2. Oxidation and reduction of organic compounds—General characteristics of current-voltage curves of organic compounds, I. M. Kolthoff, J. J. Lingane, and S. Wawzonek, In:Polarography, Vol. II, Chap. XXXVI, pp. 623–634, Interscience Publishers, New York (1952)

    Google Scholar 

  3. Effect of structure on the stereo chemistry of electrode reaction. Unsaturated C4 dibasic acids and esters. Stereospecific reduction of the double bond, I. Rosenthal, J. R. Hayes, A. J. Martin, and P. J. Elving,J. Am. Chem. Soc.80, 3050–3055 (1958)

    CAS  Google Scholar 

  4. Correlation of polarographic data with structure. Use of the Hammett-Taft relation, P. J. Elving and J. M. Makowitz,J. Org. Chem.25, 18–20 (1960).

    CAS  Google Scholar 

  5. Oxidation-reduction potentials of organic compounds, W. M. Clark, Williams & Wilkins, Baltimore (1960)

    Google Scholar 

  6. Structural effects on the electrochemical reduction mechanism of organic compounds, P. J. Elving,Ricerca Sci.30, Suppl. No. 5, 205–215 (1960)

    CAS  Google Scholar 

  7. Controlled potential electrolysis, L. Meites, In:Physical Methods of Organic Chemistry, Part IV, A. Weissberger, ed, Interscience Publishers Inc. New York 3281–3333 (1960)

    Google Scholar 

  8. Mechanism of organic electrode reactions, P. J. Elving and B. Pullman, In:Advances in Chem. Phys., Vol. III, Prigogine, ed., pp. 1–31, Interscience Publishers, New York (1961)

    Google Scholar 

  9. Effect of structure on the stereochemistry of electrode reactions. Monobromo C4 dibasic acids and esters, P. J. Elving, I. Rosenthal, J. R. Hayes, and A. J. Martin,Anal. Chem.33, 330–334 (1961)

    CAS  Google Scholar 

  10. Current trends in the study of the influence of structure on the polarographic behaviour of organic substances, P. Zuman, In:Progress in Polarography P. Zuman and I. M. Kolthoff, eds., Vol. I, pp. 319–332, Interscience Publishers, New York (1962)

    Google Scholar 

  11. Polarography in organic analysis, P. J. Elving, In:Progress in Polarography, Vol. III, P. Zuman and I. M. Kolthoff, eds., pp. 625–648, Interscience Publishers, New York (1962)

    Google Scholar 

  12. Quantitative treatments of substituent effects in polarography. II. Free energy relationship in monocyclic heterocyclic series, P. Zuman,Collect. Czech. Chem. Commun.27, 630–647 (1962)

    CAS  Google Scholar 

  13. Effect of the double layer structure and of the adsorption of electrode reaction participants upon polarographic waves in the reduction of organic substances, S. G. Mairanovsky,J. Electronal. Chem.4, 166–181 (1962)

    Google Scholar 

  14. Influence of adsorption on the polarographic behaviour of reducible organic substances. An example of auto inhibition of the discharge reaction, E. Laviron,Bull. Soc. Chim.France 418–422 (1962)

    Google Scholar 

  15. General theoretical treatment of the polarographic kinetic currents, R. Brdicka, V. Hanus, and J. Koutecky, In:Progress in Polarography, Vol. I, P. Zuman and I. M. Kolthoff, eds., 145–199, Interscience Publishers, New York (1962)

    Google Scholar 

  16. Applications of polarography to study the constitution of organic compounds and intermediate products in their reactions, P. Zuman,Z. Chem . 3 (5) 161–171 (1963)

    CAS  Google Scholar 

  17. Variation of the half wave potential of organic compounds with pH, P. J. Elving,Pure Appl. Chem.7, (2–3) 423–454 (1963)

    CAS  Google Scholar 

  18. Organic Polarographic Analysis, P. Zuman, Pergamon Press, London (1964).

    Google Scholar 

  19. Recent trends in organic polarography, P. Zuman In:Polarography 1964, G. J. Hill, ed., pp. 687–710, Macmillan (London)

    Google Scholar 

  20. Electrolytic reductive coupling I. Acrylonitrile, M. M. Baizer,J. Electrochem Soc.111, (2), 215–222 (1964)

    CAS  Google Scholar 

  21. The effect of the composition of aqueous organic solvents on the polarographic behaviour of organic compounds, S. G. Mairanovski, In:Polarography 1964, G. J. Hill, ed., pp. 719–730, Macmillan, London (1966)

    Google Scholar 

  22. Theory of stationary electrode polarography single scan and cyclic methods applied to reversible irreversible and kinetic systems, R. S. Nicholson and I. Shain,Anal. Chem.36, (4), 706–723 (1964)

    CAS  Google Scholar 

  23. Adsorption effect of the participants in the electrode and pre-electrode reactions upon the kinetics of electrochemical processes, S. G. Marianovskii,Electrochim. Acta 9, 803–815 (1964).

    Google Scholar 

  24. Electrochemical relaxation techniques, W. H. Reinmuth,Anal. Chem.36, 211R-219R (1964)

    Google Scholar 

  25. Polarography of aliphatic compounds, H. Lund,Talanta 12, 1065–1079 (1965).

    CAS  Google Scholar 

  26. Polarography of aromatic compounds. J. Tirouflet and E. Laviron,Talanta 12, 1105–1126 (1965)

    CAS  Google Scholar 

  27. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics, R. S. Nicholson,Anal. Chem.37, 1351–1355 (1965)

    CAS  Google Scholar 

  28. Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfers, R. S. Nicholson and I. Shain,Anal. Chem.37 (2), 178–190 (1965)

    CAS  Google Scholar 

  29. Experimental verification on an ECE mechanism for the reduction of p-nitrosophenol using stationary electrode polarography, R. S. Nicholson and I. Shain,Anal. Chem.37 ( 2 ), 190–195 (1965)

    Google Scholar 

  30. Polarography of organic compounds in aprotic solvents, S. Wawzonek,Talanta 12, 1229–1235 (1965).

    CAS  Google Scholar 

  31. Semiempirical procedure for measuring with stationary electrode polarography rates of chemical reactions involving the product of electron transfer, R. S. Nicholson,Anal. Chem.38, 1406 (1966)

    CAS  Google Scholar 

  32. Polarographic theory for an ECE mechanism. Application to reduction of p-nitrophenol, R. S. Nicholson, J. M. Wilson, and M. L. Olmstead,Anal. Chem.38, (4), 542–545 (1966)

    CAS  Google Scholar 

  33. Experimental evaluation of cyclic stationary electrode polarography for reversible electron transfer, M. L. Olmstead and R. S. Nicholson,Anal. Chem.38, 150 (1966)

    CAS  Google Scholar 

  34. Mechanisms of organic polarography, C. L. Perrin, In:Progress in Physical Organic Chemistry, Vol. III, S. G. Cohen, A. Streitwieser, Jr., and R. W. Taft, eds., pp. 165–316, Interscience Publishers, New York (1965)

    Google Scholar 

  35. Electrochemical relaxation techniques, W. H. Reinmuth,Anal. Chem.38, 270R-277R (1966)

    Google Scholar 

  36. Chapter II: Currents limited by the rate of chemical reaction, pp. 7–55; Chapter III: Adsorption on the electrode and the electrode processes, pp. 57–114; Chapter IV: Electrode processes with antecedent protonation reaction, pp. 115–153; Chapter V: The effect of the double layer structure on electrode processes, pp. 155–186, In:Catalytic and kinetic waves in polarography, S. G. Mairanovskii, Plenum Press, New York (1968)

    Google Scholar 

  37. Topics in organic polarography, P. Zuman, Plenum Press (1970).

    Google Scholar 

  38. Oxidation and reduction of aromatic hydrocarbon molecules at electrodes, M. E. Peover, In:Reactions of Molecules at Electrodes, N. S. Hush, ed., pp. 259–281, Wiley-Interscience, London (1971)

    Google Scholar 

  39. Reduction potentials and orbital energies of azaheteromolecules, J. Tabner and J. R. Yandle, In:Reactions of Molecules at Electrodes, N. S. Hush, ed., pp. 283–303, Wiley-Interscience, London (1971)

    Google Scholar 

  40. The electrode reactions of organic molecules, M. Fleischmann and D. Pletcher, In:Reactions of Molecules at Electrodes, N. S. Hush, Ed., pp. 347–402, Wiley-Interscience, London (1971)

    Google Scholar 

Residual or Charging Current, Migration Current, Diffusion Current, and Instantaneous Current

  1. Polarographic studies with the dropping mercury cathode. Part II. Influence of temperature, V. Nejedly,Collect. Czech. Chem. Commun.1, 319–333 (1929)

    CAS  Google Scholar 

  2. Polarographic studies with the dropping mercury cathode. Part XXV. Increased sensitivity of micro-analytical estimations by a compensation of current, D. Ilkovic and G. Semerano,Collect. Czech. Chem. Commun.4, 176–180 (1932)

    CAS  Google Scholar 

  3. Limiting currents in electrolysis with the dropping mercury cathode, J. Heyrovsky,Arhiv Hem. Farm 8, 11–16 (1934)

    Google Scholar 

  4. Polarographic studies with the dropping mercury cathode. Part XLIV. The dependence of limiting currents on the diffusion constant, on the rate of dropping, and on the size of drops, D. Ilkovic,Collect. Czech. Chem. Commun.6, 498–513 (1934)

    CAS  Google Scholar 

  5. Polarographic studies with the dropping mercury electrode. Part IV. The measurement of the polarization capacity, D. Ilkovic,Collect. Czech. Chem. Commun.8, 170–177 (1936)

    CAS  Google Scholar 

  6. Theory of limiting (diffusion) currents. I. Polarographic limiting current, D. MacGillavry and E. K. Rideal,Rec. Trav. Chim.56, 1013–1021 (1937)

    CAS  Google Scholar 

  7. Theory of limiting currents. II. Limiting currents of cells without and with an indifferent electrolyte, D. MacGillavry,Rec. Trav. Chim.56, 1039–1046 (1937)

    CAS  Google Scholar 

  8. Theory of limiting currents. III. General solutions with excess of one indifferent electrolyte, D. MacGillavry,Rec. Trav. Chim.57, 33–40 (1938)

    CAS  Google Scholar 

  9. The value of diffusion currents observed in electrolysis by the dropping mercury electrode. Polarographic study, D. Ilkovic,J. Chim. Phys.35, 129–135 (1938)

    CAS  Google Scholar 

  10. Fundamental studies with the dropping mercury electrode. II. The migration current, J. J. Lingane and I. M. Kolthoff,J. Am. Chem. Soc.61, 1045–1051 (1939)

    CAS  Google Scholar 

  11. A study of diffusion processes by electrolysis with micro-electrodes, H. A. Laithinen and I. M. Kolthoff,J. Am. Chem. Soc.61, 3344–3349 (1939)

    Google Scholar 

  12. Capacity phenomena displayed at mercury capillary electrodes, J. Heyrosky, F. Sorm, and J. Forejt,Collect. Czech. Chem. Commun.12, 11–38 (1947)

    Google Scholar 

  13. Polarographic discussion panel on The validity of the Ilkovic equation in polarographic analysis, F. L. Steghart, Chemistry and Industry, p. 157 (1948)

    Google Scholar 

  14. Polarographic current time curves, H. A. McKenzie,J. Am. Chem. Soc.70, 3147–3148 (1948).

    CAS  Google Scholar 

  15. Polarographic limiting currents, J. K. Taylor, R. E. Smith, and I. L. Cooter,J. Res. Natl. Bur. Standards,42, 387–395 (1949)

    CAS  Google Scholar 

  16. Polarography with slowly forming mercury drops, G. S. Smith,Nature 163, 290–291 (1949)

    CAS  Google Scholar 

  17. A new polarographic diffusion current equation, J. J. Lingane and B. A. Loveridge,J. Am. Chem. Soc.72, 438–441 (1950)

    CAS  Google Scholar 

  18. Zur theorie der polarographischem kurve, H. Strehlow and M. V. Stackelberg,Z. Elektrochem.54, 51–62 (1950)

    CAS  Google Scholar 

  19. Studies in the theory of the polarographic diffusion current, I. The effects of gelatin on the diffusion current constants of cadmium and bismuth, L. Meites and T. Meites,J. Am. Chem. Soc.72, 3686–3691 (1950)

    CAS  Google Scholar 

  20. Studies in the theory of the polarographic diffusion current. II. The instantaneous diffusion current and the Strehlow-Von stackelberg equation, L. Meites and T. Meites,J. Am. Chem. Soc.72, 4843–4844 (1950)

    CAS  Google Scholar 

  21. Mercury drop control: Application to derivative and differential polarography, L. Airey and A. A. Smales,Analyst.75, 287–304 (1950)

    CAS  Google Scholar 

  22. Studies in the theory of the polarographic diffusion current, IV. Diffusion current constants of some ions in the absence of gelatin, L. Meites,J. A m. Chem. Soc.73, 1581–1583(1951)

    CAS  Google Scholar 

  23. Studies on the theory of the polarographic diffusion current. VII. The effect of drop weight on the relationship between the diffusion current constant of lead and the drop time, L. Meites,J. Am. Chem. Soc.73, 3724–3727 (1951)

    CAS  Google Scholar 

  24. Zur theorie der polarographischen kurve II. Bestimmung der diffusion koeffizienten von ionen in elektrolytlosungen, H. Strehlow, O. Madrich, and M. V. Stackelberg,Z. Electrochem.55, 244–250 (1951)

    CAS  Google Scholar 

  25. Studium der an der stromenden quecksilber elektrode auftretenden stromidskontinuitat, P. Valenta,Collect. Czech. Chem. Commun.16, 239–251 (1951)

    CAS  Google Scholar 

  26. Zur theorie der polarographischem kurve. IV. Untersuchungen uber die gultigkeit der korrigierten Ilkovic-Gleichung, W. Hans and W. Jensch,Z. Elektrochem 56, 648–662 (1952)

    CAS  Google Scholar 

  27. Developments of constants in polarography: A correction factor for the Ilkovic equation, O. H. Muller, Natl. Bur. Standards Circ. No. 524, 289-303 (1953)

    Google Scholar 

  28. Zur theorie der polarographischen kurve VII. Diffusionsbedingte polarographische strom-starke, W. Hans, W. Henne, and E. Meurer,Z. Elektrochem.58, 836–849 (1954)

    CAS  Google Scholar 

  29. Eine neue form der quecksilbertropfelektrode, I. Smoler,Collect. Czech. Chem. Commun.19, 238–240 (1954)

    Google Scholar 

  30. Instantaneous polarographic current. III. Accurate measurements of the residual currents, A. Bresle,Acta Chem. Scand.10, 947–950 (1956)

    CAS  Google Scholar 

  31. Current time curves on single drops and the polarographic diffusion current. I. Smoler and J. Kuta,Z. Physik. Chem. (Leipzig) Sonderheft, 58–65 (1958)

    Google Scholar 

  32. Principles of polarography, M. V. Stackelberg,Z. Anal. Chem.173, 89–90 (1960).

    Google Scholar 

  33. The effect of the “back pressure” on the diffusion current, G. C. Barker and A. W. Gardner, In:Advances in Polarography, Vol. I, I. S. Longmuir, ed., pp. 330–339, Pergamon Press, London (1960)

    Google Scholar 

  34. The diffusion equation in d.c. polarography. Part I. Current-time curves without depletion effect, pp. 408–424 (1960); Part II. The mass-time relationship of dropping mercury electrodes, pp. 425–436 (1960), J. M. Los and D. W. Murray, In:Advances in Polarography, Vol. 2, I. S. Longmuir, ed., Pergamon Press

    Google Scholar 

  35. Grenzstrom ander Hg-trop felektrode bei niedrigen konzentrationen des fremdelektrolyts, Z. Zambora, A. Fulinski, and M. Bierowski,Z. Elektrochem.65, 887–891 (1961)

    Google Scholar 

  36. Die gleichung fur polarographische diffusionsstrome und die grenzen ihrer gultigkeit, J. Koutecky and M. V. Stackelberg, In:Progress in Polarography, Vol. I, P. Zuman and I. M. Kolthoff, eds., pp. 21–42, Interscience Publishers, (1962)

    Google Scholar 

  37. The instantaneous currents (i-t curves) on single drops, J. Kuta and I. Smoler, In:Progress in Polarography, Vol. I, P. Zuman and I. M. Kolthoff, eds., pp. 43–63, Interscience Pulbishers (1962)

    Google Scholar 

  38. Effect of the position of the capillary on the transfer of concentration polarization in polarography, I. Smoler,J. Electroanal Chem.6, 465–479 (1963)

    CAS  Google Scholar 

  39. Resistance compensation in polarography. Application to high resistance nonaqueous systems and to high current density aqueous systems, W. B. Schaap and P. S. McKinney,Anal. Chem.36, 1251–1258 (1964)

    CAS  Google Scholar 

  40. The limiting current, L. Meites, In:Polarographic Techniques Chap. 3, pp. 150–176, Inter-science Publishers, New York (1965)

    Google Scholar 

Kinetic Currents and Catalytic Currents

  1. Uber durch wasserstoffatome katalysierte depolarisations vorgange ander tropfenden queck-silbrelektrode, K. Wiesner,Z. Elektrochem.49, 164–166 (1943)

    CAS  Google Scholar 

  2. The polarography of uranium I. Reduction in moderately acid solutions. Polarographic determination of uranium, W. E. Harris and I. M. Kolthoff,J. Am. Chem. Soc.67, 1484–1490 (1945)

    CAS  Google Scholar 

  3. Polarographic determination of the rate of the reaction between ferrohem and hydrogen peroxide, R. Brdicka and K. Wiesner,Collect. Czech. Chem. Commun.12, 39–63 (1947)

    CAS  Google Scholar 

  4. Rate of recombination of ions derived from polarographic limiting currents due to the reduction of acids, R. Brdicka and K. Wiesner,Collect. Czech. Chem. Commun.12, 138–149 (1947)

    CAS  Google Scholar 

  5. Kinetic (catalytic) (polarographic) currents for systems containing hydrogen peroxide, I. M. Kolthoff and E. P. Parry,Proc. 1st Internal Polarography Cong. Prague, Vol. I, 145–154 (1951)

    Google Scholar 

  6. Catalysis of the polarographic reduction of hydrogen peroxide by compounds of iron in dilute sulphuric acid solutions, Z. Pospisil,Collect. Czech. Chem. Commun.18, 337–349 (1953)

    CAS  Google Scholar 

  7. Uber dei kinetik der elektroden vorgange VII a. Theorie einiger katalytischer strome in der polarographie, J. Koutecky,Collect. Czech. Chem. Commun.18, 311–325 (1953)

    CAS  Google Scholar 

  8. Evaluation of the rate constant of the decomposition of hydrogen peroxide by catalase from the polarographic limiting current of oxygen, J. Koutecky, R. Brdicka, and V. Hanus,Collect. Czech. Chem. Commun.18, 611–628 (1953)

    CAS  Google Scholar 

  9. Anwendungsmoglichkeiten und begrenzungen der polarographischen methods zur verfol gung schneller chemischer reaktionen in losunger, J. Koryta,Z. Elektrochem.64, 23–29 (1960)

    CAS  Google Scholar 

  10. General theoretical treatment of the polarographic kinetic currents, R. Brdicka, V. Hanus, and J. Koutecky, In:Progress in Polarography, Vol. I, P. Zuman and I. M. Kolthoff, eds., pp. 145–199, Interscience Publishers (1962)

    Google Scholar 

  11. The theory of catalytic hydrogen waves in organic polarography, S. G. Mairanovskii,J. Electroanal Chem.6, 77–118 (1963)

    CAS  Google Scholar 

  12. Kinetic currents, J. Heyrovsky and J. Kuta, In:Principles of Polarography, pp. 380–393, Academic Press, New York (1966)

    Google Scholar 

  13. Currents limited by the rate of chemical reaction Chapter II, pp. 7–55, Electrode processes with antecedent protonation, Chapter IV, pp. 115–153, S. G. Mairanovkii, In:Catalytic and Kinetic Currents in Polarography, Plenum Press, New York (1968)

    Google Scholar 

  14. Catalytic Processes, Chapter II, Sec. D.1, pp. 17–25, Catalytic hydrogen evolution at the dropping mercury electrode caused by organic catalysts, Chapter IX, pp. 241–285 S. G. Mairanovskii, In:Catalytic and Kinetic Currents in Polarography, Plenum Press, New York (1968)

    Google Scholar 

Polarographic Maxima

  1. Maxima of the polarization curves of mercury cathodes, A. N. Frumkin and B. Bruns,Acta Phys. Chim. URSS 1, 232–246 (1934)

    CAS  Google Scholar 

  2. Maxima on current-voltage curves, B. Bruns, A. N. Frumkin, S. Zofa, L. Vanyukova, and S. Zolotarevskaya,Acta Phys. Chim. URSS,9, 359–372 (1938)

    CAS  Google Scholar 

  3. Polarographic maxima, In:Polarography, I. M. Kolthoff and J. J. Lingane, Vol. I, Chapter X, pp. 156–188, Interscience Publishers, New York (1952)

    Google Scholar 

  4. Polarographic maxima, In:Polarographic Analysis (Russ), T. A. Kruykova, S. I. Sinyakova, and J. V. Arefeva, pp. 94–102, pp. 573–582, State Chemical Technical Publication, Moscow (1959)

    Google Scholar 

  5. Polarographic maxima, V. G. Levich, In:Physico Chemical Hydrodynamica, Prentice Hall Inc. Englwood Cliffs, 561–589 (1962)

    Google Scholar 

  6. Streaming maxima in polarography, H. H. Bauer, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 8, pp. 169–279, Marcel Dekker Inc., New York (1975)

    Google Scholar 

  7. Polarographic Maxima of the Third Kind I., A. N. Frumkin, N. Fedorovich, B. B. Damsakin, and E. V. Stenina,Sov. Electrochem.6, 1–5 (1970)

    Google Scholar 

  8. Polarographic maxima of the third kind, A. N. Frumkin, N. V. Fedorovich, B. B. Damaskin, E. V. Stenina, and V. S. Krylov,J. Electroanal, Chem. International Electrochem.50, 103–111 (1974)

    CAS  Google Scholar 

Analysis

  1. Chemische Analysen mit dem Polarographen, H. Horn, J. Springel, Berlin (1937)

    Google Scholar 

  2. Simplification of the polarographic method by introduction of “step quotients”, H. E. Forche,Mikrochemie 25, 217–224 (1938)

    CAS  Google Scholar 

  3. The determination of dissolved oxygen by means of the dropping mercury electrode, with applications in biology, H. G. Petering and F. Daniels,J. Am. Chem. Soc. 60, 2796–2802 (1938)

    CAS  Google Scholar 

  4. Polarographic determination of nickel and cobalt. Simultaneous determination in presence of iron, copper, chromium and manganese and determination of small amounts of nickel in cobalt compounds, J. J. Lingane and H. Kerlinger,Ind. Eng. Chem.(Anal. Ed) 13, 77–80 (1941)

    CAS  Google Scholar 

  5. The polarographic method of analysis. V. Applications, O. H. Muller,J. Chem. Ed.18, 320–329 (1941)

    CAS  Google Scholar 

  6. Systematic polarographic metal analysis. Characteristics of arsenic, antimony, bismuth, tin, lead, cadmium, zinc and copper in various electrolytes, J. J. Lingane,Ind. Eng. Chem. (Anal Ed.) 15, 583–590 (1943)

    CAS  Google Scholar 

  7. Examination of absolute and comparative methods of polarographic analysis, K. Taylor, (Natl. Bur. Standards, Washington, D.C.)Anal. Chem.19, 368–372 (1947)

    CAS  Google Scholar 

  8. Device for estimating the height of polarographic waves, J. K. Taylor, (Natl. Bur. Std., Washington D.C)Anal. Chem.19, 478–481 (1947)

    CAS  Google Scholar 

  9. Precise measurements of polarographic half wave potential, L. Meites,J. Am. Chem. Soc.72, 2293–2294 (1950)

    CAS  Google Scholar 

  10. A new polarographic diffusion current equation, J. J. Lingane and B. A. Loveridge,J. Am. Chem. Soc.72, 438–441 (1950)

    CAS  Google Scholar 

  11. Theory of the polarographic curve, H. Strehlow and M. V. Stackelberg,Z. Elektrochem.54, 51–62 (1950)

    CAS  Google Scholar 

  12. Method of standardization for polarographic determination of lead in zinc and zinc-bearing materials, P. Rutherford and L. A. Cha,Anal. Chem.23, 1714–1715 (1951)

    CAS  Google Scholar 

  13. Common operations in polarographic analysis, I. M. Kolthoff and J. J. Lingane, In:Polarography pp. 372–398, Vol. I, Interscience Publishers, New York (1952)

    Google Scholar 

  14. High sensitivity recording polarography, M. T. Kelley and H. H. Miller,Anal. Chem.24, 1895–1899 (1952)

    CAS  Google Scholar 

  15. Minimum error polarographic analysis of binary mixtures, A. Frisque, V. W. Meloche, and I. Shain,Anal. Chem.26, 471–473 (1954)

    CAS  Google Scholar 

  16. Determination of traces of nickel and zinc in copper and its salts, L. Meites,Anal. Chem.27, 977–979 (1955)

    CAS  Google Scholar 

  17. Analysis of solutions containing two reducible substances by polarography and coulometry at controlled potential, L. Meites,Anal. Chem.27, 1114–1116 (1955)

    CAS  Google Scholar 

  18. Standard addition method of polarographic analysis-alternate interpretation, W. H. Reinmuth,Anal. Chem.28, 1356–1357 (1956)

    CAS  Google Scholar 

  19. A polarographic method for the study of glycol fission by periodic acid, P. Zuman and J. Krupicka,Collect. Czech. Chem. Commun.23, 598–607 (1958)

    Google Scholar 

  20. Polarographische bestimmung des pyridoxals und pyridoxal 5-phosphats, O. Manousek and P. Zuman,J. Electroanal. Chem.1, 324–330 (1960)

    CAS  Google Scholar 

  21. Error analysis for polarographic analytical methods, V. Pliska,Z. Anal. Chem.191, 241–248 (1962)

    CAS  Google Scholar 

  22. Direct polarographic determination of pyridoxal in the presence of pyridoxal-5-phosphate, O. Manousek and P. Zuman,Collect. Czech. Chem. Commun. 27, 486–487 (1962)

    CAS  Google Scholar 

  23. A new method for the study of intermetallic compound formation in mixed amalgams, H. K. Ficker and L. Meites,Anal. Chim. Acta 26, 172–179 (1962)

    CAS  Google Scholar 

  24. Chromato polarography, W. Kemula, In:Progress in Polarography, Vol. II, pp. 397–409, P. Zuman and I. M. Kolthoff, eds., Interscience, New York (1962)

    Google Scholar 

  25. Important factors in classical polarography, P. Zuman, In:Progress in Polarography P. Zuman and I. M. Kolthoff, eds., Chap. XXIX, pp. 583–600, Vol. II, Interscience Publishers, New York (1962).

    Google Scholar 

  26. Treatment of the sample in inorganic polarography G. W. C. Milner, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXX, pp. 601–616, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  27. Organic reagents in inorganic polarographic analysis, M. Shinagawa, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXXI, pp. 617–24, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  28. Polarography in organic analysis, P. J. Elving, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXXII, pp. 625–648, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  29. Polarography in metallurgy, M. Spalenka, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXXIV, pp. 661–665, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  30. Polarography in medicine and biochemistry, M. Brezina, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXV, pp. 667–686, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  31. Polarographic analysis in pharmacy, P. Zuman and M. Brezina, In:Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Chap. XXXVI, pp. 687–701, Vol. II, Interscience Publishers, New York (1962)

    Google Scholar 

  32. Quantitative polarographic analysis, L. Meites,Polarographic Techniques, pp. 334–410 Interscience Publishers, New York (1965)

    Google Scholar 

Polarographic Instrumentation Manual D.C. Polarographic Instruments

  1. Polarographic theory, instrumentation and methodology, J. J. Lingane,Anal. Chem.21, 45–60 (1949)

    CAS  Google Scholar 

  2. Polarographic instrumentation, I. M. Kolthoff and J. J. Lingane,Polarography, pp. 297–349, Vol. I, Interscience Publishers, New York (1952)

    Google Scholar 

  3. Polarographs and other apparatus, L. Meites,Polarographic Techniques, pp. 7–94, Interscience Publishers (1965)

    Google Scholar 

Recording Instruments

  1. Polarographic analysis with the dropping mercury cathode. XXV. Increased sensitivity of microanalytical estimation by a compensation of current, D. Ilkovic and G. Semerano,Collect. Czech. Chem. Commun.4, 176–180 (1932)

    CAS  Google Scholar 

  2. Die polarographische analyse des messings die grondlagen serienma biger schnellanalysen von legier ungen gusge fuhrt mittels quecksilbertropi kathoden, H. Hohn,Z. Electrochem.43, 127–139 (1937)

    CAS  Google Scholar 

  3. Use of the polarograph in steel plant laboratory. II. Determination of vanadium, chromium, and molybdenum in steel after removal of iron with alkali hydroxide, G. Thanheiser and J. Willems,Mitt. Kaiser Wilhelm Inst. Eisenforsch. Dusseldorf.21, 65–78 (1939)

    CAS  Google Scholar 

  4. Use of a condenser to reduce galvanometer oscillations in polarographic measurements with particular application to compensation method of measuring small diffusion current, J. J. Lingane and H. Kerlinger,Ind. Eng. Chem. (Analytical Edition)12, 750–753 (1940)

    CAS  Google Scholar 

  5. Fundamental studies with the dropping mercury electrode. III. Influence of capillary characteristics on the diffusion current and residual current, J. J. Lingane and B. A. Loveridge,J. Am. Chem. Soc.66, 1425–1431 (1944)

    CAS  Google Scholar 

  6. Apparatus for testing liquids with a dropping Hg electrode, E. D. Coleman, U.S. Patent 2,343,885 (1944)

    Google Scholar 

  7. Dropping Hg electrode apparatus for analyzing liquids, O. Kanner and E. D. Coleman, U.S. Patent 2,361,295 (1944)

    Google Scholar 

  8. Application of the Ilkovic equation to quantitative polarography, F. Buckley and J. K. Taylor,J. Res. Natl. Bur. Stand.34, 97–114 (1945)

    CAS  Google Scholar 

  9. Application of multicapillary tube mercury electrode in polarography, S. Stankoviansky,Chem. Zvesti 2, 133–142 (1948)

    Google Scholar 

  10. Dropping mercury electrode for polarography with enforced removal of the drop, V. A. Tsimmergakl,Zavod. Lab.15, 1370 (1949)

    CAS  Google Scholar 

  11. Mercury drop control: application to derivative and differential polarography, L. Airey and A. S. Smales,Analyst 75, 287–304 (1950)

    CAS  Google Scholar 

  12. Polarographic instrumentation, I. M. Kolthoff and J. J. Lingane, Polarography, pp. 297–349, Vol. I, Interscience Publishers, New York (1952)

    Google Scholar 

  13. Controlled-potential and derivative polarograph, M. T. Kelley, H. C. Jones, and D. J. Fisher,Anal. Chem.31, 1475–1485 (1959)

    CAS  Google Scholar 

  14. Electronic controlled-potential coulometric titrator, M. T. Kelley, H. C. Jones, and D. J. R. Fisher,Anal. Chem.31, 488–494 (1959)

    CAS  Google Scholar 

  15. Controlled-potential polarographic polarizing unit with electronic scan and linear residual current compensation, M. T. Kelley, D. J. Fisher, and H. C. Jones,Anal. Chem.32, 1262–1265 (1960)

    CAS  Google Scholar 

  16. The diffusion equation in d.c. polarography, In: J. M. Los and D. W. Murray,Advances in Polarography Vol. 2, I. S. Longmuir, ed., pp. 408–424, Pergamon Press, Oxford (1960)

    Google Scholar 

  17. A device for the synchronization of two dropping mercury electrodes, H. H. Lockwood, H. M. Stationery Office, London, AERER, 3521, 1960

    Google Scholar 

  18. Controlled potential and derivative polarography, In: M. T. Kelley, D. J. Fisher, W. D. Cooke, and H. C. Jones,Advances in Polarography, Vol. I, pp. 158–182, Pergamon Press (1960)

    Google Scholar 

  19. Incremental approach to derivative polarography, C. Auerbach, H. L. Finston, G. Kissel, and J. Glickstein,Anal. Chem.33, 1480–1484 (1961)

    CAS  Google Scholar 

  20. Automatic polarograph for use with solutions of high resistance, P. Arthur, P. A. Lewis, N. A. Lloyd, and R. K. Vanderkam,Anal. Chem.33, 488–491 (1961)

    CAS  Google Scholar 

  21. An IR compensator for nonaqueous polarography and amperometric titrations, P. Arthur and R. H. Vanderkam,Anal. Chem.33, 765–767 (1961)

    CAS  Google Scholar 

  22. Electroanalytical Controlled-Potential Instrumentation, G. L. Booman and W. B. Holbrook,Anal. Chem.35, 1793–1809 (1963)

    CAS  Google Scholar 

  23. Polarographische untersuchungen bei regulierung der tropfzeit durch abschlagen des tropfens. I. Die tropfzeitabhangigkeit polarographischer strome, D. Wolf,J. Electroanal Chem.5, 186–194 (1963)

    CAS  Google Scholar 

  24. A multipurpose operational amplifier instrument for electroanalytical studies, W. L. Underkofler and I. Shain,Anal. Chem.35, 1778–1783 (1963)

    CAS  Google Scholar 

  25. A simple electronic polarographic voltage compensator, R. Annino and K. J. Hagler,Anal. Chem.35, 1555–1556 (1963)

    CAS  Google Scholar 

  26. A simple electronic-scan controlled potential polarograph, R. A. Durst, J. W. Ross, and D. N. Hume,J. Electroanal Chem.7, 245–248 (1964)

    CAS  Google Scholar 

  27. Polarographs and other apparatus, L. Meites, In:Polarographic Techniques, pp. 7–94, Interscience Publishers (1965)

    Google Scholar 

  28. Recent developments in d.c. polarography, D. J. Fisher, W. L. Belew, and M. T. Kelley,Polarography 1964 Vol. I, G. J. Mills, ed., pp. 89–134 Macmillan (1966)

    Google Scholar 

  29. Principles of Polarography, J. Heyrovsky and J. Kuta, Chap. VI, pp. 99–108, Academic Press, New York (1966)

    Google Scholar 

Theory of Differential and Derivative Polarography

  1. Polarographic and differential polarimetry, G. Semerano and L. Riccoboni,Gazz. Chim. Ital.72, 297–304 (1942)

    CAS  Google Scholar 

  2. Differential method of polarographic analysis, E. A. Kanevskii,J. Appl. Chem. (U.S.S.R)17, 514–519 (1944)

    CAS  Google Scholar 

  3. The fundamental laws of polarography, J. Heyrovsky,Analyst 72, 229–234 (1947).

    CAS  Google Scholar 

  4. Modern trends of polarographic analysis, J. Heyrovsky,Anal. Chim. Acta 2, 533–541 (1948)

    CAS  Google Scholar 

  5. The significance of derivative curves in polarography, J. Heyrovsky,Chem. Listy 43, 149–154 (1949)

    CAS  Google Scholar 

  6. Differential polarography with unique dropping electrode, P. Leveque and F. Roth,J. Chim. Phys.46, 480–484 (1949)

    Google Scholar 

  7. Polarographic determination of halogen derivatives, M. B. Neimen, A. V. Ryabov, and E. M. Sheyanova,Dokl. Akad. Nauk. SSSR 68, 1065–1068 (1949)

    Google Scholar 

  8. Dropping-mercury electrode with enforced separation of the drop, E. M. Skobets and N. S. Kavetski,Zavod Lab.15, 1299–1305 (1949)

    CAS  Google Scholar 

  9. Note on differential polarography with a single dropping electrode,J.Vogel and J.Ritha,J. Chim. Phys.47, 5–7 (1950)

    CAS  Google Scholar 

  10. Vibrating dropping mercury electrode for polarographic analysis of agitated solutions, D. A. Berman, P. R. Saunders, and R. J. Winzier,Anal. Chem.23, 140–1041 (1951)

    Google Scholar 

  11. Derivative polarography. I. Characteristics of the Leveque-Roth circuit, J. J. Lingane and R. Williams,J. Am. Chem. Soc.74, 790–796 (1952)

    CAS  Google Scholar 

  12. Unique polarographic damping circuit for selective elimination of current fluctuations due to the dropping mercury electrode, M. T. Kelley and D. J. Fisher,Anal. Chem.28, 1130–1132 (1956)

    CAS  Google Scholar 

  13. Instrumental methods of derivative polarography, M. T. Kelley and D. J. Fisher,Anal. Chem.30, 929–932 (1958)

    CAS  Google Scholar 

  14. Controlled potential and derivative polarograph, M. T. Kelley, H. C. Jones, and D. J. Fisher,Anal. Chem.31, 1475–1485 (1959)

    CAS  Google Scholar 

  15. Deformations in polarographic derivative curves obtained with R-C wiring, T. Jackel,Z. Anal. Chem.173, 59–65 (1960)

    CAS  Google Scholar 

  16. Controlled potential and derivative polarography, M. T. Kelley, D. J. Fisher, W. D. Cooke, and H. C. Jones, In:Advances in Polarography Vol. I, I. S. Longmuir, ed., pp. 158–182, Pergamon Press, Oxford (1960)

    Google Scholar 

  17. Rapid polarography, S. Wolf,Agnew Chem.72, 449–454 (1960).

    CAS  Google Scholar 

  18. A differential cathode ray polarograph, H. M. Davis and J. E. Seaborn,Advances in Polarography, Vol. I, I. S. Longmuir, ed., pp. 239–250 Pergamon Press (1960)

    Google Scholar 

  19. The performance of the differential cathode ray polarograph, In: H. M. Davis and H. I. Shalgosky,Advances in Polarography, Vol. 2, I. S. Longmuir, ed., Pergamon Press (1960)

    Google Scholar 

  20. Recent developments in d.c. polarography, D. J. Fisher, W. L. Belew, and M. T. Kelley, In:Polarography 1964, Vol. I, G. J. Hills, ed., pp. 89–134, Macmillan (1966)

    Google Scholar 

  21. Studies in subtractive and continuous polarography, In: K. G. Powell and G. F. Reynolds,Polarography 1964, Vol. I., G. J. Hills, ed., pp. 249–260, Macmillan (1966)

    Google Scholar 

  22. Application of derivative techniques to stationary electrode polarography, S. P. Perone and T. R. Mueller,Anal. Chem.37, 2–9 (1965)

    CAS  Google Scholar 

  23. Application of derivative techniques to anodic stripping voltammetry, S. P. Perone and J. R. Birk,Anal. Chem.37, 9–12 (1965)

    CAS  Google Scholar 

  24. Theory of derivative voltammetry with irreversible systems, S. P. Perone and C. V. Evins,Anal. Chem.37, 1061–1063 (1965)

    CAS  Google Scholar 

  25. Derivative voltammetry with irreversible systems, Application to spherical electrodes, S. P. Perone and C. V. Evins,Anal. Chem.37, 1643–1646 (1965)

    CAS  Google Scholar 

  26. Application of derivative read out techniques to stationary electrode polarography with kinetic systems, C. V. Evins and S. P. Perone,Anal. Chem.39 ( 3 ), 309–315 (1967)

    CAS  Google Scholar 

  27. A solid-state controlled potential dc polarograph with cyclic scanning and calibrated first and second derivative scales, H. C. Jones, W. L. Belew, R. W. Stelzner, T. R. Mueller, and D. J. Fisher,Anal. Chem.41, 772–779 (1969)

    CAS  Google Scholar 

  28. Apparatus for precision control of drop time of dropping mercury electrode in polarography, W. L. Belew, D. J. Fisher, H. C. Jones, and M. T. Kelley,Anal. Chem.41, 779–786 (1969)

    CAS  Google Scholar 

  29. Differential and derivative polarography for continuous analysis in a flow system: application to alloy dissolution, B. Cahan and R. Haynes,J. Electroanal Chem.22, 339–345 (1969)

    CAS  Google Scholar 

  30. Real-time computer optimization of stationary electrode polarographic measurements, S. P. Perone, D. O. Jones and W. F. Gufknecht,Anal. Chem.41, 1154–1162 (1969)

    CAS  Google Scholar 

  31. Interactive electronic analytical instrumentation based on computerized experimental design, D. O. Jones and S. P. Perone,Anal. Chem.42, 1151–1157 (1970)

    CAS  Google Scholar 

  32. Numerical deconvolution of overlapping stationary electrode polarographic curves with an on-line digital computer, W. F. Gutknecht and S. P. Perone,Anal. Chem.42,906–917 (1970)

    Google Scholar 

  33. Computerized learning machine applied to qualitative analysis of mixtures by stationary electrode polarography, L. B. Sybrandt and S. P. Perone,Anal. Chem.43, 382–388 (1971)

    CAS  Google Scholar 

  34. On-line interactive data processing. II. Processing voltammetric electrochemical data, S. P. Perone, J. W. Farzer, and A. Kray,Anal. Chem.43, 1485–1490 (1971)

    CAS  Google Scholar 

  35. Enhancement of electroanalytical measurement techniques by real-time computer interaction, S. P. Perone, In: Electrochemistry, J. S. Mattson, H. B. Mark, and H. C. MacDonald, eds., Chap. 13, pp. 423–447, Marcel Dekker, New York (1972)

    Google Scholar 

Theory of Oscillographic Polarography

  1. The cathode ray oscillograph applied to the dropping mercury electrode, L. A. Matheson and N. Nichols,Trans. Electrochem. Soc.73, 193–206 (1938)

    Google Scholar 

  2. A cathode ray polarography. Part II-The current voltage curves, J. E. B. Randies,Trans. Faraday Soc.44, 327–338 (1938)

    Google Scholar 

  3. Oszillographische polarographie, J. Heyrovsky and J. Forejt,Z. Phys. Chem.193, 77–96 (1943).

    CAS  Google Scholar 

  4. Reversibility and irreversibility of electrode reactions in oscillographic polarography, P. Delahay,J. Phys. Colloid Chem.54, 630–639 (1950).

    CAS  Google Scholar 

  5. An oscillographic polarograph for high rates of potential variation, P. Delahay,J. Phys. Colloid Chem.54, 402–411 (1950)

    CAS  Google Scholar 

  6. Oscillographic polarography improved method of measurement and causes of errors, P. Delahay and G. L. Stiehl,J. Phys. and Colloid Chem.55, 570–585 (1951)

    CAS  Google Scholar 

  7. Oscillographic polarography. Phenomena occurring during the quiescent period of the voltage wave, P. Delahay and G. Perkins,J. Phys. and Colloid Chem.55, 586–591 (1951)

    CAS  Google Scholar 

  8. Theory of irreversible waves in oscillographic polarography, P. Delahay,J. Am. Chem. Soc.75, 1190–1196 (1953)

    CAS  Google Scholar 

  9. Voltammetry and polarography with continuously changing potential, P. Delahay, In:New Instrumental Methods in Electrochemistry, Interscience Publishers, New York (1954)

    Google Scholar 

  10. Zur theorie der Randles-Sevikschen kathodenstrahl-Polarographie, M. Matsuda and Y. Ayabe,Z Elektrochem.59, 494–503 (1955)

    CAS  Google Scholar 

  11. Theorie der polarisation der quecksilberelektrode durch wechselstrom, K. Micka,Z. Phys. Chem. (Leipzig) 206, 345–368 (1956)

    Google Scholar 

  12. Multistage electrochemical reactions in oscillographic polarography, Y. P. Gokhshtein and A. Y. Gokhshtein, In: Advances in Polarography, I. S. Longmuir, ed., Vol. 2, pp. 465–481 Pergamon Press (1960)

    Google Scholar 

  13. Oscillographic polarography-Equation for the descending branch of the polarographic wave and its approximation, Ya. P. Gokhshtein and A. Ya. Gokhshtein,Zh. Fiz. Khim.34, 1654–1657 (1960)

    CAS  Google Scholar 

  14. Oscillographic polarography, J. Heyrovsky, In: Advances in Polarography, I. S. Longmuir, ed., Vol. I, pp. 1–25, Pergamon Press, Oxford (1960).

    Google Scholar 

  15. Oscillographische Polarographie mit Wechselstrom, J. Heyrovsky and R. Kalvoda, Akademie Verlag, Berlin (1960)

    Google Scholar 

  16. Single sweep method, J. Vogel, In: Progress in Polarography, P. Zuman and I. M. Kolthoff, eds., Vol. II, pp. 429–448, Interscience Publishers, New York (1962)

    Google Scholar 

Instrumentation

  1. The application of the cathode ray oscillograph to polarography: underlying principles, J. E. B. Randies,Analyst 72, 301–304 (1947)

    Google Scholar 

  2. The application of the cathode ray oscillograph to polarography, A. Airey,Analyst 72, 304–307 (1947)

    CAS  Google Scholar 

  3. Oscillographic polarography with periodical triangular voltage, A. Sevick,Collect. Czech. Chem. Commun.13, 349–377 (1948)

    Google Scholar 

  4. An experimental study of the characteristic features of oscillographic polarography, P. Delahay,J. Phys. Colloid Chem.53, 1279–1301 (1949)

    CAS  Google Scholar 

  5. A cathode ray polarograph, F. C. Snowden and H. T. Page,Anal. Chem.22, 969–981 (1950)

    CAS  Google Scholar 

  6. Application of the cathode ray oscilloscope to polarographic Phenomena I. Differential capacity of electrical double layer, I. W. Loveland and P. J. Elving,J. Phys. Chem.56, 250–255 (1952)

    CAS  Google Scholar 

  7. An improved Randles-type cathode-ray polarograph, G. F. Reynolds and H. M. Davis,Analyst 78, 314–319 (1953)

    CAS  Google Scholar 

  8. Quantitative cathode-ray polarography, K. Cruse and W. Herberles,J. Phys. Chem.57, 579–590 (1953)

    CAS  Google Scholar 

  9. A new single sweep oscillographic polarograph, P. Favero and E. Vianello,Ricerca Sci.25, 1415 (1955)

    CAS  Google Scholar 

  10. Recharches sur les courants catalytiques en polarographie-Oscillographique a balayage lineaire de tension etude theorique, J. M. Saveant and E. Vianello, In:Advances in Polarography, I. S. Longmuir, ed., pp. 367–374, Pergamon Press, London (1960)

    Google Scholar 

  11. Multisweep cathode ray polarograph with two streaming mercury electrodes in a differential circuit, E. Gorlich, J. Srzednicki, and Z. Kowalski,Zh. Fiz. Khim.36, 449–454 (1962)

    Google Scholar 

  12. Polarographie in Salzschmelzen-II, oscillographische wechselstrompolarographie in kalium- chlorid-lithium chlorid eutektikum, E. Schmidt,Electrochim. Acta 8, 23–35 (1963)

    CAS  Google Scholar 

Application

  1. Polarographic reduction of aliphatic aldehydes II. Oscillographic investigations of formaldehyde, R. Bieber and S. Trümpler,Helv. Chim. Acta 30, 971–990 (1947)

    CAS  Google Scholar 

  2. The polarographic behaviour of some elements in concentrated calcium chloride solution. I. General introduction-Certain problems arising from the use of 5M calcium chloride, G. F. Reynolds, H. I. Shalagosky, and T. J. Webber,Anal. Chim. Acta 8, 558–563 (1953)

    CAS  Google Scholar 

  3. Anwendung der oszillographischem polarographie in de quantitativen analyse. IV. Ein gerat zur messung der tiefe de einschnitte auf den kurven, R. Kalvoda,Collect. Czech. Chem. Commun.20, 1503–1507 (1955)

    CAS  Google Scholar 

  4. Stabiliserte oszillogramme mit der tropfelektrode, R. Kalvoda and J. Macku,Collect. Czech. Chem. Commun.20, 257–260 (1955)

    CAS  Google Scholar 

  5. A comparative study of three recently developed polarographs, D. J. Ferret, G. W. C. Milner, H.I. Shalagosky, and L.J. Slee,Analyst 81, 506–512 (1956)

    Google Scholar 

  6. Gerat fur schnelle oszillographische quantitative analyse, P. Valenta and J. Vogel,Collect. Czech. Chem. Commun.21, 502–508 (1956)

    CAS  Google Scholar 

  7. Die an wending der oszillographischen polarographie in dei quantitativen analyse. VII. Mikro-analytische bestimmung einiger metalle, R. Kalvoda,Collect. Czech. Chem. Commun.22, 1390–1399 (1957)

    CAS  Google Scholar 

  8. Oscillographische mikroanalyse, R. Kalvoda,Anal. Chim. Acta 18, 132–139 (1958)

    CAS  Google Scholar 

  9. Polarographic determination of dibutyl phthalate in propellant compositions containing nitro-glycerin, A. F. Williams and D. Kenyon,Talanta 2, 79–87 (1959)

    CAS  Google Scholar 

  10. The determination of trace amounts of lead and bismuth in cast iron, R. C. Rooney,Analyst 83, 83–88 (1958); Aluminium in cast iron,Analyst 83, 546-554 (1958)

    CAS  Google Scholar 

  11. The determination of trace amounts of lead and bismuth in cast iron, R. C. Rooney,Analyst 83, 83–88 (1958); Aluminium in cast iron,Analyst 83, 546-554 (1958)

    CAS  Google Scholar 

  12. The application of cathode-ray polarography to the analysis of semiconductors, F. A. Pohl, In:Advances in Polarography, I. S. Longmuir, ed., Vol. II, pp. 517–523, Pergamon Press, Oxford (1960)

    Google Scholar 

  13. The application of the cathode-ray polarograph to the analysis of blasting explosives, A. F. Williams and D. Kenyon, In:Advances in Polarography, I. S. Longmuir, ed., Vol. II, pp. 565–574, Pergamon Press, Oxford (1960)

    Google Scholar 

  14. Application of the cathode ray polarograph to the analysis of explosives, J. S. Hetman, In:Advances in Polarography, I. S. Longmuir, ed., Vol. II, pp. 640–656 Pergamon Press, Oxford (1960)

    Google Scholar 

  15. Oscillographic polarography with alternating current, In: R. Kalvoda,Progress in Polarography, I. M. Kolthoff and P. Zuman, eds., Vol. II, Chap. XXI, pp. 449–486 Interscience Publishers (1962).

    Google Scholar 

  16. Oscillographic polarography of the interrupted mercury electrode and the accumulation effect, Ya. P. Gokhshtein, In:Polarography 1964, G. J. Hills, ed., Vol. I, pp. 215–221 Macmillan, London (1966).

    Google Scholar 

  17. Studies in subtractive and continuous polarography. Part I. Preliminary studies. The design and construction of a subtractive circuit and associated drop rate controllers for a Tinsley Mark 19 polarograph, K. G. Powell and G. F. Reynolds, In:Polarography 1964, G. J. Hills, ed., Vol. 1, 249, Macmillan, London (1966).

    Google Scholar 

Theory

  1. Properties of the electrical double layer at mercury surface. I. Methods of measurement and interpretation of results, D. C. Grahame,J. Am. Chem. Soc.63, 1207–1215 (1941).

    CAS  Google Scholar 

  2. The capacity of a mercury cathode in the presence of multivalent cations, M. Vorsina and A. N. Frumkin,Acta Phys. Chim. USSR 18, 249(1943).

    Google Scholar 

  3. (a) Reversible electrode reactions in alternating fields. I. Theory of the reversible depolarising process in an alternating field, B. Breyer and F. Gutman,Trans. Faraday Soc.42, 645–650 (1946). (b) II. Experimental verification of the capacity and dynamic resistance terms in the equation governing the reversible depolarising process in an alternating field, B. Breyer and F. Gutman,Trans. Faraday Soc.42, 650–654 (1946).

    CAS  Google Scholar 

  4. Kinetics of rapid electrode reactions, J. E. B. Randies,Disc. Faraday Soc.1, 11–19 (1947).

    Google Scholar 

  5. (a) The behaviour of reversible electrodes in alternating fields, B. Breyer and F. Gutmann,Disc. Farad. Soc.1, 19–26 (1947). (b) Electrode reactions in alternating fields. III. The dynamic resistance, B. Breyer and F. Gutmann,Trans. Faraday Soc.43, 785–791 (1947).

    Google Scholar 

  6. (a) Wechselstrompolarisation von elektrodes mit eine in potentialbeshmmenden schritt beim gleichgewichts potential-I, H. Gerischer,Z. Phys. Chem.198,286–313 (1951). (b) Alternating current polarisation on electrodes with one potential determining step at the equilibrium potential. II, The influence of heterogeneous reaction on the kinetic polarisation resistance, H. Gerischer,Z. Phys. Chem.201, 55–67 (1952). (c) Bestimmung der austausch geschuindig keit beim gleichgewichts potential durch polarisations messungen mit gleich-und wechsel- strom, Wechselstrommez, H. Gerischer,Z. Elektrochem.55, 98–104 (1951). (d) Methoden in der elektrochemie, H. Gerischer,Z. Elektrochem.58, 9–24 (1954).

    CAS  Google Scholar 

  7. Half-wave potentials of polarographic curves by means of alternating current calculation of the transfer coefficient, J. Van Cakenbergeh,Bull. Soc. Chem. Beiges 60, 3–10 (1951).

    Google Scholar 

  8. Gleich- und wechselstrom widerstand der diffusions-polarisation bei ortlich variables aus- tansch stromdichte an der elektrode, K. J. Vetter,Z. Phys. Chem.199, 300 (1952).

    CAS  Google Scholar 

  9. Mathematical theory of faradaic admittance (pseudo capacity and polarisation resistance), D. C. Grahame,J. Electrochem. Soc.99, 370c–385c (1952).

    CAS  Google Scholar 

  10. Theory of alternating current polarography. I. Equation of the reversible a. c. polarographic wave, B. Breyer and S. Hacobian,Aus. J. Chem.7, 225–238 (1954).

    CAS  Google Scholar 

  11. Theory of alternating polarographic currents. Case of reversible waves, P. Delahay and T. J. Adams,J. Am. Chem. Soc.74, 5740–5744 (1952).

    CAS  Google Scholar 

  12. Voltammetry and polarography with periodically changing potential, P. Delahay, In: New Instrumental Methods in Electrochemistry, Chap. 7, pp. 147–198, Interscience Publishers Inc., New York (1954).

    Google Scholar 

  13. Alternating current polarography of organic compounds. I. General introduction and theory, B. Breyer, H. H. Bauer, and S. Hacobian,Aus. J. Chem.7, 305–311 (1954).

    CAS  Google Scholar 

  14. Ein gerat zum registriereu von impedanzen bei elektrochemischen untersuchungen, J. Schon, W. Mehl, and H. Gerischer,Z. Elektrochem 59, 144–146 (1955).

    CAS  Google Scholar 

  15. (a) Theory of alternating current polarography. II. Significance of the Heyrovsky-Ilkovic equation and its relation to the production of a.c. polarographic waves, B. Breyer, H. H. Bauer, and S. Hacobian,Aus. J. Chem.8, 312–321 (1955). (b) Theory of alternating current polarography. III. Frequency of alternating field and reaction rate, B. Breyer, H. H. Bauer, and S. Hacobian,Aus. J. Chem.8, 322–328 (1955).

    CAS  Google Scholar 

  16. Studies on a.c. polarography. I. Theoretical treatment, I. Tachi and T. Kambara,Bull. Chem. Soc. Jpn.28, 25–31 (1955).

    Google Scholar 

  17. Studies on a.c. polarography. V. Theory of reversible wave, I. Tachi and M. Senda,Bull. Chem. Soc. Jpn.28, 632–636 (1955).

    Google Scholar 

  18. Studies on a.c. polarography. III. Reversible wave, M. Okerda and I. Tachi,Bull. Chem. Soc. Jpn.28, 37–41 (1955).

    Google Scholar 

  19. Verallgemeinerung der Randles-Gerischerschen theorie der wechgelspannungs polarisation und ihre polarographische anwendung, T. Kambara,Z. Phys. Chem. N.F. 5, 52–65 (1955).

    CAS  Google Scholar 

  20. Theorie polarographischer strome bei periodisch wechselnder spannung, J. Koutecky,Collect. Czech. Chem. Commun.21, 433–446 (1956).

    CAS  Google Scholar 

  21. Zur theorie der wechselspannungs-polarographic, H. Matshuda,Z. Elektrochem.62, 977– 989 (1958).

    Google Scholar 

  22. On the Impedance of Galvanic Cells,’ Electrode Kinetics Complex plane Polarography and Double layer Phenomena, M. Sluyters Rehbach, Proefschrift (1963).

    Google Scholar 

  23. A generalised equation for the a.c. polarographic wave, H. H. Bauer,J. Electroanal. Chem.1, 2–7 (1959/60).

    Google Scholar 

  24. General theory of alternating current polarography for electrode reactions preceded by slow chemical reactions, S. Satyanarayana, A. K. N. Reddy, and K. S. G. Doss,Aus. J. Chem.13, 177–179 (1960).

    Google Scholar 

  25. a) The faradaic admittance of electrochemical processes. I. Apparatus suitable for phase angle measurement, H. H. Bauer and P. J. Elving,J. Am. Chem. Soc.82,2091–2094 (1960). (b) The faradaic admittance of electrochemical processes. II. Experimental test of the theoretical equations, H. H. Bauer, P. J. Elving, and D. L. Smith,J. Am. Chem. Soc.82, 2094–2098 (1960). (c) The faradaic admittance of electrochemical processes. III. The frequency dependence, H. H. Bauer and P. J. Elving,J. Electroanal. Chem.2, 53–59 (1961).

    CAS  Google Scholar 

  26. D. E. Smith, “Polarography with periodically varying potentials” Ph.D. Thesis, Columbia University (1961), pp. 5–36 (Univ. Microfilm Inc., Ann. Arbor, Michigan).

    Google Scholar 

  27. A.C. Polarographic wave-modified equations, S. K. Rangarajan and K. S. G. Doss,J. Electroanal. Chem.3, 217–218 (1962).

    CAS  Google Scholar 

  28. a) Alternating current polarography of electrode processes with coupled homogeneous chemical reactions. I. Theory for systems with first order preceding, following and catalytic chemical reactions, D. E. Smith,Anal. Chem.35, 602–609 (1963). (b) Alternating current polarography of electrode processes with coupled homogeneous chemical reactions II. Experimental results with catalytic reductions, D. E. Smith,Anal. Chem.35, 610–614 (1963).

    CAS  Google Scholar 

  29. Electrochemical relaxation techniques, K. Reinmuth,Anal. Chem.36, 211R–219R (1964).

    Google Scholar 

  30. Complex plane analysis of impedances, M. Slyters-Rehbach, D. J. Koajman, and J. H. Sluyters, In:Polarography 1964, G. J. Hills, ed., pp. 135–147, MacMillan (1966).

    Google Scholar 

  31. A.C. polarography and related techniques. D. E. Smith, Theory and Practice: Theory, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 1, pp. 13–92, Marcel Dekker, Inc. (1966).

    Google Scholar 

  32. Sine wave methods in the study of electrode processes principles of alternating current electrodynamics. The cell impedance in the case of a simple electrode reactions. The complex plane analysis of cell impedances, M. Sluyters-Rehbach and J. H. Sluyters, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. IV, pp. 5–49, Marcel Dekker, Inc. (1966).

    Google Scholar 

  33. Reasons for multiplexing theory (of frequency multiplexing a.c. polarography) B. J. Heubert, In: A Study of a.c.Polarography in the Frequency Multiplex Mode’ Ph.D. Thesis, pp. 16–27, Northwestern University, Illinois (1971).

    Google Scholar 

  34. Some data for the electroanalytical use of fundamental, second and third harmonic alternating current polarography, A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.35, 343–361 (1972).

    CAS  Google Scholar 

  35. Some experimental and theoretical correlations for the use of fundamental harmonic a.c. polarography, A. M. Bond,Anal. Chem.44, 315–335 (1972).

    CAS  Google Scholar 

  36. A study of the validity of the Ilkovic and other standard direct and alternating current polarographic equations at short drop time, A. M. Bond and R. J. O’Halloran,J. Phys. Chem.77, 915–922 (1973).

    CAS  Google Scholar 

  37. Fundamental and second harmonic alternating current cyclic voltammetric theory and experimental results for simple electrode reactions involving soluble-soluble redox couples, A. M. Bond, R. J. O’Halloran, I. Ruzic, and D. E. Smith,Anal. Chem.48, 872 (1976).

    CAS  Google Scholar 

  38. On-line FFT faradaic admittance measurements application to a.c. cyclic voltammetry, A. M. Bond, R. J. Schwall, and D. E. Smith,J. Electroanal. Chem. Interfacial Electrochem. 231–247 (1977).

    Google Scholar 

  39. A.C. cyclic voltammetry: A digital simulation study of the slow scan limit condition for a reversible electrode process, A. M. Bond, R. J. O’Halloran, I. Ruzic, and D. E. Smith,J. Electroanal. Chem. Interfacial Electrochem.,90, 381–388 (1978).

    CAS  Google Scholar 

  40. Influence of adsorption of electroactive species on the interfacial admittance measured in a.c. polarography, C. I. Mooring, M. Sluyters Rehbach, and J. H. Sluyters,J. Electroanal. Chem. Interfacial Electrochem.87, 1–16 (1978).

    CAS  Google Scholar 

  41. The admittance of an electrochemical cell with adsorption of electroactive species at the DME, C. A. Wignhorst, M. S. Rehbach, and J. H. Sluyters,J. Electroanal Chem. Interfacial Electrochem.87, 17–29 (1978).

    Google Scholar 

Instrumentation

  1. Instrumentation, B. Breyer and H. H. Bauer, Alternating Current Polarography and Tensammetry, Chap. 3, pp. 94–112, Interscience Publ., New York (1963).

    Google Scholar 

  2. Alternating current polarography and equivalent circuit, E. Niki,Rev. Polarography 3, 41–49 (1955).

    CAS  Google Scholar 

  3. Studies on a.c. polarography. II. Fundamental circuit and some experimental results, M. Senda, M. Okuda, and I. Tachi,Bull. Chem. Soc. Jpn.28, 31–36 (1955).

    Google Scholar 

  4. A comparative study of three recently developed polarographs, D. J. Ferret, G. W. C. Milner, H. I. Shlagosky, and L. J. Slee,Analyst,81, 506–512 (1956).

    Google Scholar 

  5. The alternating current polarographic method, Y. Yasumori,Polarography 2, 72–78 (1954).

    CAS  Google Scholar 

  6. An improved alternating current polarograph, T. Takahashi and E. Nicki,Talenta 1, 245–248 (1958).

    CAS  Google Scholar 

  7. Controlled potential and derivative polarograph, M. T. Kelley, H. C. Jones, and D. J. Fischer,Anal. Chem.31, 1475–1485 (1959).

    CAS  Google Scholar 

  8. Phase selective alternating current polarography, D. E. Smith, In: Polarography with Periodically Varying Potentials, Ph.D. Thesis, pp. 56–75, Columbia Univ. (1961).

    Google Scholar 

  9. Interpretation of the results obtained with the Cambridge univector a.c. polarographic unit, J. W. Hayes and H. H. Bauer,J. Electroanal. Chem. Interfacial Electrochem.3, 336–347 (1962).

    CAS  Google Scholar 

  10. The influence of pen response time on recorded a.c. polarograms, E. M. C. and N. G. Lordi,J. Electroanal. Chem. Interfacial Electrochem.4, 251–255 (1962).

    Google Scholar 

  11. A.C. polarography employing operational amplifier, instrumentation. Evaluation of instru-ment performance and application to some new a.c. polarographic techniques, D. E. Smith,Anal. Chem.35, 18A–20 (1963).

    Google Scholar 

  12. A.C. polarography and related techniques, theory and practice, instrumentation, D. E. Smith, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. I, pp. 102–132, Marcel Dekker, New York (1966).

    Google Scholar 

  13. Some investigations on instrumental compensation of nonfaradaic effects in voltammetric techniques, E. R. Brown, T. G. McGord, D. E. Smith, and D. D. Deford,Anal. Chem.38, 1119–1130 (1966).

    CAS  Google Scholar 

  14. Instrumentation for digital data acquisition in voltammetric techniques, d.c. and a.c. polarography, E. R. Brown, D. E. Smith, and D. D. Deford,Anal. Chem.38, 1130–1136 (1966).

    CAS  Google Scholar 

  15. D. E. Smith, Application of on-line digital computers in a.c. polarography and related techniques, In:Electrochemistry, Calculations, Simulations, and Instrumentation, J. S. Mattson, H. B. Mark, and H. C. MacDonald, Jr. eds., Chap. 12, pp. 369–422, Marcel Dekker, New York (1972).

    Google Scholar 

  16. a) B. J. Huebert,A study of a.c. Polarography in the Frequency Multiplex Mode, Ph.D. Thesis, pp. 28, 153, Instrumentation, Northwestern University (1971). (b) Alternating current polarography in the noncoherent wave frequency multiplex mode, B. J. Huebert and D. E. Smith,Anal. Chem.44, 1179 (1972).

    Google Scholar 

  17. Principles and applications of a.c. and d.c. rapid polarography with short controlled drop times, A. M. Bond,J. Electrochem. Soc.118, 1588–1595 (1971).

    CAS  Google Scholar 

  18. Fourier analysis of alternating current polarography, amplitude and phase of fundamental and second harmonic a.c. polarographic waves, H. Kojima and S. Fujuvara,Bull. Chem. Soc. Jpn.44, 2158–2162 (1971).

    CAS  Google Scholar 

  19. A.C. polarography in harmonic multiplex mode, D. E. Glover and D. E. Smith,Anal. Chem.114, 1140–1145 (1972).

    Google Scholar 

  20. Computer-assisted in phase a.c. polarography determination of Cd(II) Ions, S. Fujiuena, M. Hiroba, K. Sawantari, H. Kojima, and Y. Umezawa,Bull. Chem. Soc. Jpn.47, 499–50 (1974).

    Google Scholar 

  21. Use of pulsed direct current potential to minimize charging current in alternating current polarography, A. M. Bond and R. J. O’Halloran,Anal. Chem.47, 1906–1909 (1975).

    CAS  Google Scholar 

  22. Alternating current polarography in low frequency (Tieremennotokibov malagabaritnvi polarograph huzkin. yacprtbi), Yu. A. Ivanov, A. I. Plotnikov, and E. I. Chubaker,Zavod. Lab.44, 401–402 (1978).

    CAS  Google Scholar 

  23. Low-frequency alternating current small-scale polarograph, Yu. A. Ivanov, A. I. Plotnikov, and E. I. Chubakova,Zavod. Lab.44, 401–402 (1978).

    CAS  Google Scholar 

  24. Simultaneous measurement of the inphase and quadratic components of the signals in a.c. polarography using multiplex circuitry, H. Blustain, A. M. Bond, and A. Norris,J. Electroanal. Chem. Interfacial Electrochem.89, 75–81 (1978).

    Google Scholar 

  25. A.C. polarography using a non-linear, potential time ramp to generate the d.c. potential, A. M. Bond and B. S. Grabaric,J. Electroanal. Chem. Interfacial Electrochem.87, 251–260 (1978).

    CAS  Google Scholar 

  26. A.C. polarography using an applied d.c. pulse programme of the normal pulse polarographic type: availability of the theoretical rate laws, D. E. Smith, A. M. Bond, and B. S. Grabaric,J. Electroanal. Chem. Interfacial Electrochem.95, 237–240 (1979).

    CAS  Google Scholar 

Analysis

  1. Analytical applications—methodology, B. Breyer and H. H. Bauer, In:Alternating Current Polarography and Tensammetry, pp. 128–135, Chap. 4, Interscience Publishers, New York (1963).

    Google Scholar 

  2. Analytical applications: A.C. polarography of inorganic depolarisers, pp. 135–195, Chap. 4, B. Breyer and H. H. Bauer, In:Alternating Current Polarography and Tensammetry, Interscience Publishers, New York (1963).

    Google Scholar 

  3. Analytical applications: A.C. polarography of organic compounds, pp. 195–221, Chap. 4, B. Breyer and H. H. Bauer, In:Alternating Current Polarography and Tensammetry, Interscience Publishers, New York (1963).

    Google Scholar 

  4. Increasing the sensitivity of alternating current polarographic analytical procedures, R. Neeb,Z. Anal. Chem.186, 53–63 (1962).

    CAS  Google Scholar 

  5. Electrochemical masking of indium in a.c. polarographic determination of cadmium, E. Jacobsen and G. Tandberg,Anal. Chim. Acta 47, 285–290 (1969).

    CAS  Google Scholar 

  6. Supporting electrolyte effects in tensammetry, H. H. Bauer, H. S. Campbell, and A. K. Shallal,J. Electroanal. Chem. Interfacial Electrochem.21, 45–48 (1969).

    CAS  Google Scholar 

  7. Alternating current polarographic determination of unsaturation, B. Fleet and R. D. Jee,Talanta 16, 1561–1569 (1969).

    CAS  Google Scholar 

  8. Polarographic studies in aqueous hydrofluoric acid using a.c. and d.c. rapid techniques, A. M. Bond, J. A. O’Donnell, and R. J. Taylor,Anal. Chem.41, 1804–1806 (1909).

    Google Scholar 

  9. Determination of some methyl carbamate insecticides by a.c. polarography and cyclic voltammetry, M. D. Booth and B. Fleet,Talanta 17, 401 (1970).

    Google Scholar 

  10. Direct current and alternating current polarographic response of some pharmaceuticals in an aprotic organic solvent system, A. L. Woodson and D. E. Smith,Anal. Chem.42, 242–248 (1970).

    CAS  Google Scholar 

  11. Utilisation of surfactants in a.c. polarographic analysis, N. Gunderson and E. Jacobson,Anal. Chim. Acta 45, 346 (1971).

    Google Scholar 

  12. Alternating current polarographic method of analysis in the presence of oxygen and other irreversibly reduced species, A. M. Bond and J. H. Canterford,Anal. Chem.43, 228–234 (1971).

    CAS  Google Scholar 

  13. Simultaneous determination of two electroactive species by alternating current polarography, A. M. Bond and J. H. Canterford,Anal. Chem..43, 392–397 (1971).

    Google Scholar 

  14. Alternating current polarographic determination of electroactive species more negatively reduced than the major component, A. M. Bond and J. H. Canterford,Anal. Chem.437, 1658 (1971).

    Google Scholar 

  15. An evaluation of integration procedures for improving the precision of a.c. polarography, D. Fleet and R. D. Jee,J. Appl. Electrochem.1, 269–274 (1971).

    CAS  Google Scholar 

  16. A theoretical comparison of the resolution of fundamental second and third harmonic a.c. polarography, A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.36, 235–242 (1972).

    CAS  Google Scholar 

  17. Alternating current and direct current voltammetry with a mercury pool electrode in concentrated hydrofluoric acid, A. M. Bond, J. A. O’Donnel, and R. J. Taylor,Anal. Chem.44, 464–67 (1972).

    Google Scholar 

  18. Alternating current and direct current polarography in concentrated hydrofluoric acid solution with a teflon dropping mercury electrode, A. M. Bond and J. A. O’Donnel,Anal. Chem.44, 590–592 (1972).

    CAS  Google Scholar 

  19. Comparative study of a wide variety of polarographic techniques with multifunctional instrumentation (PAR Model 170 Electrochem System), A. M. Bond and D. R. Canterford,Anal. Chem.44, 721–731 (1972).

    CAS  Google Scholar 

  20. Theoretical and experimental evaluation of multielement analysis by fundamental harmonic alternating current polarography, A. M. Bond and J. H. Canterford,Anal. Chem.44, 732–736 (1972).

    CAS  Google Scholar 

  21. Stability constant determination in precipitating systems by rapid alternating current polarography, A. M. Bond and G. Helter,J. Electroanal. Chem. Interfacial Electrochem.34, 227 (1972).

    CAS  Google Scholar 

  22. Analytical applications of high frequency, phase-sensitive short controlled drop time alternating current polarography, A. M. Bond,Anal. Chem.45, 2026–2031 (1973).

    CAS  Google Scholar 

  23. Instrumentation for electrochemical trace analysis, A. Poozari, S. R. Rajagopalan, and S. K. Rangarajan,Trans. Soc. Adv. Electrochem. Sci. Tech.8, 147–153 (1973).

    Google Scholar 

  24. Simultaneous determination of cadmium, copper, lead and zinc concentrates by a.c. polaro-graphic method, comparison with atomic absorption spectrometry, M. E. Beyer and A. M. Bond,Anal. Chim. Acta 75, 409 (1975).

    CAS  Google Scholar 

  25. Characteristics of a.c. polarograms at high sweep rates, C. I. Mooring and H. L. Kies,Anal. Chim. Acta 94, 135–147 (1977).

    CAS  Google Scholar 

  26. Use of alternating current polarography in studying soils: Determination of lead in soils, L. A. Verobava and R. F. Davletehina,Biol. Nauki (Moscov) 8, 130–142 (1978) (CA 90, 37956a, 1979 ).

    Google Scholar 

  27. Fundamental and second harmonic alternating current cyclic voltammetric theory and experimental results for simple electrode reactions involving amalgam formation, A. M. Bond, R. J. O’Halloran, I. Ruzic, and D. E. Smith,Anal. Chem.50, 216–223 (1978).

    CAS  Google Scholar 

Tensammetry: Theory and Analysis

  1. Tensammetry: A method investigating surface phenomena by a.c. current measurements, B. Breyer and S. Hacobian,Aus. J. Sci. Res. Ser. A 5, 500–520 (1952).

    Google Scholar 

  2. A.C. Polarographic-Tensammetric transition waves, B. Breyer and S. Hacobian,Aus. J. Chem.6, 186–188 (1953).

    CAS  Google Scholar 

  3. Effect of surface active substances on the capacity of the electrical double layer, K. S. G. Doss and A. Kalyanasundaram,Proc. Ind. Acad. Sci.35A, 27–33 (1952).

    Google Scholar 

  4. Behaviour of surface active substances at the dropping mercury electrode, K. S. G. Doss and S. L. Gupta,Proc. Ind. Acad. Sci.A36, 493–500 (1952).

    Google Scholar 

  5. The influence of the supporting electrolyte on tensammetric waves, B. Breyer and S. Hacobian,Aus. J. Chem.9, 7–13 (1956).

    CAS  Google Scholar 

  6. Theory IV tensammetry, B. Breyer and H. H. Bauer, In:A.C. Polarography and Tensammetry, pp. 85–93, Chap. 2, Interscience Publishers, New York (1963).

    Google Scholar 

  7. The adsorption in oscillographic polarography and alternating current polarography, H. Jehring,Chem. Zovesh.18, 313–323 (1964).

    CAS  Google Scholar 

  8. Investigations of surface phenomena by alternating current polarography, H. Jehring,Abhanell Deut. Akad. Wiss. Berlin, Kl. Chem. Geol. Biol. 472–480 (1964).

    Google Scholar 

  9. Investigations of alternating current polarography (polarography with superimposed alternating voltage). I. Influence of concentration and rate of outflow of Hg on the adsorption process, H. Jehring,Z. Phys. Chem. (Leipzig) 225, 116–124 (1964).

    CAS  Google Scholar 

  10. A.C. polarographic studies on the nature of the capacity peaks observed with organic compounds at the dropping mercury electrode. Part I: Effect of pH, nature of the buffer and buffer capacity, S. L. Gupta and S. K. Sharma,J. Ind. Chem. Soc.41, 384–388 (1964).

    CAS  Google Scholar 

  11. A.C. polarographic studies on the nature of the capacity peaks observed with organic compounds at the dropping mercury electrode. Part II. Effect of change of the indifferent electrolyte, S. L. Gupta and S. K. Sharma,J. Ind. Chem. Soc.41, 663–672 (1964).

    CAS  Google Scholar 

  12. A.C. polarographic studies on the nature of the capacity peaks observed with organic compounds at the dropping mercury electrode. Part III. Effect of medium, S. L. Gupta and S. K. Sharma,J. Ind. Chem. Soc.41, 668–672 (1964).

    Google Scholar 

  13. Organic a.c. polarography and tensammetry in nonaqueous media, S. L. Gupta, M. K. Chatterjee, and S. K. Sharma,J. Electroanal. Chem.7, 81–84 (1964).

    CAS  Google Scholar 

  14. Investigations by alternating current polarography (polarography with alternating current voltage) II. Adsorptions of inhibitors, H. Jehring,Z. Phys. Chem. (Leipzig) 226, 59–70 (1964).

    CAS  Google Scholar 

  15. Alternating current polarography (polarography with superimposed alternating current voltage) III. Time dependence of the decrease of capacity current caused by adsorption, H. Jehring,Z. Phys. Chem. (Leipzig) 229, 39–48 (1965).

    CAS  Google Scholar 

  16. Structure of the adsorption layer on the surface of the DME, H. Jehring and G. Palyi,Magy. Kem. Folyvirat 71, 427–432 (1965).

    CAS  Google Scholar 

  17. A.C. polarographic studies of the influence of tensammetric waves on one another, S. L. Gupta and S. K. Sharma,Electrochim. Acta 10, 151–158 (1965).

    CAS  Google Scholar 

  18. Modern electrochemical methods for analysis of surface-active substances, H. Jehring,Abhand. Deut. Akad. Wiss. Berlin, Kl. Chem. Geol. Biol. 197–207 (1966).

    Google Scholar 

  19. Electrochemical studies on the adsorption of surface active substances at the mercury/elec-trolyte phase boundary, H. Jehring,Akad. Wiss. Berlin. Kl Chem. Geol. Biol.6, 652–658 (1966) (Ger).

    Google Scholar 

  20. Increase of sensitivity in tensammetry I. Simple phase selective, difference, square wave and rectangular wave a.c. polarography with normal quasistationary dropping mercury electrode, H. Jehring, E. Horn, A. Reklat, and W. Stolle,Collect. Czech. Chem. Commun.33, 1038–1048 (1968).

    CAS  Google Scholar 

  21. Increase of sensitivity in tensammetry II. Simple and super wave a.c. polarography with a stationary mercury drop, H. Jehring and W. Stolle,Collect. Czech. Chem. Commun.33, 1670–1677 (1968).

    CAS  Google Scholar 

  22. Double layer capacity measurements with Breyer alternating current polarography, H. Jehring,J. Electroanal. Chem. Interfacial Electrochem.21, 77–98 (1969).

    CAS  Google Scholar 

  23. A.C. polarography IV. Lowering the instantaneous and average current capacity by diffusion controlled and uncontrolled adsorption, H. Jehring,J. Electroanal. Chem. Interfacial Electrochem.20, 33–46 (1969).

    CAS  Google Scholar 

  24. Alternating current polarography. VII. Effect of potential and time on the double layer capacity during mixed adsorption, H. Jehring,Z. Phys. Chem. (Leipzig) 246, 1–24 (1971) (Ger).

    CAS  Google Scholar 

  25. Tensammetric investigations of non-reducible substances, B. Breyer and H. H. Bauer, eds. In:A.C. Polarography and Tensammetry, Chap. 4, pp. 221–252.

    Google Scholar 

Theory

  1. Half-wave potentials of polarographic curves by means of alternating current calculation of the transfer coefficient, J. Van Cakenberghe,Bull. Soc. Chim. Belg.60, 3–10 (1951).

    Google Scholar 

  2. Wechselstrom polarisation von elektroden mit einem potentialbestimmenden schritt beim gleich gewichts potential I, H. Gerischer,Z. Phys. Chem.198, 286–313 (1951).

    CAS  Google Scholar 

  3. Studies on a.c. polarography. V. Theory of reversible wave, I. Tachi and M. Senda,Bull. Chem. Soc. Jpn.28, 632–636 (1955).

    Google Scholar 

  4. Beitrage zur theorie der polarographischen stromstarke allgemeine formel der diffusions bedingten stromstarke und ihre anwendung, H. Matsuda,Z. Electrochem.61, 489–506 (1957).

    CAS  Google Scholar 

  5. Alternating current polarography determination of transfer coefficient of electrochemical processes, H. H. Bauer and P. J. Elving,Anal. Chem.30, 341–346 (1958).

    CAS  Google Scholar 

  6. The faradaic admittance of electrochemical processes. Part I. Apparatus suitable for phase angle measurement, H. H. Bauer and P. J. Elving,J. Am. Chem. Soc.82, 2091–2094 (1960).

    CAS  Google Scholar 

  7. The faradaic admittance of electrochemical processes. Part II. Experimental test of the theoretical equations, H. H. Bauer, P. J. Elving, and D. L. Smith,J. Am. Chem. Soc.82, 2094–2098 (1960).

    CAS  Google Scholar 

  8. Theory of faradaic distortion, K. B. Oldham,J. Electrochem Soc.107, 766–772 (1960).

    Google Scholar 

  9. Polarography with periodically varying potentials, D. E. Smith, Ph.D. Thesis, Columbia University (1961).

    Google Scholar 

  10. Second harmonic alternating current polarography with a reversible electrode process, D. E. Smith and W. H. Reinmuth,Anal. Chem.33, 482–485 (1962).

    Google Scholar 

  11. Harmonic alternating current polarography, R. Neeb,Z. Anal. Chem.188, 401–416 (1962).

    CAS  Google Scholar 

  12. Intermodulation polarography, R. Neeb,Naturwissenschaften 49, 447 (1962).

    CAS  Google Scholar 

  13. Electrochemical relaxation techniques, W. H. Reinmuth,Anal. Chem.36, 211R–219R (1964).

    Google Scholar 

  14. Polarographic techniques based on the faradaic non-linearity, J. Paynter, Ph.D. Thesis, Columbia Univ. (1964) II. Theory: pp. 27.

    Google Scholar 

  15. Alternating current polarography: An extension of the general theory for systems with coupled first order homogeneous chemical reactions, T. G. McCord and D. E. Smith,Anal. Chem.40, 1959–1966 (1968).

    CAS  Google Scholar 

  16. Second harmonic alternating current polarography: A general theory for systems with coupled first order homogeneous chemical reactions, T. G. McCord and D. E. Smith,Anal. Chem.40, 1967–1970 (1968).

    CAS  Google Scholar 

  17. Alternating current polarography: theoretical prediction for systems with first order chemical reactions preceding the charge transfer step, T. G. McCord and D. E. Smith,Anal. Chem.40, 116–130 (1969).

    Google Scholar 

  18. Second harmonic alternating current polarography: Some experimental observations with quasi-reversible processes, T. G. McCord and D. E. Smith,Anal. Chem.40, 131–136 (1969).

    Google Scholar 

  19. Second harmonic alternating polarography. Experimental observation with a system involving a very rapid chemical reaction following charge transfer, T. G. McCord and D. E. Smith,Anal. Chem.42, 2–6 (1970).

    CAS  Google Scholar 

  20. Method for the study of asymmetry in fast electrode processes, J. E. B. Randies and D. R. Whitehouse,Trans. Faraday Soc.64, 1376–1387 (1968).

    Google Scholar 

  21. Second harmonic alternating current polarography, J. Devay, T. Garai, L. Meszaros, and E. Pungor,Hung. Sclent. Instrument.12, 1–9 (1968).

    Google Scholar 

  22. Second harmonic polarography of multicomponent systems, J. Devay, T. Garai, L. Meszaros, and Palagyi-Fenyes,Hung. Scient. Instrument.15, 1–7 (1969).

    Google Scholar 

  23. Calculation of the influence of the ohmic resistance of the cell in a.c. polarography in the case of reversible electrode reaction, J. Devay, L. Meszaros, and T. Garai,Acta. Chim. (Budapest) 60, 67–85 (1969).

    CAS  Google Scholar 

  24. Calculation of the influence of the ohmic resistance of the cell on the third harmonic a.c. polarographic current in the case of a reversible electrode reaction, J. Devay, L. Meszaros, and T. Garai,Acta. Chim. (Budapest) 61, 279–287 (1969).

    CAS  Google Scholar 

  25. Alternating current polarography: Theoretical predictions for systems with first-order chemical reactions following the charge transfer step, T. J. McCord, H. L. Hung, and D. E. Smith, J. Electroanal.Chem. Interfacial Electrochem.38, 883 (1969).

    Google Scholar 

  26. Second and third harmonic a.c. polarography, J. Devay, T. Garai, L. Meszaros, and B. Palagyi-Fenyes,Magy. Kem. Foly.75, 460–475 (1969) (Hung.).

    CAS  Google Scholar 

  27. Alternating current polarograph with amplitude modulated potential, A. V. Zheleztsov,Pril. Sist. Upr.11, 47–48 (1970).

    Google Scholar 

  28. Resolving power of an a.c. polarograph with sinusoidal voltage, A. V. Zheleztsov,Zh. Anal. Khim.26, 869–874 (1971).

    CAS  Google Scholar 

  29. Principles and applications of a.c. and d.c. rapid polarography with short controlled drop times, A. M. Bond,J. Electrochem. Soc.118, 1588–1595 (1971).

    CAS  Google Scholar 

  30. Fundamental and second harmonic alternating current cyclic voltammetric theory and experimental results for simple electrode reactions involving solution-soluble redox couples, A. M. bond, R. J. O’Halloran, I. Ruzic, and D. E. Smith,Anal. Chem.40, 872 (1976).

    Google Scholar 

  31. Intermodulation a.c. polarography, H. Blutstein and A. M. Bond,Anal. Chem.48, 1975–1979 (1976).

    CAS  Google Scholar 

  32. Fundamental and second harmonic alternating current cyclic voltammetric theory and experimental results for simple electrode involving amalgam formation, A. M. Bond and R. J. O’Halloran,Anal. Chem.50, 216–223 (1978).

    CAS  Google Scholar 

Instrumentation and Analysis

  1. Polarography with periodically varying potentials, D. E. Smith, Ph.D. Thesis, pp. 41–55, Columbia Univ. (1961).

    Google Scholar 

  2. Tuned alternating current polarography, N. G. Lordi,Anal. Chem.34, 1832–1833 (1962).

    CAS  Google Scholar 

  3. A.C. polarography employing operational amplifier instrumentation, D. E. Smith,Anal. Chem.35, 1811–1820 (1963).

    CAS  Google Scholar 

  4. Recent polarographic and voltammetric procedure for trace analysis, R. Neeb,Fortschr. Chem. Forsch.4 (2) 333–458 (1963).

    CAS  Google Scholar 

  5. Double-tone polarography. I. Experimental fundamentals, R. Neeb,Z. Anal. Chem.208, 168–187 (1965).

    CAS  Google Scholar 

  6. A.C. polarography and related techniques. Theory and practice: Theory, D. E. Smith, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 1, pp. 13–92, Marcel Dekker, Inc. (1966).

    Google Scholar 

  7. Double-tone polarography II. Effect of cationic surface active agents and of the temperature dependence of peak currents on the alternating current polarography of antimony, R. Neeb,Z. Anal. Chem.216, 94–96 (1966).

    CAS  Google Scholar 

  8. Double tone polarography III. Alternating current polarographic behaviour of tin in hydrochloric acid solutions, R. Neeb,Z. Anal. Chem.222, 290–310 (1966).

    CAS  Google Scholar 

  9. Second harmonic a.c. polarography of irreversible systems, J. Devay, T. Garai, L. Meszaros, and J. P. Nityanandan,Hung. Sci. Instrum.17, 1–10 (1970).

    Google Scholar 

  10. Resolving power of some polarographic methods, V. V. Senkevich,Zh. Anal. Khim.26, 461 (1971).

    CAS  Google Scholar 

  11. Resolving power of an a.c. polarograph with sinusoidal voltage, A. V. Zheleztsov,Zh. Anal. Khim.26, 869–874 (1971).

    CAS  Google Scholar 

  12. A.C. polarography based on demodulation of a sinusoidal signal by a reversible electrode process, W. A. Brooke,J. Electroanal. Chem. Interfacial Electrochem.30, 237–257 (1971).

    Google Scholar 

  13. Demodulation polarography with triangularly modulated polarising voltage, W. A. Brooke,J. Electroanal. Chem. Interfacial Electrochem.33, App. 1–3 (1971).

    Google Scholar 

  14. Use of a commercial lock-in amplifier in phase-selective second-harmonic a.c. polarography, H. H. Bauer and D. Britz,Chem. Instrument.2, 361 (1970).

    CAS  Google Scholar 

  15. Direct method for phase-angle recording in a.c. polarography with a commercial lock-in amplifier. Analytical utility of phase angle measurements, D. M. McAllister and G. Dryhurst,Anal. Chim. Acta 58, 373–382 (1972).

    CAS  Google Scholar 

  16. A.C. polarography in harmonic multiplex mode, D. E. Glover and D. E. Smith,Anal. Chem.44, 1140–1145 (1972).

    CAS  Google Scholar 

  17. Some data for the electro analytical use of fundamental, second and third harmonic alternating current polarography, A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.35, 343–361 (1972).

    CAS  Google Scholar 

  18. A theoretical comparison of the resolution of fundamental, second and third harmonic a.c. polarography, A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.36, 235–242 (1972).

    CAS  Google Scholar 

  19. On the theory of Kalovsek commutator, square wave and related techniques I. Equation for current-potential curves, I. Ruzic, J. Electroanal.Chem. Interfacial Electrochem.39, 111–121 (1972).

    CAS  Google Scholar 

  20. Fast sweep a.c. polarography, R. D. Jee, FreseniusZ. Anal. Chem.264, 143–146 (1973).

    CAS  Google Scholar 

  21. New instrumental approach in phase-selective second harmonic alternating current polarogra-phy, H. Blustein, A. M. Bond, and A. Norris,Anal. Chem.46, 1754–1758 (1974).

    Google Scholar 

  22. Short communication cyclic fundamental and second harmonic a.c. voltammetry with phase selective detection, A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.50, 285–291 (1974).

    CAS  Google Scholar 

  23. Measurement of higher harmonics with a lock-in amplifier: Phase-selective and other forms of sinusoidal, saw tooth, square wave, triangular wave and white noise alternating current polarography, A. M. Bond and V. S. Flego,Anal. Chem.47, 2321–2334 (1975).

    CAS  Google Scholar 

  24. Polarographic measurement of high substance concentration in solutions,A. V. Zheleztsov, Zh. Anal. Khim.32, 1083–1087 (1977).

    CAS  Google Scholar 

  25. Optimization of double tone polarography, D. Saur and R. Neeb,J. Electroanal. Chem. Interfacial Electrochem.75, 171–180 (1977).

    CAS  Google Scholar 

  26. Polarographic and voltammetric methods for the determination of elements, R. Neeb,Mickro- chim. Acta (Wien) 1, 305–318 (1978).

    CAS  Google Scholar 

  27. Methods for the control of phase sensitive detectors in polarographic measurement techniques, S. Dietrich,Fresnius Z. Anal. Chem.290, 217–219 (1978).

    Google Scholar 

  28. Simultaneous measurements of the in-phase and quadrature components of the signal in a.c. polarography using multiplier circuitry, H. Blutstein, A. M. Bond, and A. Norris,J. Electroanal. Chem. Interfacial Electrochem.89, 75–81 (1978).

    CAS  Google Scholar 

  29. Fundamentals of non-linear a.c. polarographic analytical method, D. Saur and R. Neeb,Fresenius Z. Anal. Chem.290, 374–381 (1978).

    CAS  Google Scholar 

  30. Instrumentation and detection sensitivity in higher harmonics polarographic analysis methods, D. Saur and R. Neeb,Fresenius Z. Anal. Chem.290, 220–229 (1978).

    CAS  Google Scholar 

Theory

  1. Square wave polarography, G. C. Barker and I. L. Jenkins,Analyst 77, 685–695 (1952).

    CAS  Google Scholar 

  2. (a) Polarographic diffusion current observed with square wave voltage I. Effect produced by the sudden change of electrode potential, T. Kambara,Bull. Chem. Soc. Jpn.27, 523–526 (1954). (b) Polarographic diffusion current observed with square wave voltage II. Basic theory for a reversible electrode, T. Kambara,Bull. Chem. Soc. Jpn.27, 527–529 (1954). (c) Polarographic diffusion current observed with square wave voltage III. Applications of the theory, T. Kambara,Bull. Chem. Soc. Jpn.27, 529–534 (1954).

    CAS  Google Scholar 

  3. Square wave polarography. Part IV. An introduction to the theoretical aspects of square wave polarography, G. C. Barker, R. L. Faircloth, and A. W. Gardner, Atomic Energy Res. Establish. Report C/R 1786. H. M. Stationery Office, London (1954).

    Google Scholar 

  4. Theorie polarographischer strome bei periodisch wechselnder spannung, J. Koutecky,Collect. Czech. Chem. Commun.21, 433–446 (1956).

    CAS  Google Scholar 

  5. Square wave polarography and some related techniques, G. C. Barker,Anal. Chim. Acta 18, 118–131 (1958).

    CAS  Google Scholar 

  6. Zur. theorie der wechelspannungs polarography, H. Matsuda,Z. Elektrochem.62, 977–989 (1958).

    CAS  Google Scholar 

  7. Faradaic rectification, G. C. Barker, In:Transactions of the Symposium on Electrode Processes, E. Yeager, ed., p. 325, Philadelphia (1959).

    Google Scholar 

  8. Square wave and pulse polarography, G. C. Barker, In:Progress in Polarography, I. M. Kolthoff and P. Zuman, eds., Vol. II, Chap. XIX, pp. 411–423, Interscience Publishers, New York (1962).

    Google Scholar 

  9. Square wave polarography, G. C. Barker and I. L. Jenkins,Analyst 77, 685–695 (1952).

    CAS  Google Scholar 

  10. The determination of lead in CoCo4 with a square-wave polarography, D. J. Ferret, G.W. C. Milner, and A. A. Smales,Analyst 79, 731–734 (1954).

    Google Scholar 

  11. (a) Analytical applications of the Barker square wave polarograph, D. J. Ferret and G. W. C. Milner,Analyst 80, 132–140 (1955). (b) Analytical applications of the Barker square-wave polarograph. Part II. The analysis of copper-base alloys and steels, D. J. Ferret and G. W. C. Milner,Analyst 81, 193–203 (1956).

    Google Scholar 

  12. A comparative study of three recently developed polarographs, D. J. Ferret, G. W. C. Milner, H. I. Shalgosky, and L. S. Slee,Analyst 81, 506–512 (1956).

    Google Scholar 

  13. Square wave polarography and some related techniques, G. C. Barker,Anal. Chim. Acta 18, 118–131 (1958).

    CAS  Google Scholar 

  14. Square wave polarography, R. E. Haurm,Anal. Chem. 30, 350–354 (1958).

    Google Scholar 

  15. Reproducibility of polarographic measurements, F. Von Sturm,Z. Anal. Chem.166, 100–114 (1959).

    CAS  Google Scholar 

  16. Limits of usability of polarographic methods in inorganic analysis, F. Von Sturm,Z. Anal. Chem.173, 11–17 (1960).

    CAS  Google Scholar 

  17. Moglichkeiten der polarographischen method in der anorganischen spurenanalyse, In: M. Kankeintsch and F. Von Sturm,Advances in Polarography, I. S. Longmuir, ed., Vol. II, pp. 551–564, Pergamon Press, Oxford (1960).

    Google Scholar 

  18. Influence of foreign electrolyte concentration in square wave polarography, F. Von Sturm and M. Ressel,J. Microchem.5, 53 (1961).

    CAS  Google Scholar 

  19. Studies in the field of quadratic-wave polarography. General principles and the method, B. Ya. Kalpan and I. I. Sorokovskaya,Zavod. Lab.28, 1053 (1962).

    Google Scholar 

  20. Polarographic a ondes carrees, G. Geerinek, H. Hilderson, C. Vanttalle, and F. Verbeck,J. Electroanal. Chem.5, 48–56 (1963).

    Google Scholar 

  21. The Mervyn Merck IV square wave polarographic analyses, Application Bulletin, Matheson Scientific Inc. (1964).

    Google Scholar 

  22. Square wave polarography in trace analysis, F. Von Sturm and M. Ressel, In:Proc. Aust. First Conf. on Electrochemistry, F. Gutmann, ed., pp. 310–322, Pergamon Press, Oxford (1965).

    Google Scholar 

  23. Oscillographic square wave polarographic behaviour of some inorganic and organic compound, K. Okamoto, In:Modern Aspects of Polarography, T. Kambara, ed., pp. 225–232, Plenum Press, New York (1966).

    Google Scholar 

  24. Theory of square wave polarography, L. Rainaley and M. S. Krause,Anal. Chem.41, 1362–1365 (1969).

    Google Scholar 

  25. Polarographic determination of traces of zinc in bismuth after preconcentration by solid liquid extraction, A. Mizuike and T. Kono, Mikrochim. Acta 665–669 (1970).

    Google Scholar 

  26. Automatic continuous analyzer for lead in the atmosphere, N. Yamate, Y. Matsumura, and M. Tonomura,Eisei Shikenjo Hokku 87, 28–31 (1969).

    CAS  Google Scholar 

  27. Square wave polarographic determination of lead as pollutant in river water, E. B. Buchaman, T. D. Schroeder, and B. Novosel,Anal. Chem.42, 370–373 (1970).

    Google Scholar 

  28. Polarographic studies on uranium VI compounds. I. Square-wave polarographic determination of micro amounts of uranium, O. Guertler and Chu-Xuan-Arah, Mikrochim. Acta 941–949 (1970).

    Google Scholar 

  29. Simple square wave polarograph, R. Kalvoda and I. Holub,Chem. Listy 67, 302–307 (1973).

    CAS  Google Scholar 

  30. A multimode polarograph, G. C. Barker and A. W. Gardner.J. Electroanal. Chem. Interfacial Electrochem.42, App. 21–26 (1973).

    Google Scholar 

  31. Measurement of higher harmonics with a lock-in-amplifier: Phase-selective and other forms of sinusoidal, sawtooth, square wave, triangular wave and white noise alternating current polarography, A. M. Bond and V. S. Flego,Anal. Chem.47, 2321–2324 (1975).

    CAS  Google Scholar 

  32. Modern polarographic techniques, G. C. Barker,Proc. Anal. Div. Chem. Soc.12, 179–181 (1975).

    CAS  Google Scholar 

  33. Square wave polarography and related techniques, P. E. Sturrock and R. J. Carter,Crit. Rev. Anal Chem.5, 201–223 (1975).

    CAS  Google Scholar 

  34. A flow detector based on square wave polarography on the dropping mercury electrode, J. Wang and E. Quziel,Anal Chim. Acta 102, 99–112 (1978).

    CAS  Google Scholar 

  35. The direct evaluation of overlapping signals in square wave polarography, B. Kuhrig,Z. Chem.18, 415–417 (1978).

    CAS  Google Scholar 

  36. Quantitative resolution of overlapped peaks in programmed potential step voltammetry, P. A. Boudreau and S. P. Perone,Anal Chem.51, 811–817 (1979).

    CAS  Google Scholar 

Theory

  1. A new polarization effect: Redoxokinetic potential, K. S. G. Doss and H. P. Agarwal,J. Sci. Ind. Res. (India) 9B, 280 (1950).

    Google Scholar 

  2. (a) The redoxokinetics effect-A general phenomenon, K. S. G. Doss and H. P. Agarwal,Proc. Ind. Acad. Sci.34, 229–235 (1951). (b) The theory of redoxokinetic effect and a general method for the determination of “a” of absolute reaction rates, K. S. G. Doss and H. P. Agarwal,Proc. Ind. Acad. Sci.34A, 263–271 (1951). (c) The theory of redoxo-kinetic effect-A correction,Proc. Ind. Acad. Sci.35A, 45 (1952).

    Google Scholar 

  3. The mechanism of the reation at a Cu/Cu2+ electrode, P. J. Hillson,Trans. Faraday Soc.50, 385–393 (1954).

    CAS  Google Scholar 

  4. Faradaic rectification: Theory and application to the Hg22+/Hg electrode, K. B. Oldham,Trans. Faraday Soc.53, 80–90 (1957).

    CAS  Google Scholar 

  5. G. C. Barker, Proc. Congr. on Modern Anal Chem. in Ind. St. Andrews, p. 199 (1957).

    Google Scholar 

  6. Use of faradaic rectification for the study of rapid electrode processes, G. C. Barker, R. L. Faircloth, and A. W. Gardner,Nature 181, 247–248 (1958).

    CAS  Google Scholar 

  7. Square wave polarography and some related techniques, G. C. Barker,Anal Chim. Acta 18, 118–131 (1958).

    CAS  Google Scholar 

  8. The theory of faradaic rectification, Iu. A. Vdovin,Dok. Akad. Nauk, SSSR 120, 554 (1958).

    CAS  Google Scholar 

  9. Faradaic rectification, G. C. Barker, In:Trans, of the Symp. on Electrode Processes, Philadelphia, E. Yeager, ed., p. 325, John Wiley & Sons, New York (1961).

    Google Scholar 

  10. Faradaic rectification with control of alternating potential variations. Application to electrode kinetics for fast processes, H. Matsuda and P. Delahay,J. Amer. Chem. Soc.82, 1547–1550 (1960).

    CAS  Google Scholar 

  11. Derivation of the general equation for redoxokinetic effect, S. K. Rangarajan,J. Electroanal. Chem.1, 396–402 (1960).

    CAS  Google Scholar 

  12. Theory of faradaic distortion, K. B. Oldham,J. Electrochem. Soc.107, 766–772 (1960).

    Google Scholar 

  13. Faradaic rectification and electrode processes, P. Delahay, M. Senda, and C. H. Weis,J. Phys. Chem.64, 960 (1970).

    Google Scholar 

  14. Electrode processes with specific or non-specific adsorption: Faradaic impedance and rectification, M. Senda and P. Delahay,J. Phys. Chem.65, 1580–1588 (1961).

    CAS  Google Scholar 

  15. Rectification by the electrical double layer and adsorption kinetics, M. Senda and P. Delahay,J. Am. Chem. Soc.83, 3763–3766 (1961).

    Google Scholar 

  16. Faradaic rectification and electrode processes, P. Delahay, M. Senda, and C. H. Weis,J. Amer. Chem. Soc.83, 312–322 (1961).

    Google Scholar 

  17. Faradaic rectification and electrode processes II, M. Senda, H. Imai, and P. Delahay,J. Phys. Chem.65, 1253–1256 (1961).

    CAS  Google Scholar 

  18. VI. Faradaic rectification method: Quantitative discussion, P. Delahay, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. 1, pp. 279–300 (1961).

    Google Scholar 

  19. Faradaic rectification and electrode processes IV, H. Imai,J. Phys. Chem.66, 1744–1746 (1962).

    CAS  Google Scholar 

  20. (a) Faradaic rectification and electrode processes. III. Experimental methods for high frequen¬cies and application to the discharge of mercurous ion, H. Imai and P. Delahay,J. Phys. Chem.66,1108–1113 (1962). (b) Kinetics of discharge of the alkali metals on their amalgams as studied by faradaic rectification, H. Imai and P. Delahay,J. Phys. Chem.66, 1683–1686 (1962).

    CAS  Google Scholar 

  21. Faradaic rectification and electrode processes—Experimental review, H. Imai,Rev. Polarography (Japan) 10, 209 (1962).

    CAS  Google Scholar 

  22. Irreversible electrode processes by modern instrumental methods, G. C. Barker, H. W. Nürnberg, and J. A. Bolzan, Ber. K.F.A. Julich No. 137 (1963).

    Google Scholar 

  23. Determination of the rate constants for the dissociation and recombination of weak acids by high level faradaic rectification, G. C. Barker and H. W. Nürnberg,Naturwiss.51, 191 (1964).

    CAS  Google Scholar 

  24. Non-linear relaxation methods for the study of very fast electrode processes, G. C. Barker, In:Polarography 1964, G. J. Hills, ed., Vol. I, pp. 25–47, Macmillan, London (1966).

    Google Scholar 

  25. (a) The determination of the rate constants of dissociation and recombination for carboxylic acids by high level Faradaic rectification, H. W. Nurnberg, In:Polarography 1964, G. J. Hills, ed., Vol. I, pp. 149–155. Macmillan, London (1966). (b) The method of high level faradaic rectification, H. W. Nurnberg, In:Polarography 1964, G. J. Hills, ed., Vol. I, pp. 155–156, Macmillan, London (1966).

    Google Scholar 

  26. Faradaic rectification: An amended treatment, R. De Leeuwe, M. Sluyters-Rehbach, and J. H. Sluyters,Electrochim. Acta 12, 1593–1599 (1967).

    Google Scholar 

  27. Effect of the external resistance on the high frequency polarographic wave height, T. Kambara, S. Tanaka, and K. Harebe,J. Electroanal. Chem. Interfacial Electrochem.21, 49 (1969).

    CAS  Google Scholar 

  28. Faradaic rectification, E. Yeager and J. Kuta, In:Techniques in Electrochemistry, E. Yeager and A. Salkind, eds., Vol. I, pp. 245–256, Wiley Interscience, New York (1972).

    Google Scholar 

  29. Faradaic rectification method and its applications in the study of electrode processes, H. P. Agarwal, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 7, pp. 161–199, Marcel Dekker, Inc. New York (1974).

    Google Scholar 

  30. Use of faradaic rectification for the study of rapid electrode processes, G. C. Barker, R. L. Faircloth, and A. W. Gardner,Nature 181, 247–248 (1958).

    CAS  Google Scholar 

  31. Square wave polarography and some related techniques, G. C. Barker,Anal. Chim.Acta 18, 118–131 (1958).

    CAS  Google Scholar 

  32. Trace elements in food. I. Simultaneous determination of zinc and cobalt as nickel by high frequency polarography, S. Furutani,Japan Analyst 16, 103 (1967).

    CAS  Google Scholar 

  33. Effect of the external resistance on the high frequency polarographic wave height, T. Kambara, S. Tanaka, and K. Hasebe,J. Electroanal. Chem. Interfacial Electrochem.21, 49 (1969).

    CAS  Google Scholar 

  34. High frequency polarography, L. N. Vasileva and N. V. Lukashenkova,Zh. Anal. Khim.25, 412 (1970).

    CAS  Google Scholar 

  35. Effect of the rate of voltage supply on the shape of the high frequency polarogram for a stationary mercury electrode, L. N. Vasileva and N. B. Kogan,Zh. Anal. Khim 26, 1932 (1971)

    CAS  Google Scholar 

  36. A transistorised radio frequency polarograph: Its use for the determination of tin and lead, C. L. Roughton, M. Hanison, and B. Surfleet,Analyst 95, 894–901 (1970)

    Google Scholar 

  37. High frequency polarograph and its use, S. S. Bruk and B. M. Sternberg,Zavod. Lab 36, 365 (1970)

    CAS  Google Scholar 

  38. Detector polarography and its use, R. M. Salikhdzhanova and I. E. Bryksin,Zavod. Lab 37, 765 (1971)

    CAS  Google Scholar 

  39. Trace elements in food. IV. High frequency polarographic determination of p-toluene sulfonic acid, Y. Osajima, K. Matsumoto, M. Nakashima, F. Hashinage, and S. Furutani,Benseki Kagaku 20, 1292–1297 (1971)

    CAS  Google Scholar 

  40. Analytical possibilities of high frequency polarography, L. P. Chernega, V. I. Bodyn, and Yu. S. Syalikov,Zh. Anal. Khim 26, 1686–1690 (1971)

    CAS  Google Scholar 

  41. A multimode polarograph, G. C. Barker and A. W. Gardner,J. Electroanal. Chem. Interfacial Electrochem 42, 21–26 (1973)

    Google Scholar 

  42. Equivalent circuits for a cell affected by space charge in the solution and simple reactions at the electrodes, G. C. Barker,J. Electroanal. Chem. Interfacial Electrochem 44, 473–479 (1973)

    Google Scholar 

Theory

  1. Pulse polarography, G. C. Barker and A. W. Gardner, Atomic Energy Res. Establ. AERE Harwell C/R 2297 (1958).

    Google Scholar 

  2. Pulse polarography, G. C. Barker and A. W. Gardner,Z. Anal. Chem 173, 79–83 (1960)

    CAS  Google Scholar 

  3. Square wave and pulse polarography, G. C. Barker, In:Progress in Polarography, I. M. Kolthoff and P. Zuman, eds., Vol. II, pp. 411–427, Interscience Publ., New York (1962)

    Google Scholar 

  4. Evaluation of analytical pulse polarography, E. P. Parry and R. A. Osteryoung,Anal. Chem 37, 1634–1637 (1965)

    CAS  Google Scholar 

  5. Stand der polarographischen methoden und ihren instrumentation, H. W. Nürnberg and G. Wolf,Chem. Ing. Tech 37, 977 (1965)

    Google Scholar 

  6. Stand der polarographischen methoden und ihren instrumentation Teil II. Wechsel spannungsverfahren, H. W. Nürnberg and G. Wolf,Chem. Ing. Tech 38, 160–180 (1966)

    Google Scholar 

  7. The use of normal pulse polarography in the study of electrode kinetics, J. H. Christie, E. P. Parry, and R. A. Osteryoung,Electrochim. Acta 11, 1525 (1966)

    CAS  Google Scholar 

  8. Characterisation of electrode reversibility by pulse polarography, K. Oldham and E. P. Parry,Anal. Chem 42, 229–233 (1970)

    CAS  Google Scholar 

  9. Pulse polarography, D. E. Burge,J. Chem. Educ.47, A81–88, A84, A86, A88, A90, A93 - A94 (1970)

    Google Scholar 

  10. Anodic dissolution in pulse polarography, G. Donadey, R. Rosset, and G. Chariot,Chem. Anal. (Warsaw)17, 575–602 (1972)

    CAS  Google Scholar 

  11. A multimode polarograph, G. C. Barker, A. W. Gardner, and M. J. Williams,J. Electroanal. Chem. Interfacial Electrochem.42, App. 21–26 (1973)

    Google Scholar 

  12. Effect of pulse polarity on the shape of pulse polarograms, B. Ya. Kaplan and T. N. Sevastyanova,Zh. Anal. Khim 28, 28–32 (1973)

    CAS  Google Scholar 

  13. Fundamental study of differential pulse polarography, A. Saito and S. Himeno,Nippon Kagakukaishi 10, 1909–1914 (1973)

    Google Scholar 

  14. Innovations in pulse polarography, J. H. Christie, Thesis, Colorado State University (1974), Ann. Arbor. Mich. Order No. 74-27940

    Google Scholar 

  15. Theoretical treatment of pulsed voltammetric stripping at the thin film mercury electrode, R. A. Osteryoung and J. H. Christie,Anal. Chem 46, 351–355 (1974)

    CAS  Google Scholar 

  16. Pulse voltammetry at rotated electrodes, D. J. Myers, R. A. Osteryoung, and J. Osteryoung,Anal. Chem 46, 2089–2092 (1974)

    CAS  Google Scholar 

  17. Direct current effects in pulse polarography at the dropping mercury electrode, J. H. Christie and R. A. Osteryoung,J. Electroanal. Chem. Interfacial Electrochem 49, 301–311 (1974)

    CAS  Google Scholar 

  18. Pulse polarography. II. Anamolous waves observed on a normal pulse polarograph, A. Saito and S. Himeno, Nippon Kagaku Kaishi, 2340-2345 (1974)

    Google Scholar 

  19. Pulse polarography. I. Revised equation for diffusion current, J. Galvez and A. Sena,J. Electroanal. Chem. Interfacial Electrochem.69, 133–143 (1976)

    CAS  Google Scholar 

  20. Pulse polarography. II. Kinetic currents of an electrode reaction coupled to a preceding first order reaction, J. Galvez and A. Serma,J. Electroanal. Chem. Interfacial Electrochem.69, 145–156 (1976)

    CAS  Google Scholar 

  21. Pulse polarography. III. Catalytic currents, J. Galvez and A. Serna,J. Electroanal. Chem. Interfacial Electrochem.69, 157–164 (1976)

    CAS  Google Scholar 

  22. Pulse polarography. Part IV. Contribution to the theory of catalytic current, J. Galvez, A. Serna, and T. Fuente,J. Electroanal. Chem. Interfacial Electrochem.96, 1–6 (1979)

    CAS  Google Scholar 

  23. Pulse polarography—theory and applications, J. Osteryoung and K. Hasebe,Rev. Polarogr.22, (1, 2), 1–25 (1976)

    CAS  Google Scholar 

  24. Alternate drop pulse polarography, J. H. Christie, L. I. Jackson, and R. A. Osteryoung,Anal. Chem.48, 242–247 (1976)

    CAS  Google Scholar 

  25. Digital simulation of differential pulse polarography, J. W. Dillard and K. W. Hauell,Anal. Chem.48, 218–222 (1976)

    CAS  Google Scholar 

  26. Effects of electrical transformations in normal pulse polarography on stationary electrodes, T. J. Varavko and B. Ya. Kaplan,Zh. Anal. Khim.31, 429–432 (1976)

    CAS  Google Scholar 

  27. Difference in half-wave potential in normal pulse polarograms in solutions of oxidised and reduced forms of depolariser in case of a completely irreversible electrochemical reaction,B. Ya. Kaplan,Zh. Anal. Khim.31, 1220 (1976)

    CAS  Google Scholar 

  28. Normal pulse polarography—application to the analysis of electrochemical reactions, M. Gross,Bull. Soc. Chim.Fr.11–12, Pt. 1, 1803–1811 (1976)

    Google Scholar 

  29. Fast sweep differential pulse voltammetry at a dropping mercury electrode, H. Blutstein and A. M. Bond,Anal. Chem.48, 248–252 (1976)

    Google Scholar 

  30. Some virtues of differential pulse polarography in examining adsorbed reactants, F. C. Anson, J. B. Flangen, K. Takahashi, and A. Yamada,J. Electroanal. Chem. Interfacial Electrochem.67, 253–259 (1976)

    CAS  Google Scholar 

  31. Pseudo derivative and pulse polarographic methods at short drop time, A. M. Bond and R.J. O’Halloran,J. Electroanal. Chem. Interfacial Electrochem.68, 257–272 (1976)

    CAS  Google Scholar 

  32. General equations for voltammetry with step functional potential changes to differential pulse voltammetry, S. C. Rifkins and D. H. Evans,Anal. Chem.48, 1616–1618 (1976)

    Google Scholar 

  33. Choice of pulse size in differential pulse polarography, B. Ya. Kaplan and T. N. Varavko,Zh. Anal. Khim.32, 639 (1977)

    CAS  Google Scholar 

  34. High performance pulse and differential pulse polarography. Part I. Theoretical considerations, W. P. Van Bennekom and J. B. Schulte,Anal. Chim. Acta 89, 71–82 (1977)

    Google Scholar 

  35. Theory of pulse polarography and related chronoamperometric and chronocoulometric techniques. I. Influence of mass transport regime and heterogeneous kinetics on current potential curves, I. Ruzic,J. Electroanal. Chem. Interfacial Electrochem.75, 25–44 (1977)

    Google Scholar 

  36. The polarographic current “constant” in pulse polarography, J. A. Bolzan, J. Electroanal.Chem. Interfacial Electrochem.75, 157–162 (1977)

    CAS  Google Scholar 

  37. Effect of reactants and products adsorption in pulse polarography, J. B. Flanagan, K. Takahaski, and F. C. Anson,J. Electroanal. Chem. Interfacial Electrochem.85, 257–266 (1977)

    CAS  Google Scholar 

  38. Normal pulse voltammetry in electrochemically poised solutions, J. L. Morris, Jr. and L. R. Faulkner,Anal. Chem.49, 489–494 (1977)

    CAS  Google Scholar 

  39. Cyclic and differential pulse voltammetric behavior of reactants confined in the electrode surface, A. P. Brown and F. C. Anson,Anal. Chem.49, 1589–1595 (1977)

    CAS  Google Scholar 

  40. The current potential relationship in differential pulse polarography—A revision, G. J. Heigne and W. E. Van der Linden,Anal. Chim. Acta 99, 183–187 (1978)

    Google Scholar 

  41. Pulsed Polarography, B. Ya Kaplan, Khimiya, Moscow USSR, 240 pp (1978) (Russ.)

    Google Scholar 

  42. Differential pulse polarography (review), R. F. Salikhdzhanova, N. A. Romanov, N. A. Sobina, and L. Ya. Kheifets,Zavod. Lab.44, 1171–1173 (1978)

    CAS  Google Scholar 

  43. Constant potential pulse polarography, J. H. Christie, L. L. Jackson, and R. A. Osteryoung,Anal. Chem.48, 561–564 (1978)

    Google Scholar 

  44. The current potential relationship for differential pulse polarography, I. Ruzic and M. Sluyters Rehbach,Anal. Chim. Acta.99, 177–182 (1978)

    CAS  Google Scholar 

  45. Current potential-time relationship in differential pulse polarography: Theory of reversible, quasireversible and irreversible electrode processes, R. L. Birke,Anal. Chem.50, 1489–1496 (1978).

    CAS  Google Scholar 

  46. Pulse radio polarography-A new method for study of electrode kinetics from traces level to mM concentration, A. J. Andriamantena, R. Garlier, and M. Plissonier,J. Electroanal. Chem. Interfacial Electrochem.97, 77–83 (1979).

    CAS  Google Scholar 

  47. Theoretical aspects of new polarographic methods, Z. Galus, In:Fundamentals of Electrochemical Analysis, pp. 489–498, Ellis Horwood Ltd. (1976)

    Google Scholar 

  48. Pulse polarography. Part XI. Some problems in solving kinetic equations, L. F. Roeleveld, B. J. C. Wetsema, and J. M. Los,J. Electroanal. Chem. Interfacial Electrochem.75, 839–844 (1977).

    CAS  Google Scholar 

Instrumentation

  1. Preliminary evaluation of an electronic polarographic instrument, E. P. Parry and R. A. Osteryoung,Anal. Chem.36, 1366–1367 (1964)

    CAS  Google Scholar 

  2. Application of a computerized electrochemical system to pulse polarography at a hanging mercury drop electrode, H. E. Keller and R. A. Osteryoung,Anal. Chem.43 (3), 342–348 (1971)

    CAS  Google Scholar 

  3. Instrumental artifacts in differential pulse polarography, J. H. Christie, J. Osteryoung, and R. A. Osteryoung,Anal. Chem.45, 210–215 (1973)

    CAS  Google Scholar 

  4. Study of dropping mercury electrode in normal pulse polarography, J. H. Christie, J. Osteryoung, and R. A. Osteryoung,Anal. Chem.45, 210–215 (1973)

    CAS  Google Scholar 

  5. Low noise pulse polarograph suitable for automation, B. H. Vassos and R. A. Osteryoung,Chem. Instrum.5, 257–270 (1974)

    Google Scholar 

  6. Inexpensive solid state modification of the Heath kit polarograph, R. W. Andrew,Chem. Instrum.6, 163–172 (1975)

    CAS  Google Scholar 

  7. Improved differential pulse polarography, N. Klein and Ch. Yarnitzky,J. Electroanal. Chem. Interfacial Electrochem.61, 1–9 (1975)

    CAS  Google Scholar 

  8. The non-faradaic background in pulse polarography, R. A. Osteryoung and J. H. Christie,Natl. Bur. Stand (US) Specl. Publ.422, 871–879 (1976)

    CAS  Google Scholar 

  9. Digital simulation of differential pulse polarography, J. W. Dillard and K. W. Hauck,Anal. Chem.48, 218–222 (1976)

    CAS  Google Scholar 

  10. R. H. Abel, J. H. Christie, L. L. Jackson, J. G. Osteryoung, and R. A. Osteryoung,Chem. Inst.7, 123–135 (1976)

    Google Scholar 

  11. Fast sweep differential pulse voltammetry at a dropping mercury electrode, H. Blustein and A. M. Bond,Anal. Chem.48 (2), 248–252 (1976)

    Google Scholar 

  12. Modification of pulse polarograph for rapid scanning and its use with stationary electrodes, K. C. Burrows, M. P. Brindle, and M. C. Hughes,Anal. Chem.49, 1459–1461 (1977)

    CAS  Google Scholar 

  13. Simple approach to the problem of overlapping waves using a microprocessor controlled polarograph, A. M. Bond and B. S. Grabaric,Anal. Chem.48, 1624–1628 (1976)

    CAS  Google Scholar 

  14. Pulse polarography. VIII. A new digital to analogue pulse polarograph, J. P. Van Dieren, B. G. W. Kaars, J. M. Los, and B. J. C. Wetsema,J. Electroanal. Chem. Interfacial Electrochem.68 ( 2 ), 129–137 (1976)

    Google Scholar 

  15. Dynamic compensation of the overall and uncompensated cell resistance in a two or three electrode system transient techniques, Ch. Yarmitzky and N. Klein,Anal. Chem.47, 850–854 (1976)

    Google Scholar 

  16. Improved low noise differential pulse polarography, R. Kalvoda and A. Trojanek,J. Electroanal. Chem. Interfacial Electrochem.75, 151–155 (1977)

    CAS  Google Scholar 

  17. Differential pulse anodic stripping voltammetry in a thin layer electrochemical cell, T. P. DeAngelis and W. R. Heineman,Anal. Chem.48, 2262–2263 (1976)

    CAS  Google Scholar 

  18. Differential pulse polarography and voltammetry with a microprocessor-controlled polarograph and a pressurised mercury electrode, A. M. Bond and B. S. Grabaric,Anal. Chim. Acta 88, 227–236 (1977)

    CAS  Google Scholar 

  19. Thin layer differential pulse voltammetry, T. P. De Angelis, R. E. Bond, E. E. Brooks, and W. R. Heineman,Anal. Chem.49, 1792–1797 (1977)

    Google Scholar 

  20. Methods of relationship of short rise times of cell voltage in pulse polarography, M. Krizan,J. Electroanal. Chem. Interfacial Electrochem.80, 337–344 (1977)

    CAS  Google Scholar 

  21. A pulse polarograph for the measurement of fast chemical reactions, M. Krizan, H. Schmidt, and H. Strehlow,J. Electroanal. Chem. Interfacial Electrochem.80, 345–356 (1977)

    CAS  Google Scholar 

  22. Digital simulation of differential pulse polarography with incremental time change, J. W. Dillard, J. A. Turner, and R. A. Osteryoung,Anal. Chem.49, 1246–1250 (1977)

    CAS  Google Scholar 

  23. Pulse differential polarography, P. Blanquet, Fr.235/412, CI. GOI N 27/48 Dec. 1977.

    Google Scholar 

  24. Differential pulse voltammetry with slow dropping mercury electrodes: A new electroanalytical technique, L. Grifore,Cron. Chim.54, 13–17 (1977)

    Google Scholar 

  25. Cyclic differential pulse voltammetry: A versatile instrumental approach using a computerized system, K. F. Drake, R. P. Van Duyne, and A. M. Bond,J. Electroanal. Chem. Interfacial Electrochem.89, 231–246 (1978)

    CAS  Google Scholar 

  26. Fast sweep differential pulse voltammetry at a dme with computerized instruments, A. M. Bond and B. S. Grabaric,Anal. Chem.51, 126–128 (1979)

    CAS  Google Scholar 

  27. Rapid scan alternate drop pulse polarography, J. A. Turner and R. Osteryoung,Anal. Chem.50, 1496–1500 (1978)

    CAS  Google Scholar 

  28. High performance pulse and differential pulse polarography, W. P. Van Bennelcom,Anal. Chim. Acta 101, 283–307 (1978)

    Google Scholar 

  29. Use of computerised instrumentation for pseudo derivative direct current and normal pulse polarography with correction for charging current, A. M. Bond and B. S. Grabaric,Anal. Chim. Acta 101, 309–318 (1978)

    CAS  Google Scholar 

  30. Differential pulse polarography, A. Trojanek and R. Kalvoda, Czech. 172 742 (U.GOI N 27/40) 15 May 1978

    Google Scholar 

  31. Differential pulse polarograph, R. Kalvoda and A. Trojanek, Czech. 175913 (U. GOI N 27/48)

    Google Scholar 

  32. Differential pulse polarography, A. Trojanek and R. Kalvoda, Czech. 17914 (U GOI N 27/48)

    Google Scholar 

  33. Correction for background current in differential pulse alternating current and related polarographic techniques in the determination of low concentration with computerised instrumentation, A. M. Bond and B. S. Grabaric,Anal. Chem.51, 337–341 (1979)

    CAS  Google Scholar 

Analysis

  1. Pulse polarographic analysis of toxic heavy metals, J. G. Osteryoung and R. A. Osteryoung,Am. Lab.4, 8–16; 14–16 (1972).

    CAS  Google Scholar 

  2. Pulse stripping analysis. Determination of some metals in aerosols and other limited size samples, E. P. Parry and D. H. Hern, Joint Conf. Sensing Environment Pollutants Collec. Tech. Papers, 1, 6 pp. (1971)

    Google Scholar 

  3. Determination of 2,4,diamino-5-(3,4,5-timethoxy benzyl) pyrimidine (Trimethoprim) in blood and urine by differential pulse polarography, M. A. Brooks, J. A. F. De Silva, L. M. D’Arconte,Anal. Chem.45, 263–266 (1973)

    CAS  Google Scholar 

  4. Determination of phenobarbital and diphenylhydanation in blood by differential pulse polarography, M. A. Brooks, J. A. F. DeSilva, and M. R. Hackman,Anal. Chim. Acta 64, 165–175 (1973).

    CAS  Google Scholar 

  5. Determination of diazepam in serum by differential pulse polarography, E. Jacobsen, T. V. Jacobsen, and T. Rojahn,Anal. Chim. Acta 64, 473–476 (1973)

    CAS  Google Scholar 

  6. Differential pulse polarographic determination of drugs in biological fluids, M. A. Brooks, J. A. F. De Silva and M. R. Hackman,Amer. Lab.5 ( 9 ), 23-26, 28-30, 32, 34-38 (1973)

    CAS  Google Scholar 

  7. Application of differential pulse polarography to anodic electrode processes involving mercury compound formation, D. R. Canterford and A. S. Buchaman,J. Electroanal. Chem. Interfacial Electrochem.44, 291–298 (1973)

    CAS  Google Scholar 

  8. Determination of arsenic (III) at the parts per billion level by differential pulse polarography, D. J. Myers and J. Osteryoung,Anal. Chem.45, 267–271 (1973)

    CAS  Google Scholar 

  9. Pulse polarography in process analysis, determination of ferri, ferrous and cuprous ions, E. P. Parry and D. P. Anderson,Anal. Chem.45, 458–463 (1973).

    CAS  Google Scholar 

  10. Differential pulse polarographic and second harmonic a.c. polarography are used, G. E. Batley and T. M. Florence,J. Electroanal. Chem. Interfacial Electrochem.55, 23–43 (1974)

    CAS  Google Scholar 

  11. H. W. Nürnberg and B. Kastening, Polarographic and voltammetric techniques, In:Methodium Chimicum, F. Korte, ed., Vol. 1/A, pp. 584–607, Academic Press, New York (1974)

    Google Scholar 

  12. Determination of submicromolar concentrations of sulfonamides by differential pulse polarography after diazotisation and coupling with 1-naphthol, A. G. Fogg and Y. Z. Ahmed,Anal. Chim. Acta 70, 241–244 (1974).

    CAS  Google Scholar 

  13. Normal pulse polarography of double helical DNA: Dependence of the wave height on starting potential, E. Palecek,Collect. Czech. Chem.Commun.39, 3449–3455 (1974)

    CAS  Google Scholar 

  14. Microanalysis of heavy metals by differential pulse polarography, S. Hayano and N. Shinozuka,Seisan-Kenkyu,26, 78–81 (1974)

    CAS  Google Scholar 

  15. Effect of film formation on the normal pulse polarographic behaviour of sulphide, D. R. Cauterford,J. Electroanal. Chem. Interfacial Electrochem.52, 144–147 (1974)

    Google Scholar 

  16. Electroreduction and pulse polarographic determination of nicotinamide in multivitamin tablets, E. Jacobson and K. B. Thorgersen,Anal. Chim. Acta 71, 175–184 (1974)

    Google Scholar 

  17. Determination of chlorodiazepoxide hydrochloride (librium) and its major metabolites in plasma by differential pulse polarography, M. R. Hackman, M. A. Brooks, and J. A. F. DeSilva,Anal. Chem.46, 1075–1082 (1974)

    CAS  Google Scholar 

  18. Amperometric titration employing differential pulse polarography, D. J. Myer and J. Osteryoung,Anal. Chem.46, 356–359 (1974)

    Google Scholar 

  19. Differential pulse polarography in trace analysis, Bagheri Ababar Ph.D. Thesis, Howard Univ., Washington, D.C. (1975)

    Google Scholar 

  20. Application of differential pulse polarography to the assay of vitamins, J. Lindquist and S. M. Farroha,Analyst 100, 377–385 (1975)

    CAS  Google Scholar 

  21. Differential pulse polarographic determination of some carcinogenic nitrosamines, K. Hasebe and J. Osteryoung,Anal. Chem.47, 2412–2418 (1975)

    CAS  Google Scholar 

  22. Trace level determination of 1, 4-benzodiazepines in blood by differential pulse polarography, M. A. Brooks and M. R. Hackerman,Anal. Chem.47, 2059–2062 (1975)

    CAS  Google Scholar 

  23. Determination of 1,4 benzodiazepines in biological fluids by differential pulse polarography, M. A. Brooks and J. A. F. DeSilva,Talanta 22, 849–860 (1975)

    CAS  Google Scholar 

  24. Determination of thiols by pulse polarography, F. Peter and R. Rosset,Anal. Chim. Acta 79, 47–58 (1975)

    CAS  Google Scholar 

  25. Electrochemistry of thiols and disulphides II. The d.c., a.c., and differential pulse polarography of glutathione, G. A. Mairesse-Ducarmois, G. J. Patriarche, and J. L. Vandenbalck,Anal. Chim. Acta 76, 299–308 (1975)

    CAS  Google Scholar 

  26. Organic functional group analysis at the micro level. I. Determination of the N-oxide function by differential pulse polarography, T. S. Ma, M. R. Hackman and M. A. Brooks,Mikrochim. Acta 2, 617–625 (1975)

    CAS  Google Scholar 

  27. Accuracy and reliability of trace metal determination in environmental samples by advanced polarographic and spectroscopic techniques, H. W. Nurnberg, M. Stoeppler, and P. Valenta,Thalassia Jugose 11, 85–100 (1975) (Eng).

    Google Scholar 

  28. Comparison of differential pulse and d.c. sampled polarography for the determination of ferrous and manganous ions in lake water, W. Davison,J. Electroanal. Chem. Interfacial Electrochem.72, 229–237 (1976)

    CAS  Google Scholar 

  29. Determination of trace elements in zinc plant electrolyte by differential pulse polarography and anodic stripping voltammetry, E. S. Pilkington and C. Weeks,Anal. Chem.48, 1665–1669 (1976)

    Google Scholar 

  30. Determination of uranium in plutonium-238 metal and oxide by differential pulse polarography, N. C. Fawcet,Anal. Chem.48, 215–218 (1976)

    Google Scholar 

  31. Analytical evaluation of differential pulse voltammetry at stationary electrodes using computer based instrumentation, S. C. Rifkin and D. H. Evans,Anal. Chem.48, 2174–2180 (1976)

    CAS  Google Scholar 

  32. Determination trace mercury (II) in 0.1 M perchloric acid by differential pulse stripping voltammetry at a rotating gold disc electrode, R. W. Andrews, J. H. Larochdle, and D. C. Johnson,Anal. Chem.48, 212–214 (1976)

    CAS  Google Scholar 

  33. Applications of polarography and voltammetry to marine and aquatic chemistry. Part II. The polarographic approach to the determination and speciation of metals in the marine environment, Fresenius,Z. Anal. Chem.282, 357–367 (1976)

    Google Scholar 

  34. Effects of surfactants in differential pulse polarography, E. Jacobson and H. Lindseth,Anal. Chim. Acta,86, 123–127 (1976)

    Google Scholar 

  35. Differential pulse polarographic determination of acrolein in water samples, L. H. Howe,Anal. Chem.48, 2167–2169 (1976)

    CAS  Google Scholar 

  36. Determination of acrylamide monomer by differential pulse polarography, S. R. Betso and J. D. McLean,Anal. Chem.48, 766–770 (1976)

    CAS  Google Scholar 

  37. Amperometric and differential pulse voltammetric detection in high performance liquid chromatography, D. G. Swartzfager,Anal. Chem.48, 2189–2192 (1976)

    CAS  Google Scholar 

  38. Applications of modern polarographic methods to analytical and physical chemistry, H. W. Nürnberg,Kem. Kozl.45, 13–46 (1976) (Hung.)

    Google Scholar 

  39. Potentialities and applications of advanced polarographic and voltammetric methods in environmental research and surveillance of toxic metals, H. W. Nürnberg,Electrochim. Acta 22, 935–949 (1977).

    Google Scholar 

  40. Applications of polarography and voltammetry to marine aquatic chemistry. IV. A new voltammetric method for the study of mercury traces in seawater and in land water, L. Sipos, P. Valenta, H. W. Nürnberg, and M, Branica,J. Electroanal. Chem. Interfacial Electrochem.77, 263–267 (1977)

    CAS  Google Scholar 

  41. New potentialities in ultra trace analysis with differential pulse anodic stripping voltammetry, P. Valenta, L. Mart, and H. Rutzel,J. Electroanal. Chem. Interfacial Electrochem.82, 327–343 (1977)

    CAS  Google Scholar 

  42. Pulse polarographic analysis of nucleic acids and proteins, E. Paleck, V. Brabec, F. Jelen, and Z. Pechan,J. Electroanal. Chem. Interfacial Electrochem.75, 471–485 (1977)

    Google Scholar 

  43. Differential pulse polarographic determination of nitrate and nitrite, S. W. Boese and V. S. Archer,Anal. Chem.49, 479–484 (1977)

    CAS  Google Scholar 

  44. Determination of nitrite ion using differential pulse polarography, S. K. Chang, R. Kozeniauskas, and G. W. Harrington,Anal. Chem.49, 2272–2275 (1977)

    CAS  Google Scholar 

  45. Polarographic study of certain progestogens and their determination in oral contraceptive tablets by differential pulse polarography, L. G. Chatten, R. N. Yadev, S. Binnigton, R. E. Moskalyk,Analyst 102, 323–327 (1977)

    CAS  Google Scholar 

  46. Cathodic pulse stripping analysis of iodine at the parts per billion level, R. C. Propst,Anal. Chem.49, 1199–1205 (1977)

    CAS  Google Scholar 

  47. Direct and titrimetric determination of hydroxide using normal pulse polarography at mercury electrodes, E. Kirowa-Eisner and J. Osteryoung,Anal. Chem.50, 1062–1066 (1978)

    CAS  Google Scholar 

  48. Differential pulse polarographic determination of molybdenum at parts per billion levels, P. Bosserman, D. T. Sawyer, and A. L. Page,Anal. Chem.50, 1300–1303 (1978)

    CAS  Google Scholar 

  49. Differential pulse polarography of phenylarsine oxide, J. H. Lowry, R. B. Smart, and K. H. Mancy,Anal. Chem.50, 1303–1309 (1978)

    CAS  Google Scholar 

General Principles and Thery

  1. The cathode ray oscillograph applied to the dropping mercury electrode, L. A. Matheson and N. Nichols, Trans. Electrochem. 193–210 (1938)

    Google Scholar 

  2. Cathode ray polarograph. Verification of the theoretical equation, J. E. Randies,Trans. Faraday Soc.44, 334 (1948)

    Google Scholar 

  3. A cathode polarograph. Part II. Current-voltage curves, J. E. B. Randies,Trans. Faraday Soc.44, 327–338 (1948)

    Google Scholar 

  4. Theory of irreversible waves in oscillographic polarography, P. Delahay,J. Am. Chem. Soc.75, 1190–1196 (1953)

    CAS  Google Scholar 

  5. Unified theory of polarographic waves, P. Delahay,J. Am. Chem. Soc.75,1430–1435 (1953)

    CAS  Google Scholar 

  6. Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes, T. Berzins and P. Delahay,J. Am. Chem. Soc.75, 555–559 (1953).

    CAS  Google Scholar 

  7. Diffusion currents at cylindrical electrodes. A study of organic sulfides, M. M. Nicholson,J. Am. Chem. Soc.76, 2539–2545 (1954)

    CAS  Google Scholar 

  8. Voltammetry and polarography with continuously changing potential, P. Delahay, In:New Instrumental Methods in Electrochemistry, Chap. 6, pp. 115–139, Interscience Pub., New York (1954)

    Google Scholar 

  9. Zur theorie der Randles-Sevick kathodenstrahl-polarographie, H. Matsuda and Y. Ayabe,Z. Elektrochem.59, 494–503 (1958)

    Google Scholar 

  10. Diffusion currents at spherical electrodes, R. P. Frankenthal and I. Shain,J. Am. Chem. Soc.78, 2969–2979 (1956)

    CAS  Google Scholar 

  11. The theory of polarographic currents. A general formula for the diffusion-caused current and its application, H. Matsuda,Z. Electrochem.61, 489–506 (1957).

    CAS  Google Scholar 

  12. Polarography of metallic monolayers, M. M. Nicholson,J. Am. Chem. Soc.79, 7–12 (1957)

    CAS  Google Scholar 

  13. Nernst controlled currents in hanging drop polarography, W. H. Reinmuth,J. Am. Chem. Soc.79, 6358–6360 (1957)

    CAS  Google Scholar 

  14. Cyclic voltammetry with application of the hanging mercury drop electrode. II. Investigation of the mechanism of the reduction of p-nitroaniline, W. Kemula and Z. Kublic,Bull. Acad. Polon. Sci. Ser. Sci. Chim.6, 653–659 (1958)

    CAS  Google Scholar 

  15. A new voltammetric method of investigation of the formation of intermetallic compounds using the hanging mercury electrode, W. Kemula, Z. Galus, and Z. Kertlik,Bull Acad. Polon. Ser. Sci. Chim.Geol.6, 661–668 (1958)

    CAS  Google Scholar 

  16. Voltammetry with linearly varying potential case of irreversible waves at spherical electrodes, R. D. DeMars and I. Shain,J. Am. Chem. Soc.81, 2654–2659 (1959)

    CAS  Google Scholar 

  17. Voltammetry with the hanging mercury drop electrode, W. Kemula, In:Advances in Polarography, I. S. Longmuir, ed., Vol. 1, pp. 105–143, Pergamon Press, Oxford (1960)

    Google Scholar 

  18. Kinetic equation for irreversible reactions in oscillographic polarography, A. Ya. Gokhshtein and Ya. P. Gokhshtein,Dokl. Akad. Nauk SSSR 131, 601–604 (1960)

    CAS  Google Scholar 

  19. Voltammetry with the hanging mercury drop electrode, Y. P. Gokshtein and A. Y. Gokshtein, In:Advances in Polarography, I. S. Longmuir, ed., pp. 105–143, Pergamon Press, New York (1960)

    Google Scholar 

  20. Recherches sur les courants catalytiques en polarographie-oscillographique a2019balayage lineaire de tension, J. M. Saveant and E. Vianello, In:Advances in Polarography, I. S. Longmuir, ed. Vol. I, pp. 367–374, Pergamon Press, New York (1960)

    Google Scholar 

  21. Theory of stationary electrode polarography, W. H. Reinmuth,Anal. Chem.33,1793–1794 (1961)

    CAS  Google Scholar 

  22. Theory of stripping voltammetry with spherical electrodes, W. H. Reinmuth,Anal. Chem.33, 185–187 (1961)

    CAS  Google Scholar 

  23. Theory of diffusion limited charge transfer processes in electroanalytical techniques, W. H. Reinmuth,Anal. Chem.34, 1446–1454 (1962)

    CAS  Google Scholar 

  24. Single sweep method, J. Vogel, In:Progress in Polarography, I. M. Kolthoff and P. Zuman, eds., Vol. II, pp. 429–448, Interscience Publishers, New York (1962)

    Google Scholar 

  25. Triangular wave cyclic voltammetry, Z. Galus, H. Y. Lee, and R. N. Adams,J. Electroanal. Chem.5, 17–22 (1963)

    CAS  Google Scholar 

  26. Theory of stationary electrode polarography: Single scan and cyclic methods applied to reversible, irreversible, and kinetics system, R. S. Nicholson and I. Shain,Anal. Chem.36, 706–723 (1964)

    CAS  Google Scholar 

  27. Theory of stationary electrode polarography for a chemical reaction coupled between two charge transfer, R. S. Nicholson and I. Shain,Anal. Chem.37, 178–190 (1965)

    CAS  Google Scholar 

  28. Experimental verification of an ECE mechanism for the reduction of p-nitrosophenol, using stationary electrode polarography, R. S. Nicholson and I. Shain,Anal. Chem.37, 190–195 (1965)

    Google Scholar 

  29. Some examples of the numerical solutions of non-linear integral equations, R. S. Nicholson,Anal. Chem.37, 667–671 (1965).

    CAS  Google Scholar 

  30. Theory and application of cyclic voltammetry for measurement electrode reaction kinetics, R. S. Nicholson,Anal. Chem.37, 1351–1355 (1965).

    CAS  Google Scholar 

  31. Significance of non-steady state a.c. and d.c. measurements in electrochemical adsorption kinetics. Application to galvanostatic and voltage sweep methods, B. E. Conway, E. Gileadi, and H. A. Kozlowska,J. Electrochem. Soc.112, 341 (1965)

    CAS  Google Scholar 

  32. A potential step-linear scan method for investigating chemical reactions initiated by a charge transfer, W. H. Schwarz and I. Shain,J. Phys. Chem.70, 845–852 (1966)

    CAS  Google Scholar 

  33. Evaluation of stationary electrode polarography and cyclic voltammetry for the study of electrode processes, S. P. Perone,Anal. Chem.38, 1958–1963 (1966)

    Google Scholar 

  34. The potential sweep method: A theoretical analysis, S. Srinivasan and E. Gileadi,Elec trochim. Acta 11, 34–35 (1966)

    Google Scholar 

  35. Multistep charge transfers in stationary electrode polarography, D. S. Polcyn and I. S. Shain,Anal. Chem.38, 370–375 (1968)

    Google Scholar 

  36. Theory of stationary electrode polarography for a multistep charge transfer with catalytic (cyclic) regeneration of the reactant, D. S. Polcyn and I. Shain,Anal. Chem.38, 376–382 (1966)

    CAS  Google Scholar 

  37. Potential sweep voltammetry: Theoretical analysis of monomerization and dimerization mechanisms, J. M. Saveant and E. Vianello,Electrochim. Acta 12, 1545–1561 (1967)

    CAS  Google Scholar 

  38. Potential sweep voltammetry: General theory of chemical polarization, J. M. Saveant and E. Vianello,Electrochim. Acta 12, 629–646 (1967)

    CAS  Google Scholar 

  39. ECE mechanism as studied by polarography and linear sweep voltammetry, J. M. Saveant,Electrochim. Acta 12, 753–766 (1967)

    CAS  Google Scholar 

  40. Cyclic voltammetry with asymmetrical potential scan: A simple approach to mechanisms involving moderately fast chemical reactions, J. M. Saveant,Electrochim. Acta 12, 999–1030 (1967)

    CAS  Google Scholar 

  41. Effects of adsorption of electroactive species in stationary electrode polarography, R. H. Wopschal and I. Shain,Anal. Chem.39, 1514–1527 (1967)

    Google Scholar 

  42. Adsorption effects in stationary electrode polarography with a chemical reaction following charge transfer, R. H. Wopschal and I. Shain,Anal. Chem.39, 1535–1542 (1967)

    Google Scholar 

  43. The interpretation of adsorption pseudo capacitance curves as measured by the potential sweep method, I. J. M. Hale and R. Greef,Electrochim. Acta 12, 1409–1420 (1967)

    CAS  Google Scholar 

  44. Disproportionation and ECE-mechanisms. I. Theoretical analysis. Relationships for linear sweep voltammetry, M. Mastsagostino, L. Nadjo, and J. M. Saveant,Electrochim. Acta 13, 721–749 (1968)

    Google Scholar 

  45. Nonunity electrode reaction orders and stationary electrode polarography, M. S. Shuman,Anal. Chem.41, 142–146 (1969)

    CAS  Google Scholar 

  46. Rate controlled adsorption of products in stationary electrode polarography, M. H. Hulbert and I. Shain,Anal. Chem.42, 162–171 (1970)

    CAS  Google Scholar 

  47. Single and cyclic linear sweep voltammetry, E. Yeager and J. Kuta, In:Techniques of Electrochemistry, E. Yeager and A. J. Salkind, eds., vol. 1, pp. 198–202, Wiley-Interscience, New York (1972)

    Google Scholar 

  48. Theoretical study of a reversible reaction followed by a chemical reaction in thin layer linear potential sweep voltammetry, E. Laviron,J. Electroanal. Chem., Interfacial Electrochem.39, 1–23 (1972)

    CAS  Google Scholar 

  49. Theory of potential scan voltammetry with finite diffusion kinetics and other complications, H. E. Keller and W. H. Reinmuth,Anal. Chem.44, 1167–1178 (1972)

    CAS  Google Scholar 

  50. Low temperature studies of electrochemical kinetics. I. Cyclic voltammetry of diethyl fumarate, R. D. Gryfa and J. T. Maloy,J. Electrochem. Soc.122, 377–383 (1975)

    Google Scholar 

  51. Linear potential sweep and cyclic voltammetry, DD. MacDonald, In: Transient Techniques in Electrochemistry, Chap. 6, pp. 185–228, Plenum Press, New York (1977).

    Google Scholar 

  52. ECE and disproportionation. Part V. Stationary state general solution application to LSV, C. Amatore and JM. Saveant, J. Electroanal. Chem. Interfacial Electrochem. 85, 27–46 (1977).

    CAS  Google Scholar 

  53. Convolution and finite difference approach: Application to cyclic voltammetry and spectroelectrochemistry, C. Amatore, L. Nadjo, and JM. Saveant, J. Electroanal. Chem. Interfacial Electrochem. 90, 321–331 (1978).

    CAS  Google Scholar 

  54. Limiting diffusion currents in hydrodynamic voltammetry. Part IV. Stationary disc and ring electrodes in a rotational flow produced by a rotating disc, S. Hamada, M. Itoh, M. Matsuda, and J. Yamada, J. Electroanal. Chem. Interfacial Electrochem. 91, 107–114 (1978).

    CAS  Google Scholar 

  55. Theory of regeneration mechanisms in thin layer potential sweep voltammetry, E. Laviron, J. Electroanal. Chem. Interfacial Electrochem. 87, 31–37 (1978).

    CAS  Google Scholar 

  56. The effect of slow two electron transfers and disproportionation on cyclic voltammograms, MD. Ray, J. Electroanal. Chem. Interfacial Electrochem. 125, 547–555 (1978).

    Google Scholar 

  57. Quantitative resolution of overlapped peaks in programmed potential step voltammetry, PA. Boudreau and SP. Perone,Anal. Chem. 51, 811–817 (1979).

    CAS  Google Scholar 

Instrumentation

  1. Gerat fur schnelle oscillographische quantitative analyse, J. Vogel and P. Valenta,Collect. Czech. Chem. Commun.21, 502–508 (1956).

    Google Scholar 

  2. Arbeits methoden und anevendung der gleichspannung polarographie. I. Apparatives, methoden und elektroden und II. Theorie de polarographischen kurve, HW. Nurnberg and M. Stackelberg,J. Electroanal. Chem.2, 181–229 (1961).

    Google Scholar 

  3. Modern methods of current voltage polarography, HW. Nurnberg, Z.Anal. Chem.186, 1–53 (1962).

    CAS  Google Scholar 

  4. A digital readout device for analog integrators, EC. Toren Jr. and CP. Driscoll,Anal. Chem .35 , 1809–1810 (1963).

    CAS  Google Scholar 

  5. Operational amplifier circuits for controlled potential cyclic voltammetry. II. JR. Alden, JQ. Chambers, and RN. Adams,J.Electroanal. Chem.5, 152–157 (1963).

    Google Scholar 

  6. Electroanalytical controlled potential instrumentation, GL. Booman and WB. Holbrook,Anal. Chem.35, 1793–1809 (1963).

    CAS  Google Scholar 

  7. A digital data collection, wave form generation, and timing instrument for electrochemical measurements, GL. Boosman,Anal. Chem.38, 1141–1148 (1966).

    Google Scholar 

  8. Instrumentation for digital data acquisition systems in voltammetric techniques, ER. Brown, DE. Smith, and D. Deford,Anal. Chem.38, 1130–1136 (1966).

    CAS  Google Scholar 

  9. Some investigations on instrumental compensation of non-faradaic effects in voltammetric techniques, ER. Brown, DE. Smith, TG. McCofd, and D. Deford,Anal. Chem .38 , 1119–1130 (1966).

    CAS  Google Scholar 

  10. Continuous ohmic polarisation compensator for a voltammetric apparatus utilising operational amplifiers, D. Pouli, JR. Huff, and JC. Pearson,Anal. Chem .38 , 382–384 (1966).

    CAS  Google Scholar 

  11. Chemical instrumentation, GW. Ewing,J. Chem. Educ.46, A717 (1967).

    Google Scholar 

  12. Electrochemical data acquisition and analysis system based on a digital computer, G. Lauer, R. Abel, and FC. Anson,Anal. Chem.40, 765–769 (1967).

    Google Scholar 

  13. Chemical instrumentation, JB. Flato, Princeton Applied Res. Tech. Note, T-193, Amer. Lab. Feb. 1969, p. 10.

    Google Scholar 

  14. Solid-state polarographic instrumentation-A unique approach to versatility, R. Bezman and PS. Mckinney,Anal. Chem.41, 1560–1567 (1969).

    CAS  Google Scholar 

  15. Solid state signal generators for electroanalytical experiments, RL. Myers and I. Shain,Chem. Instrum.2, 203–211 (1969).

    CAS  Google Scholar 

  16. Real time computer optimisation of stationary electrode polarographic measurements, SP. Perone, DO. Jones, and WF. Gutknechr,Anal. Chem. 41, 1154–1162 (1969).

    CAS  Google Scholar 

  17. Modularized digitizing time-synchronizing current-sampling system for electroanalytical studies, RG. Glem and WW. Goldsworthy,Anal. Chem. 43, 918–928 (1971).

    Google Scholar 

  18. Computerised learning machine applied to qualitative analysis of mixtures by stationary electrode polarography, S. P. Perone and L. B. Sybrandt,Anal. Chem. 43, 382 (1971).

    Google Scholar 

  19. Linear sweep voltammetry—Compensation of cell resistance and stability. Determination of the residual uncompensated resistance, D. Garrean and J. M. Saveant,J. Electroanal. Chem. Interfacial Electrochem.35, 309–331 (1972).

    Google Scholar 

  20. Evaluation of a computerised sampling technique for digital data acquisition of high speed transient wave forms. Application to cyclic voltammetry, D. E. Smith, G. Greason, and R.J. Lloyd,Anal. Chem. 44, 1159–1166 (1972).

    Google Scholar 

  21. Operational amplifier instruments for electrochemistry, R. R. Schroeder, In:Electrochemistry, J. S. Mattson, H. B. Mark, Jr., and H. C. MacDonald, Jr. eds., Chap. 10, pp. 293–301, 314–350, Marcel Dekker Inc., New York (1972).

    Google Scholar 

  22. Interactive laboratory computer applications to electroanalytical research, S. P. Perone,Ing. Chem. Comput. Assisted Chem. Res. Des. (Pop. Discuss Jt. jPR, U.S. Seminar) (1973) (Pat. 1975 ), pp. 51–75.

    Google Scholar 

  23. Fast fourier transform based interpolation of sampled electrochem. data, R. J. O’Halloram and D. E. Smith,Anal. Chem. 50, 1391–1394 (1978).

    Google Scholar 

  24. Computerised pattern recognition for classification of organic compounds from voltammetric data, D. R. Burgard and S. P. Perone,Anal. Chem. 50, 1366–1371 (1978).

    Google Scholar 

  25. Quantitative resolution of overlapped peaks in programmed potential step voltammetry, P. A. Bourdeau and S. P. Perone,Anal. Chem. 51, 811–817 (1979).

    Google Scholar 

Applications

  1. Voltammetry and polarography with continuously changing potential: Applications to ana- I lytical, P. Delahay, In:New Instrumental Methods in Electrochemistry , Chap. 6, pp. 139–143, Interscience Publishers, New York (1954).

    Google Scholar 

  2. Analytical applications of the hanging mercury drop electrode, JW. Ross, RD. DeMars, and I. Shain, Anal. Chem. 28, 1768–1771 (1956).

    CAS  Google Scholar 

  3. Anodic stripping voltammetry using the hanging mercury drop electrode, RD. DeMars and I. Shain, Anal. Chem. 29, 1825–1827 (1957).

    Google Scholar 

  4. Application de la goute pendaute de mercure a la determination d.c. minimes quantites de different ions, W. Kemula and Z. Kublic,Anal. Chem. Acta 18, 104–111 (1958).

    CAS  Google Scholar 

  5. Cyclic voltammetry with applications of the hanging mercury drop electrode. II. Investigation of the mechanism of the reduction of p-nitroaniline, W. Kemula and Z. Kublic,Bull. Acad. Polon. Sci. Sev. Sci. Chim. 6, 653–659 (1958).

    CAS  Google Scholar 

  6. A new voltammetric method of investigation of the formation of intermetallic compounds using the hanging mercury electrode, W. Kemula, Z. Galus, and Z. Kublic,Bull. Acad. Polon. Ser. Sci. Chim. Geol . 6, 661–668 (1958).

    CAS  Google Scholar 

  7. The influence of gold in mercury electrodes on certain electrode processes, W. Kemula, Z. Galus, and Z. Kublic,Bull. Acad. Sci. Ser. Sci. Chim. 1, 613–618 (1959).

    Google Scholar 

  8. Voltammetry at inert electrodes. I. Analytical applications of boron carbide electrodes, TR. Mueller and RN. Adams,Anal. Chim. Acta 23, 467–479 (1960).

    CAS  Google Scholar 

  9. Voltammetry with the hanging mercury drop electrode, W. Kemula, In:Advances in Polarography , IS. Longmuir, ed., Vol. 1, p. 105, Pergamon Press (1960).

    Google Scholar 

  10. Unter suching von adsorption serschein angen an rhodium iridium palladium und gold mit der potentiostatischen dreieck methode, FG. Will and CA. Knorr, Z.Elektrochem.64, 270–275 (1960).

    CAS  Google Scholar 

  11. Voltammetry at inert electrodes. II. Correlation of experimental results with theory for voltage and controlled potential scanning, controlled potential electrolysis and chronopoten- tiometric techniques. Oxidation of ferrocyanide and o-dianisdine at boron carbide electrodes, TR. Mueller and R. Adams,Anal Chim. Acta 25, 482–497 (1961).

    CAS  Google Scholar 

  12. Electrolytic generation of radical anions in aqueous solutions, L. H. Piette, P. Luding, andR. N. Adams,J. Am. Chem. Soc.83, 3909–3910 (1961).

    CAS  Google Scholar 

  13. The hanging mercury drop in polarography, J. Riha, In:Progress in Polarography, IM. Kolthoff and P. Zuman, eds., Vol. II, pp. 383–396, Interscience Publishers, New York (1962).

    Google Scholar 

  14. Stripping analysis, I. Shain, In:Treatise on Analytical Chemistry, IM. Kolthoff and PJ. Elving, eds., Part I, Sec. D-2, Chap. 50, pp. 2534–2564, Interscience, New York (1963).

    Google Scholar 

  15. Integration of single sweep oscillopolarograms. I. Determination of reactant adsorption and oxide film reduction at platinum electrodes, R. A. Osteryoung, G. Lauer, and F. C. Anson,J. Electrochem. Soc.110, 926 (1963).

    Google Scholar 

  16. Determination of mixtures by single sweep oscillography, R. A. Osteryoung and E. P. Parry,J. Electroanal Chem. 9, 299–304 (1965).

    CAS  Google Scholar 

  17. Effect of surface state of platinum on electrochemical adsorption of oxygen in acid solutions, V. Lukyanycheva, V. Tikhomirova, and V. S. Bagotskii,Elektrokhimiya 1, 262–266 (1975).

    Google Scholar 

  18. Application of controlled potential techniques to study of rapid succeeding chemical reaction coupled to electro-oxidation of ascorbic acid, SP. Perone and JW. Kretlow,Anal. Chem.38, 1760–1763 (1966).

    CAS  Google Scholar 

  19. Potential sweep voltammetry—Adsorption of chloranalic acid on a mercury electrode, S. Roffia and E. Vianello,J. Electroanal Chem. Interfacial Electrochem.15, 405–413 (1967).

    CAS  Google Scholar 

  20. A comparison of radiotracer and electrochemical methods for the measurement of the electrosorption of organic molecules, E. Gileadi, L. Duic, and J. O’M Bockris,Electrochim. Acta 13, 1915–1935 (1968).

    CAS  Google Scholar 

  21. Voltammetric determination of neptunium at the glassy carbon electrode, G. E. Plock,J. Electroanal Chem. Interfacial Electrochem.18, 289–293 (1968).

    CAS  Google Scholar 

  22. Ferrate (VI) analysis by cyclic voltammetry, A. S. Venkatadri, W. F. Wagner, and H. H. Bauer,Anal Chem.43, 1115–1119 (1971).

    CAS  Google Scholar 

  23. Voltammetry with disk electrodes and the analytical application, M. Kopanica and F. Vydra,J. Electroanal Chem. Interfacial Electrochem.31, 175 (1971).

    CAS  Google Scholar 

  24. Voltammetry with disk electrodes and its analytical applications, F. Vydra and M. Stulikova,Collect. Czech. Chem. Commun.37, 123 (1972).

    CAS  Google Scholar 

  25. Voltammetry with disk electrodes and its analytical applications. VIII. The cyclic voltammetry of copper (II) at the glassy carbon rotating disk electrode, M. Stulikova and F. Vydra,J. Electroanal Chem. Interfacial Electrochem.44, 117–127 (1973).

    CAS  Google Scholar 

  26. Determination of nanogram quantities of carbonyl compound using twin cell potential sweep voltammetry, BK. Afghan, AV. Kulkarni, and JF. Ryan,Anal Chem.47, 488–494 (1975).

    Google Scholar 

  27. A comparison of the analytical utility of three different potential ramp techniques in voltammetry using a carbon paste electrode, P. Soderhjelm,J. Electroanal Chem. Interfacial Electrochem. 71, 109–115 (1976).

    CAS  Google Scholar 

  28. Use of coelectrocrystallisation for expanding the possibilities of voltammetric analysis, TA. Krapivkima, EM. Roizenblat, VV. Nosacheva, GA. Kalambet, and GN. Veretina,Metody Polych. Anal Mater Electron Tekh., 95–101 (1976).

    Google Scholar 

  29. Determination of catecholamines by thin-layer linear sweep voltammetry, R. R. Fike and D. J. Curran,Anal Chem. 49, 1205–1210 (1977).

    CAS  Google Scholar 

  30. Turbulent hydrodynamic voltammetry. III. Analytical studies using a turbulent voltammetric cell, M. Varadi and E. Pungor,Magy. Kem. Foly.84, 58–61 (1978).

    CAS  Google Scholar 

  31. Data treatment in cyclic voltammetry, G. Gunzburg,Anal Chem. 50, 375–376 (1978).

    Google Scholar 

  32. Micromolar voltammetric analysis by ring electrode studding at a rotating ring-disc electrode, S. Bruckenstein and P. R. Gifford,Anal Chem. 51, 250–255 (1979).

    CAS  Google Scholar 

  33. A comparison of radioatracer and electrochemical methods for the measurement of the electrosorption of organic molecules, E. Gileadi, L. Duic, and J. O’M. Bockris,Electrochim. Acta 13, 1915–1935 (1968).

    CAS  Google Scholar 

  34. Cyclic and stripping voltammetry of mercury at impregnated graphite electrode in chloride thiocyanate media, R. Bilewicz, Z. Stojek, and Z. Kublile,J. Electroanal. Chem. Interfacial Electrochem.96, 29–44 (1979).

    CAS  Google Scholar 

  35. Determination of nitrogen oxides and sulphur dioxide absorbed into iron (II) EDTA solution by voltammetry, ACS/CSJ-Chem. Congr. No. 2412 CTE No. 7 (1979).

    Google Scholar 

  36. Voltammetric behaviour of chlorine/chloride system and detection of chloride ions in molten nitrates, E. Desimoni and F. Palmisano,Anal. Chem. 51, 122 (1979).

    Google Scholar 

General Principles and Theory

  1. New method of microdetermination of the copper ion, C. Zbinden,Bull. Soc. Chim. Biol.13, 35–40 (1931).

    CAS  Google Scholar 

  2. The theory of concentration polarization, V. G. Levich,Acta Phys. Chim. USSR 17, 257–307 (1942).

    CAS  Google Scholar 

  3. Theory of concentration polarization. II. Steady-state regime, V. G. Levich,Acta Phys. Chim. USSR 19, 117–132 (1944).

    CAS  Google Scholar 

  4. Theory of concentration polarization. III. The transition regime, V. G. Levich,Acta Phys. Chim. USSR 19, 133–138 (1944).

    CAS  Google Scholar 

  5. Coulometric determination of submicrogram amounts of silver, SS. Lord, Jr., RC. O’Neill, and LB. Rogers,Anal. Chem. 24, 209–213 (1952).

    CAS  Google Scholar 

  6. Square wave polarography, G. C. Barker and I. L. Jenkin,Analyst 77, 685–696 (1952).

    CAS  Google Scholar 

  7. Polarographic waves of simple metal ions. Significance of the half-wave potential, IM. Kolthoff and JJ. Lingane, In:Polarography, Vol. 1, pp. 190–203, Wiley-Interscience, New York (1952).

    Google Scholar 

  8. Coulometric determinations of submicrogram amounts of cadmium and zinc with stationary- mercury plated platinum electrodes, K. W. Gardner and L. B. Rogers,Anal. Chem. 25, 1393–1397 (1953).

    Google Scholar 

  9. Coulometric and polarographic determination of trace amounts of lead, T. L. Marple and L. B. Rogers,Anal. Chim. Acta 11, 574–585 (1954).

    CAS  Google Scholar 

  10. Currents controlled by the rate of semi-infinite linear diffusion, P. Delahay, In:New Instrumental Methods in Electrochemistry, pp. 47–57, Wiley Interscience, New York (1954).

    Google Scholar 

  11. Inverse polarography with stationary amalgam anodes. I. Basic principles and technique, A. Hickling, J. Maxwell, and J. V. Shennan,Anal. Chim. Acta 14, 287–295 (1956).

    CAS  Google Scholar 

  12. Polarography of metallic monolayers, M. M. Nicholson,J. Am. Chem. Soc. 79, 7–12 (1957).

    CAS  Google Scholar 

  13. Anodic amalgam voltammetry. I. Principles of the method, Z. R. Neeb,Anal. Chem. 171, 321 (1959).

    CAS  Google Scholar 

  14. Classification and nomenclature of electroanalytical methods, P. Delahay, G. Chariot, and H. A. Laitinen,Anal. Chem. 32, 103A (1960).

    Google Scholar 

  15. Polarographie im durchfliessenden elektrolyt I. Ein fuhrungsmitteilung, F. Strafelda,Collect. Czech. Chem. Commun. 25, 862–870 (1960).

    CAS  Google Scholar 

  16. Voltammetry with the hanging mercury drop electrode, In: W. Kermula,Advances in Polarography, Vol. I, IS. Longmuir, ed., p. 105, Pergamon, Oxford (1960).

    Google Scholar 

  17. Electrolysis with constant potential: Reversible processes at a hanging mercury drop electrode, I. Shain and K. J. Martin,J. Phys. Chem. 65, 254–258 (1961).

    CAS  Google Scholar 

  18. L. N. Vasileva and E. N. Distribution of a metal concentration inside the mercury drop during the electrolytic separation of such a metal on a stationary mercury electrode, Vinogradova,Zavodsk. Lab. 27, 1079–086 (1961).

    CAS  Google Scholar 

  19. Theory of stripping of voltammetry with spherical electrodes, W. H. Reinmuth,Anal. Chem. 33, 185–187 (1961).

    CAS  Google Scholar 

  20. Inverse polarography and voltammetry, new methods in trace analysis, R. Neeb,Angew. Chem. 74, 203–213 (1962).

    CAS  Google Scholar 

  21. Dependence of metal concentration in a mercury drop on the duration of enrichment, L. N. Vasileva and E. N. Vinogradova,Zavod. Lab.28, 1427–1428 (1962).

    CAS  Google Scholar 

  22. Influence of surface active substances on the electrodeposition and electrooxidation of metals on the hanging mercury drop electrode, W. Kemula and S. Glodowski,Roczniki. Chem. 36, 1203–1216 (1962).

    CAS  Google Scholar 

  23. Sensitivity enhancement of amalgam polarography with concentration in the stationary mercury drop, A. G. Stromberg,Zavod. Lab. 29, 387–390 (1963).

    Google Scholar 

  24. Polarographie im durchfliessenden elektrolyt II. Stationare spharische elektrode, F. Strafelda and A. Kimla,Collect. Czech. Chem. Commun.28, 1516–1523 (1963).

    CAS  Google Scholar 

  25. Polarographie im durchfliessenden elektrolyt III. Diffusion zur unflossenen spharischen elektrode, F. Strafelda and A. Kimla,Collect. Czech. Chem. Commun.28, 2696–2705 (1963).

    Google Scholar 

  26. Anodic current constants and the calculation of amalgam-polarography, M. S. Zakharov and A. G. Stromberg,J. Phys. Chem. (Russian) Zh. Fiz. Khim. 38 (1), 130–135 (1964).

    CAS  Google Scholar 

  27. Effects of electrolysis potentials on depth of anodic indentations in amalgam polarography with stationary mercury electrodes, M. S. Zakharov,Zavod. Lab. 30 (1), 14–17 (1964).

    CAS  Google Scholar 

  28. Influence of solution on the depth of the anodic minimum in amalgam polarography, A. G. Stromberg and N. A. Kaplin,Zavod. Lab. 30, 525–527 (1964).

    CAS  Google Scholar 

  29. Theory of anodic stripping voltammetry with a plane, thin mercury-film electrode, W. T. Devries and E. Van Dalen,J. Electroanal. Chem.8, 366–377 (1964).

    CAS  Google Scholar 

  30. Electrode kinetics with adsorbed foreign neutral substance, A. Aramata and P. Delahay,J. Phys. Chem.68, 880–883 (1964).

    CAS  Google Scholar 

  31. Adsorption of dependent stripping analysis at the graphite electrode, S. P. Perone and T. J. Oyster,Anal. Chem. 36, 235–236 (1964).

    CAS  Google Scholar 

  32. Stripping voltammetry, E. Barendrecht,Chem. Weekblad.60, 345–358 (1964).

    CAS  Google Scholar 

  33. Stripping analysis: I. Introduction. II. Theory and application of stripping analysis, I. Shain,Treatise Anal. Chem.4, 2534–2558 (1964).

    Google Scholar 

  34. Exact treatment of anodic stripping voltammetry with a plane mercury film electrode, W. T. de Vries,J. Electroanal. Chem.9, 448–456 (1965).

    Google Scholar 

  35. Ohmic drop distortion of anodic stripping curves from a thin mercury film electrode, W. T. de Vries and E. Van Dalen,J. Electroanal. Chem. 12, 9–14 (1966).

    CAS  Google Scholar 

  36. Inverse Polarographie und Voltammetrie, R. Neeb, Verlag Chemie, Weinheim (1969).

    Google Scholar 

  37. Problem of increasing the sensitivity of anodic stripping voltammetry, L. Huderova and K. Stulik,Talanta 19, 1285 (1972).

    CAS  Google Scholar 

  38. Intermetallic compounds in amalgams, M. T. Kozlovskii and A. I. Zebreva,Progr. Polarogr. 3, 157 (1972).

    CAS  Google Scholar 

  39. Study of the mutual effect of different metals on a mercury-graphite electrode by inverse voltammetry, E. Ya. Neiman and Kh. Z. Brainina,Zh. Anal. Khim.28, 886 (1973).

    CAS  Google Scholar 

  40. Studies of exchange reactions involving electrogenerated mercurous halid films, G. Colovs, G. S. Wilson, and J. L. Moyers,Anal. Chem.46, 1045 (1974).

    Google Scholar 

  41. Evaluation and comparison of some techniques of anodic stripping voltammetry, G. E. Batley and T. M. Florence,J. Electroanal. Chem. Interfacial Electrochem. 55, 23 (1974).

    CAS  Google Scholar 

  42. Elimination of copper-zinc intermetallic interferences in anodic stripping voltammetry, T. R. Copeland, R. A. Osteryoung, and R. K. Skogerboe,Anal. Chem.46, 2093 (1974).

    CAS  Google Scholar 

  43. Stripping Voltammetry in Chemical Analysis, Kh. Z. Brainina, Wiley, New York (1974).

    Google Scholar 

  44. Diffusion coefficients of metals in mercury, A. Baranski, S. Fitak, and Z. Galus,J. Electroanal. Chem. Interfacial Electrochem.60, 175 (1975).

    CAS  Google Scholar 

  45. Electrochemical Stripping Analysis, F. Vydra, K. Stulik, and E. Julakova, Wiley, New York (1976).

    Google Scholar 

  46. Trace analysis by atomic absorption spectroscopy and anodic stripping voltammetry, F. P. J. Cahill and G. W. Van Loon,Am. Lab.8 (8), 11 (1976).

    CAS  Google Scholar 

  47. Theoretical treatment of staircase voltammetric stripping from the thin film mercury electrode, J. H. Christie and R. A. Osteryoung,Anal. Chem.48, 869 (1976).

    CAS  Google Scholar 

  48. Kalman filter applied to anodic stripping voltammetry: Theory, P. F. Seeling and H. N. Blount,Anal. Chem.48, 252 (1976).

    Google Scholar 

  49. Intermetallic compound formation between copper and zinc in mercury and its effects on anodic stripping voltammetry, M. S. Shuman and G. P. Woodward, Jr.,Anal. Chem.48, 1979 (1976).

    CAS  Google Scholar 

  50. Interfering influence of silver on the voltammetric behaviour of Cd2+ and Zn2+ ions on HMDE in supporting electrolytes containing nitrates, P. Ostapczuk and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.68, 193 (1976).

    CAS  Google Scholar 

  51. The effect of dissolved organics on the stripping voltammetry of sea water, G. E. Batley and T. M. Florence,J. Electroanal. Chem. Interfacial Electrochem. 72, 121 (1976).

    CAS  Google Scholar 

  52. Trace metal analysis by anodic stripping voltammetry. Effect of sorption by natural and model organic compounds, P. L. Brezonik, P. A. Brauner, and W. Stumm,Water Res.10, 605 (1976).

    CAS  Google Scholar 

  53. Determination of the chemical forms of dissolved cadmium lead and copper in sea water, G. E. Batley and T. M. Florence,Mar. Chem. 4, 347 (1976).

    CAS  Google Scholar 

  54. Stripping voltammetry, E. Barendrecht, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 2, pp. 53–109, Marcel Dekker, New York (1967).

    Google Scholar 

  55. Voltammetric and potentiometric comparison of tendencies of cadmium and zinc to inter- metallic compound formation with silver, copper, and gold in mercury, P. Ostapczuk and Z. Kublik,J. Electroanal Chem. Interfacial Electrochem. 83, 1 (1977).

    CAS  Google Scholar 

  56. Electrochemical Stripping Analyses, F. Vydra, K. Stulik, and E. Julakova, Halsted Press, New York (1977).

    Google Scholar 

  57. Law of distribution of anodic peak values in amalgam and film anodic stripping voltammetry, Z. A. Kaplin and B. A. Kubrak,Zh. Anal Khim. 32, 1838–1841 (1977).

    CAS  Google Scholar 

  58. Effect of activity coefficient of metal in amalgam on anodic peak characteristics in a.c. stripping analysis, L. V. V. Bashkatova and V. Z. Bashkatov,Zh. Anal Khim. 32, 1495–1502 (1977).

    CAS  Google Scholar 

  59. Potentials of current maxima in inverse voltammetry of Pb and Cd on rotating disc carbon- glass and glass carbon electrodes, O. L. Kabonova, Yu. A. Gorcharov, and S. K. Beuiaminok,Elektrokhimiya,13, 1448–1453 (1977).

    Google Scholar 

  60. Study of a residual current of a mercury film electrode used in stripping analysis, B. F. Nazarov, A. D. Rakhmonbadyov, and A. G. Stromberg,Elektrokhimiya 13, 1575–1577 (1977).

    Google Scholar 

  61. Application of semidifferential electroanalysis to anodic stripping voltammetry, M. Goto, K. Ikenoya, M. Kajihara, and D. Ishi,Anal Chim. Acta 101, 131–138 (1978).

    CAS  Google Scholar 

  62. Intermetallic compounds formed in mixed (complex) amalgams. I. The systems: Copper- mercury, zinc-mercury and copper-zinc-mercury, A. H. I. Ben-Bassat and A. Azrad,Electrochim. Acta 23, 63–69 (1978).

    CAS  Google Scholar 

  63. Distribution law for anodic current in stripping analysis, B. A. Kubrak, A. A. Kaplin, A. N. Pokrovskaya, and V. N. Polyakova,Izvest. Tomsk. Politekh, Inst, ta 61, 3 (1976).[CA 88, 68491 (1978).]

    Google Scholar 

  64. Statistical criteria of sensitivity and resolving power, A. A. Kaplin, A. A. Zheltonozhko, A. A. Pokrovskaya, and B. A. Kubrole,Izvest. Tomsk. Politekh. Inst, ta, 56–60 (1976).[CA 88, 68489 (1978).]

    Google Scholar 

  65. Dependence of metal concentration on an electrode surface on a.c. voltammetry in a.c. stripping polarography, V. Z. Bashkatov, V. A. Bramin, and L. V. Bashkatova,Zh. Anal Khim.33, 230–235 (1978).

    CAS  Google Scholar 

  66. Minimum determinable anodic peak height at a steep slope of residual current in stripping polarography. Model of the triangular peak, A. G. Stromberg and N. Pibula,Zh. Anal Khim.33 (3), 436–441 (1978).

    CAS  Google Scholar 

  67. Stripping polarography, A. A. Kaplin, V. E. Katyulhim, A. E. Geineman, and V. E. Saraeva, USSR 615406, July 1978.

    Google Scholar 

  68. Improving the resolution of inverse voltammetry by anodic passivation of amalgams, V. A. Zgadova, B. F. Nazarov, and E. A. Zakharova,Zh. Anal Khim. 33, 1631–1633 (1978).

    CAS  Google Scholar 

  69. Ways of increasing the sensitivity of stripping voltammetry methods, A. G. Stromberg and A. A. Kaplin,Izvest. Sib. Osd. Akad. Nauk SSSR, Ser. Khim. Nauk 4, 31–38 (1978).[CA 89, 190261a (1978).]

    Google Scholar 

  70. Application of semidifferential electroanalysis to anodic stripping voltammetry, M. Goto, K. Ibenoya, M. Kajuhara, and D. Ishii,Anal Chim. Acta 101, 131–138 (1978).

    CAS  Google Scholar 

  71. Study of a quasi reversible electrode process with a consequent first order chemical reaction in stripping analysis on a mercury film electrode, Yu. A. Karbainov, N. N. Chernysheva, and A. G. Stromberg,Zh. Fiz. Khim. 52, 2701–2702 (1978).

    CAS  Google Scholar 

  72. Study of quasi reversible processes on electrodes of different geometric form in inverse voltammetry, A. E. Geineman, A. A. Kaplin, and A. G. Stromberg,Zh. Anal Khim. 33, 1510–1516 (1978).

    CAS  Google Scholar 

  73. Pseudopolarograms: Applied potential-anodic stripping peak current relationships, M. S. Shuman and J. L. Cromer,Anal Chem. 51, 1546–1550 (1979).

    CAS  Google Scholar 

  74. Anodic stripping semidifferential electroanalysis with thin mercury film electrode formed in situ, M. Goto, K. Ikenoya, and D. Ishii,Anal Chem. 51, 110–115 (1979).

    CAS  Google Scholar 

  75. Elimination of intermetallic compound interface in twin electrode thin layer anodic stripping voltammetry, D. A. Roston, E. E. Brooks, and W. R. Heineman,Anal Chem. 51, 1728–1732 (1979).

    CAS  Google Scholar 

  76. The reversible electrodeposition of trace metal ions from multi-ligand systems Part I Theory, Part II. Calculations on the electrochemical availability of lead at trace levels in sea water, D. R. Turner and M. Whitfield,J. Electroanal Chem. Interfacial Electrochem.103, 43–60; 61–79 (1979).

    CAS  Google Scholar 

  77. Flame atomic absorption analysis for selenium after electrochemical preconcentration, W. Lund and R. Bye,Anal Chim. Acta 110, 279–284 (1979).

    CAS  Google Scholar 

  78. Faradaic and non-faradaic currents due to reactant stripping at metal surfaces or from thin film electrodes, G. C. Barker and A. W. Gardner,J. Electroanal Chem. Interfacial Electrochem.100, 641–656 (1979).

    CAS  Google Scholar 

Instrumentation, Electrodes, and Cells

  1. Instrumental approach to potentiometric stripping analysis of some heavy metals, D. Jagner,Anal Chem.50, 1924–1929 (1978).

    CAS  Google Scholar 

  2. Analytical applications of hanging mercury drop electrode, J. W. Ross, R. D. Demars, and I. Shain,Anal Chem.28, 1768–1771 (1956).

    CAS  Google Scholar 

  3. Anodic stripping voltammetry with mercury electrodes—potential-step and current-step methods, G. Mamantov, P. Papoff, and P. Delahay,J. Am. Chem. Soc.79, 4034–4040 (1957).

    CAS  Google Scholar 

  4. Anodic stripping voltammetry using the hanging mercury drop electrode, R. DeMars and I. Shain,Anal Chem.29, 1825–1827 (1957).

    Google Scholar 

  5. A rotating hanging mercury-drop electrode, E. Barendrecht,Nature 181, 764–765 (1958).

    Google Scholar 

  6. Application of hanging mercury drop electrode to an investigation of intermetallic compounds in mercury, W. Kemula, Z. Galus, and Z. Kublik,Nature 182, 1228–1229 (1958).

    CAS  Google Scholar 

  7. Mercury chloride film anode. I. Study of the characteristics of a mercury chloride film anode by chronopotentiometric methods, T. Kuwana and R. N. Adams,Anal Chim. Acta 20, 51–60 (1959).

    CAS  Google Scholar 

  8. Mercury chloride film anode. II. Investigation of the characteristics of the mercury chloride film anode by voltage scan method, T. Kuwana and R. N. Adams,Anal Chim. Acta 20, 60–67 (1959).

    CAS  Google Scholar 

  9. Analytical application of the hanging mercury drop electrode. Analysis of traces of impurities in uranium salts, W. Kemula, E. Rakowska, and Z. Kublik,J. Electroanal Chem. 1,205–217 (1959/1960).

    Google Scholar 

  10. Trace analysis with a rotating hanging mercury drop, M. Van Swaay and R. S. Deedler,Nature 191, 241–242 (1961).

    Google Scholar 

  11. Use of the rotating hanging mercury drop in analysis. Anodic stripping using a rotating mercury drop, J. J. Engelsman and A. M. J. M. Claassems,Nature 191, 240–241 (1961).

    CAS  Google Scholar 

  12. Stripping analysis with spherical mercury electrodes, I. Shain and J. Lewinson,Anal Chem.33, 187–189 (1961).

    CAS  Google Scholar 

  13. The rotated, mercury-coated platinum electrode. Preparation and behaviour of continuously deposited mercury coatings and applications to stripping analysis, S. Bruckenstein and T. Nagai,Anal Chem.33, 1201–1209. (1961).

    CAS  Google Scholar 

  14. Anodic amalgam voltammetry. III. Comparative investigations on the use of amalgamated platinum electrodes and stationary mercury electrodes, R. Neeb, Z.Anal Chem.180, 161–168 (1961).

    CAS  Google Scholar 

  15. Microcell for voltammetry with hanging mercury drop electrode, W. L. Underkofler and I. Shain,Anal Chem.33, 1966–1967 (1961).

    CAS  Google Scholar 

  16. Square wave polarography after prior electrolysis at a stationary electrode, F. Von Sturm and M. Ressel,Fresnius Z. Anal. Chem.186, 63–79 (1962).

    CAS  Google Scholar 

  17. Anodic amalgam voltammetry. IV. Chronopotentiometric determination of Tl, R. Neeb, Z.Anal. Chem.190, 98–111 (1962).

    CAS  Google Scholar 

  18. Coulostatic anodic stripping with a mercury electrode, P. Delahay,Anal. Chem. 34, 1662–1663 (1962).

    CAS  Google Scholar 

  19. The hanging mercury drop in polarography, J. Riha, In:Progress in Polarography, Vol. II, I. M. Kolthoff and P. Zuman, eds., pp. 383–396 (1962).

    Google Scholar 

  20. Application of hanging mercury drop electrodes in analytical chemistry, W. Kemula and Z. Kublik,Adv. Anal. Chem. Instrum.2, 123–177 (1963).

    CAS  Google Scholar 

  21. Carbon paste electrode’s application to cathodic reduction and anodic stripping voltammetry, C. Olson and R. N. Adams,Anal. Chim. Acta 29, 358–363 (1963).

    CAS  Google Scholar 

  22. New construction of an electrolytic cell and electrodes, V. I. Kuleshov and A. G. Stromberg,Metody Analize Khim.56, 37–41 (1963).

    Google Scholar 

  23. Vector polarography on a stationary drop, S. B. Isfasman and R. M. Salikhdzhanova,Zavod. Lab.30, 133–140 (1964).

    Google Scholar 

  24. Application of derivative techniques to anodic stripping voltammetry, S. P. Perone and J. R. Birk,Anal. Chem. 37, 9–12 (1965).

    CAS  Google Scholar 

  25. Investigation of a.c. polarography at stationary electrodes, with application to stripping analysis, W. Underkofler and I. Shain,Anal. Chem. 37, 218–222 (1965).

    CAS  Google Scholar 

  26. Determination of mixtures by single sweep oscillopolarography, R. A. Osteryoung and E. P. Parry,J. Electroanal. Chem.9, 299–304 (1965).

    CAS  Google Scholar 

  27. Differential pulse anodic stripping of trace metals, H. Siegerman and G. O’Dom,Amer. Lab.4 (6) (1972).

    Google Scholar 

  28. Use of carbon-graphite electrodes in inverse voltammetry (Review), A. A. Antsiferov and S. I. Sinyakova,Elektrokhim. Metody. Anal. Mater.115 (1972).

    Google Scholar 

  29. Apparatus for automatic analysis by stripping voltammetry, G. Reusmann and J. Westphalen,Fresenjus’ Z.Anal. Chem.259, 127 (1972).

    CAS  Google Scholar 

  30. New cell for rapid anodic stripping analysis user-interactive computer program for analysis of anodic stripping data, R. G. Clem, G. Litton, and L. D. Ornelas, Anal. Chem. 45, 1306 (1973).

    CAS  Google Scholar 

  31. Analytical applications of pulsed voltammetric stripping at thin film mercury electrodes, T. R. Copeland, J. H. Christie, R. A. Osteryoung, and R. K. Skogerboe, Anal. Chem. 45, 2171 (1973).

    CAS  Google Scholar 

  32. Stripping voltammetry with collection at a rotating ring-disc electrode, D. C. Johnson and R. E. Allen,Talanta 20, 305 (1973).

    CAS  Google Scholar 

  33. Use of graphite and mercury-plated graphite electrodes in alternating current voltammetry, E. M. Roizenblat, L. F. Levchenko, and G. N. Veretina,Zh. Anal. Khim.28, 33 (1973).

    CAS  Google Scholar 

  34. Anodic stripping voltammetry at a tubular mercury-covered graphite electrode, W. R. Seitz, R. Jones, L. N. Klatt, and W. D. Mason,Anal. Chem.45, 840 (1973).

    Google Scholar 

  35. Microcell for stripping analysis with glassy carbon and mercury-plated glassy carbon electrodes, K. Stulik and M. Stulikova,Anal. Lett. 6, 441 (1973).

    CAS  Google Scholar 

  36. Voltammetry at disc electrodes and its analytical application. VII. Use of the second harmonic alternating current technique for stripping analysis at rotating disc electrodes, M. Stulikova and I. Vydra, /.Electroanal. Chem. Interfacial Electrochem.42, 127 (1973).

    CAS  Google Scholar 

  37. Carbon glass-ceramic as a new material for solid electrodes in inverse voltammetry, B. A. Anokhim and V. I. Ignatov,Zh. Anal. Chem. 29, 1221 (1974).

    Google Scholar 

  38. Anodic stripping with collection, using thin mercury films, D. Laser and M. Ariel,J. Electroanal. Chem. Interfacial Electrochem.49, 123 (1974).

    CAS  Google Scholar 

  39. Determination of trace metals in aqueous environments by anodic stripping voltammetry with a vitreous carbon rotating electrode, A. H. Miguel and C. M. Tankowski,Anal. Chem.46, 1832 (1974).

    CAS  Google Scholar 

  40. Electrode for anodic stripping voltammetry, W. R. Matson,Interface Newsletter, January 10, 1974.

    Google Scholar 

  41. Use of linear sweep, superimposed alternating current and pulse voltammetry in the study of anodic stripping at a rotating mercury-copper electrode, J. P. Roux, O. Vittori, and M. Porthault,Analysis 3, 411 (1975).

    CAS  Google Scholar 

  42. Silver based mercury film electrode, I. General characteristics and stability of the electrode, Z. Stojek and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.60, 349 (1975).

    CAS  Google Scholar 

  43. Styrene impregnated, cobalt-60 irradiated graphite electrode for anodic stripping analysis, R. G. Clem and A. F. Sciamanna,Anal. Chem.47, 276 (1975).

    CAS  Google Scholar 

  44. Cause of loss of hydrogen-overvoltage on graphite electrodes used for anodic stripping voltammetry, R. G. Clem,Anal. Chem.47, 1778 (1975).

    CAS  Google Scholar 

  45. Determination of some metals and their mixtures by stripping chronopotentiometry on a glassy carbon rotating disc electrode, L. Luong and F. Vydra,Collect. Czech. Chem. Commun.40, 2961 (1975).

    CAS  Google Scholar 

  46. Differential pulse anodic stripping voltammetry in a thin layer electrochemical cell, T. P. De Angelis and W. R. Heineman,Anal. Chem.48, 2262 (1976).

    Google Scholar 

  47. Computer assisted optimization of anodic stripping voltammetry, Q. V. Thomas, L. Kryger, and S. P. Perone,Anal. Chem.48, 761 (1976).

    CAS  Google Scholar 

  48. A novel scheme for the classification of heavy metal species in natural waters, G. E. Batley and T. M. Florence,Anal. Lett.9, 379 (1976).

    CAS  Google Scholar 

  49. Experimental factors affecting the phase-selective reversible anodic stripping determination of gallium from 1.0 molar ammonium thiocyanate electrolytes at 60°C and collation of results with sodium thiocyanate/sodium perchlorate-based room temperature measurements, E.D. Moorhead and G. A. Forsberg,Anal. Chem.48, 751 (1976).

    CAS  Google Scholar 

  50. Graphite-epoxy mercury thin film working electrode for anodic stripping voltammetry, J. E. Anderson and D. E. Tallman,Anal. Chem. 48, 209 (1976).

    CAS  Google Scholar 

  51. Cyclic and stripping voltammetry with graphite based thin mercury film electrodes prepared “in situ,” Z. Stojek, B. Stepmik, and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.74, 227 (1976).

    Google Scholar 

  52. Silver based mercury film electrode. Part II. The influence of aging of electrode on the electrode processes of various metal ions, Z. Stojek, P. Ostapczuk, and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.67, 301 (1976).

    CAS  Google Scholar 

  53. A multiple cell system for differential pulse anodic stripping voltammetry at a hanging mercury drop electrode, J. H. Lowry and R. B. Smart,Am. Lab.8 (12), 47 (1976).

    CAS  Google Scholar 

  54. Staircase voltammetric stripping analysis at thin film mercury electrodes, U. Eisner, J. A. Turner, andR. A. Osteryoung,Anal. Chem.48, 1608 (1976).

    CAS  Google Scholar 

  55. Digital microcoulometric measurements of cadmium anodic stripping at the micrometer hanging mercury drop electrode, E. D. Moorhead and W. H. Doub, Jr.,Anal. Chem. 49, 199 (1977).

    CAS  Google Scholar 

  56. Thin layer differential pulse voltammetry, T. P. DeAngelis, R. E. Bond, E. E. Brooks, and W. R. Heinemann,Anal. Chem.49, 1792 (1977).

    CAS  Google Scholar 

  57. Programmable electrochemistry, W. R. Matson, E. Zink, and R. Vitukevitch,Am. Lab. 9 (7), 59 (1977).

    CAS  Google Scholar 

  58. Stripping determination of traces of lead using second harmonic alternating voltammetry and rotating disc electrode, M. Kopanica and V. Stara,J. Electroanal. Chem. Interfacial Electrochem. 77, 57 (1977).

    CAS  Google Scholar 

  59. Investigation by automated differential pulse anodic stripping voltammetry of the problems of storage of dilute solutions, A. M. Bond and B. W. Kelly,Talanta 24, 453–457 (1977).

    CAS  Google Scholar 

  60. A programmable device for electrochemical stripping analysis, F. Opebar and M. Herout,Chem. Listy 71, 867–870 (1977).

    Google Scholar 

  61. Radiation-cured polymer-impregnated graphite electrodes for anodic stripping voltammetry, K. G. McLaren and G. E. Batley,J. Electroanal. Chem. Interfacial Electrochem. 79, 169 (1977).

    CAS  Google Scholar 

  62. Silver based mercury film electrode. Part III. Comparison of theoretical and experimental anodic stripping results obtained for lead and copper, Z. Stojek and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.77, 205 (1977).

    CAS  Google Scholar 

  63. Electrodeposition and stripping at graphite cloth electrodes, D. Yaniv and M. Ariel,J. Electroanal. Chem. Interfacial Electrochem. 79, 159 (1977).

    CAS  Google Scholar 

  64. Anodic stripping coulometry at a thin-film mercury electrode, R. Eggli,Anal. Chim. Acta 91, 129 (1977).

    CAS  Google Scholar 

  65. A new electrode system with efficient mixing of electrolyte, T. Magjer and M. Branica,Croat. Chem. Acta 49 (1), 11 (1977).

    Google Scholar 

  66. Application of a rotating disc electrode and a rotating cell with stationary electrode in stripping voltammetry for the determination of lead and zinc, F. Vydra and T. V. Nghi,Anal. Chim. Acta 91, 335 (1977).

    CAS  Google Scholar 

  67. Anodic stripping voltammetry in a flow-through cell with a fixed mercury film glassy carbon disc electrode. Part I. J. Wang and M. Ariel,J. Electroanal. Chem. Interfacial Electrochem.83, 217 (1977).

    CAS  Google Scholar 

  68. Study of anodic stripping voltammetry with collection at tubular electrodes, G. W. Schieffer and W. J. Blaedel,Anal. Chem.49, 49 (1977).

    CAS  Google Scholar 

  69. Pulsed voltammetric stripping at the thin-film mercury electrode, J. A. Turner, U. Eisner, and R. A. Osteryong,Anal. Chim. Acta 90, 25–34 (1977).

    CAS  Google Scholar 

  70. Derivative potentiometric stripping analysis with a thin film of mercury on a glassy carbon electrode, D. Jagner and K. Aren,Anal. Chim. Acta 100, 375–388 (1978).

    CAS  Google Scholar 

  71. A micro-computer system for potentiometric stripping analysis, T. Anfalt and M. Stramberg,Anal. Chim. Acta 103, 379–388 (1978).

    CAS  Google Scholar 

  72. Subtractive anodic stripping voltammetry at twin mercury film electrode, E. Steeman, E. Temmerman, andR. Verbinnen,Anal. Chim. Acta 96, 177–181 (1978).

    CAS  Google Scholar 

  73. A survey of instrumentation used for monitoring metals in water, M. S. Quinby-Hunt,Am. Lab. 17, 37 (1978).

    Google Scholar 

  74. Applications of staircase voltammetry to trace metal analysis, J. S. Jasinski, EDRO-SARAP,Res. Tech. Rep. 1, 21 pp (1976).[CA 88, 83121f (1978).]

    Google Scholar 

  75. Possibility of using factorial design for lowering the detection limit of elements by stripping voltammetry, O. N. Markymenko, A. A. Kaplin, and V. M. Pichugina, Deposited Doc. VINITI 3970–3976, 8 pp (1976).[CA 89, 99021 (1978).]

    Google Scholar 

  76. Differential pulse anodic stripping voltammetry as a rapid screening technique for heavy metal intoxicants, J. P. France and R. A. Ze Zeeuw,Arch. Toxicol. 37, 47–55 (1976).[CA 89, 141316 (1978).]

    Google Scholar 

  77. Choice analytical signal in inverse voltammetry, Kh. Z. Brainina, G. T. Shishin, L. I. Roitman, and L. N. Kalinishevskaya,Zh. Anal. Khim. 33, 1708–1719 (1978).

    CAS  Google Scholar 

  78. Substrate anodic stripping voltammetry with rotating mercury coated glassy carbon electrode, L. Sipos, S. Kozar, I. Kontusic, and M. Branica,J. Electroanal. Chem. Interfacial Electrochem.87, 347–352 (1978).

    CAS  Google Scholar 

  79. Anodic stripping voltammetry with collection at tubular electrodes for the analysis of tap water, G. W. Schieffer and W. Blaedel,Anal. Chem. 50, 99–102 (1978).

    CAS  Google Scholar 

  80. The rotating disc electrode in flowing systems. Part 1. An anodic stripping monitoring system for trace metals in natural waters, J. Wang and M. Ariel,Anal. Chim. Acta 99, 89–98 (1978).

    CAS  Google Scholar 

  81. The rotating disc electrode in flowing systems. Part 2. A flow system for automated anodic stripping voltammetry of discrete samples, J. Wang and M. Ariel,Anal. Chim. Acta 101, 1–8 (1978).

    CAS  Google Scholar 

  82. Silver based mercury film electrode. Part IV. Comparison of theoretical and and experimental voltammetric results obtained for cadmium, P. Ostapczuk and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.93, 195–212 (1978).

    CAS  Google Scholar 

  83. Electrode for a.c. inverse voltammetry, B. S. Bruk and M. N. Bogoslovskaya,Zavod. Lab.44, 395–398 (1978).

    CAS  Google Scholar 

  84. Application of chemically modified electrodes to analysis of metal ions, G. T. Cheek and R. F. Nelson,Anal Lett. A 11 (5), 383–402 (1978).

    Google Scholar 

  85. Multiple-scanning potentiometric stripping analysis, J. Mortensen, E. Ouziel, H. J. Sko’v, and L. Kryger,Anal Chim. Acta 112, 297–312 (1979).

    CAS  Google Scholar 

  86. Anodic stripping voltammetry with a symmetric double-step wave form, J. J. Kankare and K. E. Haapakka,Anal Chim. Acta 111, 79–87 (1979).

    CAS  Google Scholar 

  87. Experimental evaluation of recursive estimation applied to linear sweep anodic stripping voltammetry for real time analysis, P. F. Seelig and H. N. Blunt,Anal Chem. 51, 327–337 (1979).

    CAS  Google Scholar 

  88. Application of recursive estimation to the real time analysis of trace metal analyses by linear sweep, pulse and differential pulse anodic stripping voltammetry, P. F. Seelig and H. N. Blunt,Anal Chem.51, 1129–1134 (1979).

    CAS  Google Scholar 

  89. Minicomputer-controlled, background subtracted anodic stripping voltammetry: Evaluation of parameters and performance, S. D. Brown and B. R. Kowalski,Anal Chim. Acta 107, 13–27 (1979).

    CAS  Google Scholar 

  90. Anodic stripping voltammetry at a reticulated mercury vitreous carbon electrode, W. J. Blaedel and J. Wang,Anal Chem. 51, 1724–1728 (1979).

    CAS  Google Scholar 

  91. Modification of a commercial micrometer hanging mercury drop electrode, J. E. Bonelli, H. E. Taylor, and R. K. Skogerboe,Anal Chem. 51, 2412–2413 (1979).

    CAS  Google Scholar 

  92. Origin and elimination of interferences from siliconization procedures in anodic stripping voltammetry, M. Ochme,Anal Chim. Acta 107, 67–73 (1979).

    Google Scholar 

  93. Cyclic and stripping voltammetry of mercury at impregnated graphite electrode in chloride and thiocyanate media, R. Oilewicz, Z. Stojek, and Z. Kublik,J. Electroanal Chem. Interfacial Electrochem.96, 29–44 (1979).

    Google Scholar 

Applications—Anodic

  1. Application de la goute pendante de mercure a la determination de minimes quantites de differents ions, W. Kemula and Z. Kublik,Anal. Chim. Acta 18, 104–111 (1958).

    CAS  Google Scholar 

  2. Determination of small amounts of cadmium, lead, bismuth and thallium, R. Neeb, Z.Anal Chem.171, 330 (1959).

    CAS  Google Scholar 

  3. Anodic stripping voltammetry of nickel at solid electrodes, M. M. Nicholson,Anal Chem. 32, 1058–1062 (1960).

    CAS  Google Scholar 

  4. Application of stripping analysis to the determination of iodide with silver microelectrodes, I. Shain and S. P. Perone,Anal Chem. 33, 325–329 (1961).

    CAS  Google Scholar 

  5. Application of stripping analysis to the trace determination of tin, S. L. Philips and I. Shain,Anal Chem.34, 262–265 (1962).

    Google Scholar 

  6. Chronopotentiometric deposition and stripping of silver, lead and copper at platinum electrode, A. R. Nisbet and A. J. Bard,J. Electroanal Chem. 6, 332–343 (1963).

    CAS  Google Scholar 

  7. The application of stripping analysis to the determination of silver (1) using graphite electrodes, S. P. Perone,Anal Chem. 35, 2091–2094 (1963).

    CAS  Google Scholar 

  8. Anodic stripping voltammetry of gold and silver with carbon paste electrodes, E. C. Jacobs,Anal Chem.35, 2112–2115 (1963).

    CAS  Google Scholar 

  9. Determination of silver in alkali and alkaline earth metals, Ku. Z. Brainina, T. A. Rygailo, and V. B. Belyavskaya,Metody Analiza Khim. 5-6, 124–128 (1963).

    Google Scholar 

  10. Trace analysis by anodic stripping and voltammetry. I. Trace metals in dead sea brine. 1. Zinc and cadmium, M. Ariel and U. Eisner,J. Electroanal Chem. 5, 362–374 (1963).

    CAS  Google Scholar 

  11. Polarography with accumulation at a stationary electrode, A. G. Stromberg and E. A. Zakharova,Zavods. Lab.30, 261–267 (1964).

    CAS  Google Scholar 

  12. Polarographic determination of ultramicro traces by concentration and stripping on mercury and solid electrode, S. I. Sinyakova and Yu. I. Vainshtein,Metody. Analiza Khim. 5-6, 5–15 (1963).[CA 61, 1233g (1964).]

    Google Scholar 

  13. Polarography with accumulation on a stationary electrode, A. G. Stromberg and E. A. Zakharova,Zavod. Lab. 30, 261–267 (1964).

    CAS  Google Scholar 

  14. Stripping analysis. III. Experimental procedures, I. Shain,Treatise Anal. Chem.4, 2560–2564 (1964).

    Google Scholar 

  15. Filtration as a source of error in anodic stripping voltammetry, H. Specker and G. Schieve, Z.Anal. Chem.204, 1–3 (1964).

    CAS  Google Scholar 

  16. Trace analysis by anodic stripping voltammetry. II. The method of medium exchange, M. Ariel, U. Eisner, and S. Gottesfeld,J. Electroanal. Chem. 7, 307 (1964).

    CAS  Google Scholar 

  17. Voltammetry of nickel in molten lithium fluoride,J. Electroanal. Chem. 7, 302 - 306 (1964).

    Google Scholar 

  18. The determination of ionic zinc in sea-water by anodic stripping voltammetry using ordinary capillary electrode, G. Macchi,Electroanal. Chem.9, 290–298 (1965).

    CAS  Google Scholar 

  19. Anodic stripping voltammetry of mercury(II) at the graphite electrode, S. P. Perone and W. J. Kretlow,Anal. Chem. 37, 968–970 (1965).

    CAS  Google Scholar 

  20. Chemical stripping analysis. Determination of cerium(IV), permanganate and iron(III) in the micromolar concentration range, S. Bruckenstein and J. W. Bixler,Anal. Chem. 37, 786–790 (1965).

    CAS  Google Scholar 

  21. Electroanalytical method for amalgam forming metals, Ch. Yarnitsky and M. Ariel,J. Electroanal. Chem.10, 110–118 (1965).

    CAS  Google Scholar 

  22. Redissolution anodique par polarographie a impulsions, G. Donadey, R. Rosset, and G. Chariot,Chem. Anal. 17, 575 (1972).

    CAS  Google Scholar 

  23. Determination of lead, cadmium, copper, thallium, bismuth and zinc in serum by anodic stripping polarography, I. Sinko and S. Gomicsek,Mikrochim. Acta 2, 163 (1972).

    Google Scholar 

  24. Determination of mercury(II) in acidic media by stripping voltammetry with collection, R. E. Allen and D. C. Johnson,Talanta 20, 799 (1973).

    CAS  Google Scholar 

  25. Determination of trace amounts of zinc, cadmium, lead and copper in airborne particulate matter by anodic stripping voltammetry, G. Colovos, G. S. Wilson, and J. Moyers,Anal. Chim. Acta 64, 457 (1973).

    CAS  Google Scholar 

  26. Effect of supporting electrolyte concentration in pulsed stripping voltammetry at the thin film mercury electrode, T. R. Copeland, J. H. Christie, R. K. Skogerboe, and R. A. Osteryoung,Anal. Chem.45, 995 (1973).

    CAS  Google Scholar 

  27. Microdetermination of lead in blood: A derivative pulse stripping voltammetric method, L. Duic, S. Szechter, and S. Srinivasan,J. Electroanal. Chem. Interfacial Electrochem.41, 89 (1973).

    CAS  Google Scholar 

  28. Determination of lead in evaporated milk by atomic absorption spectrophotometry and anodic stripping voltammetry collaborative study, J. A. Fiorino, R. A. Moffitt, A. L. Woodson, R. J. Gajan, G. E. Huskey, and R. G. Scholz,J. Assoc. Offic. Anal. Chem. 56, 1246 (1973).

    CAS  Google Scholar 

  29. Determination of traces of thallium in urine by anodic stripping a.c. voltammetry, D. L. Levit,Anal. Chem.45, 1291 (1973).

    CAS  Google Scholar 

  30. Determination of gold in drugs and serum by use of anodic stripping voltammetry, G. M. Schmid and G. W. Bolger,Clin. Chem.19, 1002 (1973).

    CAS  Google Scholar 

  31. Determination of lead in blood and urine by anodic stripping voltammetry, B. Searle, W. Chan, and B. Davidow,Clin. Chem.19, 76 (1973).

    CAS  Google Scholar 

  32. Polarographie and Voltammetric Techniques, H. W. Nurnberg and B. Kastening, In:Methodicum Chimicum, F. Korte, ed., vol. 1/A, pp. 584–607, Academic Press, New York (1974)

    Google Scholar 

  33. Electroanalytical determination and characterisation of some heavy metals in sea water, M. Branica, L. Sipos, S. Bubie, and S. Kozar,Proc. 7th Materials Research Symp., Gaithersburg, Md. (1974).

    Google Scholar 

  34. Voltammetric deposition and stripping of selenium(IV) at a rotating gold-disc electrode in 0.1M perchloric acid, R. W. Andrews and D. C. Johnson,Anal. Chem.47, 294 (1975).

    CAS  Google Scholar 

  35. Determination of zinc in human eye tissues by anodic stripping voltammetry, T. R. Williams, D. R. Foy, and C. Benson,Anal. Chim. Acta 75, 250 (1975).

    CAS  Google Scholar 

  36. Polarography and Voltammetry in Marine Chemistry, H. W. Nurnberg and P. Valenta, In:The Nature of Sea Water, E. D. Goldberg, ed., pp. 87–136, Dahlem Konferenzen, Berlin (1975).

    Google Scholar 

  37. The Electroanalytical Chemistry of Sea Water, M. Whitefield, In:Chemical Oceanography, J. P. Riley and G. Skirrow, ed., 2nd Ed., Vol. 4, Chap. 20, Academic Press, London (1975).

    Google Scholar 

  38. Zero-current inverse chronopotentiometry of lead at a carbon-glass-ceramic electrode, Yu. A. Goncharov and A. N. Doronin,Zh. Anal. Khim.31, 897 (1976).

    CAS  Google Scholar 

  39. Inverse voltammetry and coulometry of lead at a carbon-glass-ceramic electrode, O. L. Kabanova and Yu. A. Gancharov,Zh. Anal. Khim.31, 902 (1976).

    CAS  Google Scholar 

  40. Selective stripping voltammetric determinations employing cells for electrolysis with simultaneous ion-exchange or solvent extraction, K. Stulik and P. Bedros,Talanta 23, 563 (1976).

    CAS  Google Scholar 

  41. The electrochemical stripping determination of bismuth in aqueous and nonaqueous media after its extraction, T. V. Nghi and F. Vydra,J. Electroanal. Chem. Interfacial Electrochem.71, 325 (1976).

    CAS  Google Scholar 

  42. Applications of polarography and voltammetry to marine and aquatic chemistry. II. The polarographic approach to the determination and speciation of toxic trace metals in the marine environment, H. W. Nurnberg, P. Valenta, L. Mart, B. Raspor, and L. Sipos,Fresenius Z. Anal. Chem.282, 357–367 (1976).

    Google Scholar 

  43. Capabilities of voltammetric techniques for water quality control problems, J. Buffle, F. L. Greter, G. Nembrini, J. Paul, and W. Haerdi,Fresenius Z. Anal. Chem.282, 339 (1976).

    CAS  Google Scholar 

  44. A novel scheme for the classification of heavy metal species in natural waters, G. E. Batley and T. M. Florence,Anal. Lett. 9, 379 (1976).

    CAS  Google Scholar 

  45. Characterization of trace metal-organic interactions by anodic stripping voltammetry, T. A. O’Shea and K. H. Mancy,Anal. Chem.48, 1603 (1976).

    Google Scholar 

  46. Determination of the stability constants of some hydroxo and carbonato complexes of Pb(II), Cu(II), Cd(II) and Zn(II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography, H. Bilinski, R. Huston, and W. Stumm,Anal. Chim. Acta 84, 157 (1976).

    CAS  Google Scholar 

  47. The determination of zinc, cadmium, lead and copper in a single sea-water sample by differential pulse anodic stripping voltammetry, M. I. Abdullah, B. R. Berg, and R. Klimek,Anal. Chim. Acta 84, 307 (1976).

    CAS  Google Scholar 

  48. Electroanalytical determination and characterization of some heavy metals in seawater, M. Branica, L. Sipos, S. Bubic, and S. Kozar,Natl. Bur. Stand (U.S.) Spec. Publ. 442, 917 (1976).

    Google Scholar 

  49. Direct determination of mercury in sea-water by anodic stripping voltammetry with a graphite electrode, R. Fukai and L. Huynh-Ngoc,Anal. Chim. Acta 83, 375 (1976).

    CAS  Google Scholar 

  50. Determination of trace mercury(II) in 0.1 M perchloric acid by differential pulse stripping voltammetry at a rotating gold disk electrode, R. W. Andrews, J. H. Larochello, and D. C. Johnson,Anal. Chem.48, 212 (1976).

    CAS  Google Scholar 

  51. Electroanalysis of toxic metals in blood and urine, A. A. Cernik,Proc. Anal. Div. Chem. Soc.13, 227 (1976).

    CAS  Google Scholar 

  52. Determination of traces of cadmium in alloy steels by anodic stripping voltammetry, K. Stulik and K. Marik,Talanta 23, 131 (1976).

    CAS  Google Scholar 

  53. Determination of trace elements in zinc plant electrolyte by differential pulse polarography and anodic stripping voltammetry, E. S. Pilkington, C. Weeks, and A. M. Bond,Anal. Chem.48, 1665 (1976).

    CAS  Google Scholar 

  54. Cathodic stripping voltammetry of nanogram amounts of selenium in biological material, M. W. Bles, J. A. Dalziel, and C. M. Elson,J. Assoc. Off. Anal. Chem. 59, 1234 (1976).

    Google Scholar 

  55. Application of polarography and voltammetry to marine aquatic chemistry. Part II. The polarographic approach to the determination and speciation of metals in the marine environment, H. W. Nurnberg, P. Valenta, L. Mart, B. Raspov, and L. Sipos,Fresenius Z. Anal Chem.282, 357–367 (1976).

    Google Scholar 

  56. Use of stripping analysis (inverse voltammetry) in the analysis of macro- and microsubstances (Review), A. A. Kaplin, A. G. Stromberg, and N. P. Pikula,Zavod. Lab.43, 385 (1977).

    CAS  Google Scholar 

  57. Comparative study of the analytical characteristics of thin-film flowing and pulsed system, V. A. Igolinskii and G. I. Zheleznyak,Zavod. Lab.43, 140 (1977).

    CAS  Google Scholar 

  58. New potentialities in ultra trace analysis with differential pulse anodic stripping voltammetry, P. Valenta, L. Mart, and H. Rutzel,J. Electroanal Chem. Interfacial Electrochem. 82, 327 (1977).

    CAS  Google Scholar 

  59. The stripping voltammetric determination of metals in non-aqueous media on the mercury film electrode prepared in situ. Determination of lead after its extraction with dithizone using a substitution reaction with Hg-salt, F. Vydra and T. V. Nghi,J. Electroanal Chem. Interfacial Electrochem.78, 167 (1977).

    CAS  Google Scholar 

  60. Potentialities and applications of advanced polarographic and voltammetric methods in environmental research and surveillance of toxic metals, H. W. Nurnberg,Electrochim. Acta 22, 935 (1977).

    Google Scholar 

  61. An experimental study on the speciation of dissolved zinc, cadmium, lead and copper in river Rhine and north sea water, by differential pulsed anodic stripping volummetry, J. C. Duinker and C. J. M. Kramer,Mar. Chem. 5, 207 (1977).

    CAS  Google Scholar 

  62. Application of anodic stripping voltammetry to determination of the state of complexation of traces of metal ions at low concentration levels, M. Branica, D. M. Novak, and S. Bubic,Croat. Chem. Acta 49, 539 (1977).

    CAS  Google Scholar 

  63. Applications of polarography and voltammetry to marine and aquatic chemistry. IV. A new voltammetric method for the study of mercury traces in sea water and island waters, L. Sipos, P. Valenta, H. W. Nurnberg, and M. Branica,J. Electroanal Chem. Interfacial Electrochem.77, 263 (1977).

    CAS  Google Scholar 

  64. Trace chemistry of toxic metals in biomatrixes. II. Voltammetric determination of the trace content of cadmium and other toxic metals in human whole blood, P. Valenta, H. Ruetzel, H. W. Nuernberg, and M. Stoeppler,Fresenius Z. Anal Chem. 285, 25 (1977).

    CAS  Google Scholar 

  65. Inverse voltammetric determination of gold in a sulphuric acid solution on a solid electrode, V. A. Zarinskii, L. S. Chulkina, and N. N. Baranova,Zh. Anal Khim. 32, 530 (1977).

    CAS  Google Scholar 

  66. Determination of ruthenium as ruthenate by stripping voltammetry, A. Trojnek,J. Electroanal Chem. Interfacial Electrochem.81, 189 (1977).

    Google Scholar 

  67. Investigation by automated differential pulse anodic stripping voltammetry of the problem of storage of dilute solutions, A. M. Bond and B. W. Kelly,Talanta,24, 453 (1977).

    CAS  Google Scholar 

  68. Determination of some thiourea-containing pesticides by pulse voltammetric methods of analysis, M. R. Smyth and J. G. Osteryoung,Anal Chem.49, 2310 (1977).

    CAS  Google Scholar 

  69. Flow injection analysis, Part X. Theory, techniques and trends, J. Ruzicka and E. H. Hansen,Anal Chim. Acta 99, 37–76 (1978).

    CAS  Google Scholar 

  70. Defining the electroanalytically measured species in a natural water sample, W. Davison,J. Electroanal Chem. Interfacial Electrochem.87, 395–404 (1978).

    CAS  Google Scholar 

  71. Anodic stripping voltammetry at a mercury film electrode: Baseline concentrations of cadmium, lead and copper in selected natural waters, J. E. Poldoski and G. E. Glass,Anal Chim. Acta 101, 79–88 (1978).

    CAS  Google Scholar 

  72. The determination of copper, lead, cadmium and zinc in human teeth by anodic stripping voltammetry, W. Lund, M. Oehme, and J. Jonsen,Anal Chim. Acta 100, 389–398 (1978).

    Google Scholar 

  73. Determination of total arsenic at the nanogram level by high-sweep anodic stripping voltammetry, P. H. Davis, G. R. Dulude, R. M. Griffin, W. R. Matson, and E. W. Zink,Anal Chem.50, 137–143 (1978).

    Google Scholar 

  74. Anodic stripping voltammetry of tellurium(IV) in aqueous solution and mixed solvents, M. Kopanica and V. Stara,J. Electroanal Chem. Interfacial Electrochem. 91, 351–357 (1978).

    CAS  Google Scholar 

  75. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, K. Stulik, P. Baran, J. Dolezal, and F. Opekar,Talanta 25, 363–369 (1978).

    CAS  Google Scholar 

  76. A new voltammetric stripping method applied to the determination of the brightener concentration in copper pyrophosphate plating baths, D. Tench and C. Ogden,J. Electrochem. Soc.125, 194–198 (1978).

    CAS  Google Scholar 

  77. Determination of extremely small amounts of substances with the microprobe after electro- lytical enrichment on small surfaces, R. Bock, E. Zimmer, and G. Weichbrodt,Fresenius Z.Anal. Chem.293, 377–387 (1978).

    CAS  Google Scholar 

  78. Subtractive anodic stripping voltammetry at twin mercury film electrodes, E. Steeman, E. Timmerman, andR. Valinnen,Anal. Chim. Acta 96, 177–181 (1978).

    CAS  Google Scholar 

  79. Evaluation and optimization of the standard addition method for absorption spectrometry and anodic stripping voltammetry, J. P. Franke, R. A. DeZeeus, and R. Hakkert,Anal. Chem.50, 1374–1380 (1978).

    CAS  Google Scholar 

  80. Determination of the detection limit for twenty elements of the periodic system by stripping polarography, A. G. Stromberg, A. A. Kaplin, N. P. Pikula, and B. A. Kubrak,Fiz.-Khim. Metody. Anal. 2, 6–10 (1977).

    CAS  Google Scholar 

  81. Determination of trace impurities in high purity reagents by mercury-thin film anodic stripping voltammetry, Y. Israel, T. Ofir, and J. Rejek,Mikrochim. Acta 1, 151–163 (1978).

    CAS  Google Scholar 

  82. Polarographic and voltammetric methods for the determination of elements, R. Neeb,Mikrochim. Acta 1 (3–4), 305–318 (1978).

    CAS  Google Scholar 

  83. Potentiometric stripping analysis for lead in urine, D. Jagner, L. G. Danielsson, and K. Aren,Anal. Chim. Acta 106, 15–21 (1979).

    CAS  Google Scholar 

  84. Potentiometric stripping analysis for zinc, cadmium lead and copper in sea water, D. Jagner and K. Aren,Anal. Chim. Acta 107, 29–35 (1979).

    CAS  Google Scholar 

  85. Potentiometric stripping analysis in non-deaerated samples, D. Jagner,Anal. Chem. 51, 342–345 (1979).

    CAS  Google Scholar 

  86. Pseudo polarographic determination of metal complex stability constants in dilute solution by rapid scan anodic stripping voltammetry, S. D. Brown and B. R. Kowalski,Anal. Chem.51, 2133–2139 (1979).

    CAS  Google Scholar 

  87. Interference in anodic stripping voltammetry from the teflon vessels used in pressurized digestion, M. Ochme,Talanta 26, 913–916 (1979).

    Google Scholar 

  88. Use of chelex resin for determination of labile trace metal fractions in aqueous ligand media and comparison of the method with anodic stripping voltammetry, P. Figura and B. McDuffie,Anal. Chem.51, 120–125 (1979).

    CAS  Google Scholar 

  89. The determination of cadmium, lead and copper in urine by differential pulse anodic stripping voltammetry, W. Lund and R. Eriksen,Anal. Chim. Acta 107, 37–46 (1979).

    CAS  Google Scholar 

  90. A rapid high performance analytical procedure with simultaneous voltammetric determination of toxic trace metals in urine, J. Golimowski, P. Valenta, M. Stoeppler, and H. W. Nurnberg,Talanta 26, 649–656 (1979).

    CAS  Google Scholar 

  91. Determination of cobalt by anodic stripping voltammetry at a mercury film electrode, H. Bloom, B. N. Noller, and D. E. Richardson,Anal. Chim. Acta 109, 157–160 (1979).

    CAS  Google Scholar 

  92. Cyclic and stripping voltammetry of tin in the presence of lead in pyrogallol medium at hanging and film mercury electrodes, S. Glodowski and W. Kublic,Anal. Chim. Acta 104, 55–65 (1979).

    CAS  Google Scholar 

  93. Determination of traces of arsenic in zinc sulphate industrial solutions by voltammetry and cathodic redissolution, T. Monama and G. Duyckaerts,Anal. Lett. 12, 219–229 (1979).

    CAS  Google Scholar 

  94. Target preparation for x-ray emission analysis by anodic electrodeposition of cyano metalates from 2-propanol-water mixtures, K. Wundt, H. Duschner, and K. Starke,Anal. Chem. 51, 1487–1492 (1979).

    CAS  Google Scholar 

  95. Comparison of digestion procedures for the determination of heavy metals (cadmium, copper, lead) in blood by anodic stripping voltammetry, M. Oehme and W. Lund,Fresenius Z. Anal. Chem.298, 260–268 (1979).

    CAS  Google Scholar 

Applications—Cathodic

  1. Determination of chloride by cathodic stripping polarography, R. G. Ball, D. L. Manning, and O. Menis,Anal. Chem.32, 621–623 (1960).

    CAS  Google Scholar 

  2. Determination of micro amounts of chloride ions at a stationary mercury electrode, Kh. Brainina and E. M. Roizenblat,Zavod. Lab. 28, 21–23 (1962).

    CAS  Google Scholar 

  3. Determination of chloride ion in dilute solutions by cathodic stripping voltammetry, W. L. Maddox, M. T. Kelley, and J. A. Dean,J. Electroanal. Chem. 4, 96–104 (1962).

    CAS  Google Scholar 

  4. Inverse polarographic determination of chloride in ppm range in concentrated mineral acids, H. Specker and G. Schieve, Z.Anal. Chem. 196, 1–5 (1963).

    CAS  Google Scholar 

  5. Simultaneous determination of bromide and chloride by cathodic stripping voltammetry, G. Colovos, G. S. Wilson, and J. L. Moyers,Anal. Chem.46, 1051 (1974).

    CAS  Google Scholar 

  6. Determination of phosphate by cathodic stripping voltammetry at a glassy carbon electrode, J. A. Cox and K. H. Cheng,Anal. Lett.7, 659 (1974).

    CAS  Google Scholar 

  7. Cathodic stripping coulometry of lead, H. A. Laitinen and N. H. Watkins,Anal. Chem.47, 1352 (1975).

    CAS  Google Scholar 

  8. Determination of the sodium salt of 2-mercaptopyridine-N-oxide by differential pulse cathodic stripping voltammetry, D. A. Csejka, S. T. Nakos, and E. W. DuBord,Anal. Chem.47, 322 (1975).

    CAS  Google Scholar 

  9. Mechanism of anodic deposition and cathodic stripping of Pb02 on conductive tin oxide, H. A. Laitinen and N. H. Witkins,J. Electrochem. Soc.123, 804 (1976).

    CAS  Google Scholar 

  10. The determination of bromide, chloride and lead in airborne particulate matter by stripping voltammetry, B. L. Dennis, G. S. Wilson, and J. L. Moyers,Anal. Chim. Acta 86, 27 (1976).

    CAS  Google Scholar 

  11. Direct determination of thioamide drugs in biological fluids by cathodic stripping voltammetry, I. E. Davidson and W. F. Smyth,Anal. Chem.49, 1195 (1977).

    CAS  Google Scholar 

  12. Phase selective cathodic stripping voltammetry for determination of water-soluble mercap- tans, W. M. Moore and V. F. Gaylor,Anal. Chem.49, 1386 (1977).

    CAS  Google Scholar 

  13. Determination of halide ions by cathodic stripping analysis, K. Manandhar and D. Pletcher,Talanta 24, 387 (1977).

    CAS  Google Scholar 

  14. Cathodic stripping voltammetric study of the release of inorganic sulphide from proteins in alkaline media, T. M. Florence,Anal. Lett. B 11, 913–924 (1978).

    Google Scholar 

  15. Cathodic stripping voltammetry. Part I. Determination of organic sulphur compounds, flavins and porphyrins at the sub-micromolar level, T. M. Florence,J. Electroanal. Chem. Interfacial Electrochem.97, 219–236 (1979).

    CAS  Google Scholar 

  16. Cathodic stripping voltammetry. Part II. Study of the release of inorganic sulphide from proteins during denaturation in alkaline media, T. M. Florence,J. Electroanal. Chem. Interfacial Electrochem.97, 237–255 (1979).

    CAS  Google Scholar 

  17. Cathodic stripping voltammetric determination of organic halides in drug dissolution studies, I. E. Davidson and W. F. Smyth,Anal. Chem. 51, 2127–2133 (1979).

    CAS  Google Scholar 

  18. Determination of selenium in soils and plants by differential pulse cathodic-stripping voltammetry, S. Forbes, G. P. Bounds, and T. S. West,Talanta 26, 473–477 (1979).

    CAS  Google Scholar 

Books and Reviews

  1. Permeability of membranes. I. Theory of ionic permeability, K. H. Meyer and J. F. Sievers,Helv. Chim. Acta 19, 649–664 (1936).

    CAS  Google Scholar 

  2. Permeability of membranes. II. Studies with artificial selective membranes, K. H. Meyer and J. F. Sievers,Helv. Chim. Acta 19, 665–677 (1936).

    CAS  Google Scholar 

  3. General discussions on papers pertaining to biomembranes and bioelectrochemistry, T. Teorell,Trans. Faraday Soc. 33, 1053–1055 (1937).

    Google Scholar 

  4. Permeability of membranes. II. Effect of boric anhydride and aluminium oxide on the electrode properties of glass, B. P. Nikolski and T. A. Tolmacheva,Zh. Fiz. Khim. 10, 504–512 (1937).

    Google Scholar 

  5. Electric potentials of crystal surfaces and at silver halid surfaces in particular, I. M. Kolthoff and H. L. Sanders,J. Am. Chem. Soc. 59, 416–420 (1937).

    CAS  Google Scholar 

  6. Glass electrode for measuring sodium ion, G. Eisenman, D. O. Rudin, and J. U. Casty,Science 126, 831–834 (1957).

    CAS  Google Scholar 

  7. Membranes of heterogeneous structure for the determination of the activity anions, E. Pungor, J. Havas, and K. Toth,Acta Chim. Acad. Sci. Hung. 41 (1–2), 239–255 (1964) (Eng).

    CAS  Google Scholar 

  8. Theory and application of anion selective membrane electrodes, E. Pungor,Anal. Chem. 39, (No. 53), 28A–45A (1967).

    Google Scholar 

  9. Recent developments in the theory and application of some ion selective membrane electrodes, E. Pungor and K. Toth,Hung. Sci. Instrum. 14, 15–20 (1968).

    Google Scholar 

  10. Similarities between liquid and solid ion exchangers and their usefulness as ion specific electrodes, G. Eisenman,Anal. Chem. 40, 310–320 (1968).

    CAS  Google Scholar 

  11. Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchanges and of neutral ion-sequestering molecules, G. Eisenman, In:Ion Selective Electrodes, R. A. Durst, ed., Chap. 1, pp. 1–56, National Bureau of Standards Pub. No. 314 (1969).

    Google Scholar 

  12. Solid-state and liquid membrane ion selective electrodes, J. W. Ross, Jr., In:Ion Selective Electrodes, R. A. Durst, ed., National Bur. of Stand. Publ. No. 314, Chap. 2, pp. 57–88 (1969).

    Google Scholar 

  13. Heterogeneous membrane electrodes, A. K. Covington, In:Ion Selective Electrodes, R. A. Durst, ed., National Bur. of Stand. Pub. No. 314, Chap. 3, pp. 89–106 (1969).

    Google Scholar 

  14. Thermodynamic studies, J. N. Butler, In:Ion Selective Electrodes, R. A. Durst, ed., Natl. Bur. of Stand. Pub. No. 314, Chap. 5, pp. 143–189 (1969).

    Google Scholar 

  15. New directions for ion selective electrodes, G. A. Rechnitz,Anal. Chem. 41 (No. 12), 109A–113A (1969).

    CAS  Google Scholar 

  16. Ion selective membrane electrodes. Part I. Glass electrodes, G. J. Moody, R. B. Oke, and J. D. R. Thomas,Lab. Prac. 18, 941–945 (1969).

    CAS  Google Scholar 

  17. Ion Selective Membrane Electrodes, E. Pungor and K. Toth,Analyst 95, 625–648 (1970).

    CAS  Google Scholar 

  18. Selective Ion Sensitive Electrodes, G. J. Moody and J. D. R. Thomas, Merrow, Watford (England) (1971).

    Google Scholar 

  19. R. P. Buck,Physical Methods of Chemistry, A. Weissberger and B. Rossiter, eds., Vol. I, Part II, Chap. II, pp. 61–162, Wiley, New York (1971).

    Google Scholar 

  20. Ion selective electrodes in science, medicine and technology, R. A. Durst,Am. Sci. 59 (3), 353–361 (1971).

    CAS  Google Scholar 

  21. Ion selective sensors, W. Simon,Pure Appl. Chem. 25, 811–823 (1971).

    CAS  Google Scholar 

  22. Function potential and selectivity rating of selective ion-sensitive membrane electrodes, G.J. Moody and J. D. R. Thomas,Lab. Pract. 20, 307–311 (1971).

    CAS  Google Scholar 

  23. Theory and applications of ion-selective electrodes, J. Koryta,Anal. Chim. Acta 61 (3), 329–411 (Eng) (1972).

    CAS  Google Scholar 

  24. Development and publication of work with selective ion sensitive electrodes, G. J. Moody and J. D. R. Thomas,Talanta 19, 623–639 (1972) (Eng).

    CAS  Google Scholar 

  25. Ion selective electrodes, potentiometry and potentiometric titrations, R. P. Buck,Anal. Chem. 44, 270R–295R (1972).

    CAS  Google Scholar 

  26. Some problems concerning the behaviour of ion selective membrane electrodes under current, C. Liteanu, I. C. Popescu, and E. Hopirtean, In:Ion Selective Electrodes, E. Pungor, ed., pp. 51–96, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  27. Selectivity and sensitivity of ion selective electrodes, G. J. Moody and J. D. R. Thomas, In:Ion Selective Electrodes, E. Pungor, ed., pp. 97–113, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  28. An examination of the temperature coefficients of ion selective electrodes in non-isothermal galvanic cells, E. Lindner, K. Toth, and E. Pungor, In:Ion Selective Electrodes, E. Pungor, ed., pp. 205–217, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  29. Selectivity of coated wire and liquid ion sensitive electrodes, T. Stworzewicz, J. Czapkiewicz, and M. Leszko, In:Ion Selective Electrodes, E. Pungor, ed., pp. 259–267, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  30. Steady-state space charge effects in symmetric cells with concentration polarized electrodes, R. P. Buck,J. Electroanal. Chem. Interfacial Electrochem. 46, 1–23 (1973).

    CAS  Google Scholar 

  31. K. Cammaun,Das Arbeiten mit Ion Selektiven Elektroden, Springer Verlag, Berlin (1973).

    Google Scholar 

  32. Ion selective electrodes, potentiometry and potentiometric titrations, R. P. Buck,Anal. Chem.46, 28R (1974).

    CAS  Google Scholar 

  33. Ion selective electrodes, R. P. Buck,Anal. Chem. 48, 23R (1976).

    Google Scholar 

  34. Applications of ion-selective membrane electrodes in organic analysis; Part I. Theoretical consideration, G. E. Bainlescu and V. V. Cosofret (Eng. Trans), Chap. 1–5, pp. 9–49, Ellis Horwood Ltd. Pub., Chichester (1977).

    Google Scholar 

  35. Analysis with Ion Selective Electrodes, J. Vesely, D. Weiss, and K. Stulik, ed., Wiley, New York, 220 pp. (1977).

    Google Scholar 

  36. Determination of selectivity coefficients of ion selective Electrodes, F. Shinsaking and M. Okada,Matsushita Hiroshi Chubu Kogyo Daigabu Kiyo , 13-A, 143–149 (1977) (Japan).

    Google Scholar 

  37. Theory and principles of membrane electrodes, R. P. Buck, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Vol. 1, Chap. 1, pp. 1–141, Plenum Press, New York (1978).

    Google Scholar 

  38. Precipitate-based ion selective electrodes, E. Pungor and K. Toth, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Vol. 1, Chap. 2, pp. 143–210, Plenum Press, New York (1978).

    Google Scholar 

  39. Ion selective electrodes based on neutral carriers, W. E. Morf and W. Simon, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Vol. 1, Chap. 3, pp. 211–286, Plenum Press, New York (1978).

    Google Scholar 

  40. Selection of suitable reference electrodes of pH and ion selective measurements, W. C. Clock,Beckmann 2, 22–26 (1978) (Ger).

    Google Scholar 

  41. Ion selective electrodes response to anions, K. Masamitsu and T. Kosurhara,Dogin Nyusu 8, 1–5 (1978) (Japan).

    Google Scholar 

  42. Functional electrode, N. Katsumi and U. Yoshio,Bunsenki 11, 798–803 (1978) (Japan).

    Google Scholar 

  43. Potential pitfalls in the use of ion selective electrodes-reference electrode pairs, R. A. Durst,Theory Des. Biomed. Appl. Solidstate Chem. Sens. Workshop 1977, 155–163 (1979).

    Google Scholar 

  44. Potential generating processes at interfaces: from electrolyte/metal and electrolyte membrane to electrolyte semiconductor, R. P. Buck,Theor. Des. Biomed. Appl. Solidstate Chem. Sens. Workshop 1977, 3–39 (1978) (Eng).

    Google Scholar 

  45. The problem of the single ion activity, R. G. Bates,Denki Kagaku Oyebi Kogyo Butsuri Kagaku 46 (9), 480–484 (1978) (Eng.).

    CAS  Google Scholar 

  46. Ion selective electrodes, E. Pungor, K. Toth, and G. Nagy,Mikrochim Acta 1 (5–6), 531–545 (1978).

    CAS  Google Scholar 

  47. Statistical approach for selectivity of ion selective membrane electrodes, C. Liteanuet al.,Anal. Chem. 50 (8), 1202–1209 (1978).

    CAS  Google Scholar 

  48. Response time studies on neutral carrier ion-selective membrane electrodes, E. Lindner, K. Toth, E. Pungor, E. Morf Werner, and W. Simon,Anal. Chem. 50 (12), 1627–1631 (1978) (Eng).

    CAS  Google Scholar 

  49. A mixed potential ion selective electrodes theory, K. Camman,Ion Selective Electrodes Conf. 1978, 297–306 (1978).

    Google Scholar 

  50. Ion selective electrodes in analytical chemistry, H. Freiser, ed., 439 pp., Plenum Press, New York (1978).

    Google Scholar 

  51. The present state of art (of ion selective electrodes), E. Pungor,Ion Selective Electrodes Conf. 1977; 161–173 (1978).

    Google Scholar 

  52. Comparative theoretical aspects of different types of ion selective electrodes, R. P. Buck and P. Richard, W. R. Kenan, Jr., ed., Lab. Chem. Univ. North Carolina, Chapel Hill N.C.Ion Selective Electrodes Conf.1977, 21–55 (1978).

    Google Scholar 

  53. Introduction, basic electrode types, classification and selectivity considerations, A. K. Covington, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. I, Chap. I, pp. 1 - 20, CRC Press Inc., Florida (1979).

    Google Scholar 

  54. P. Standards and A. K. Covington, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Chap. 4, pp. 67–76, CRC Press Inc. Florida (1979).

    Google Scholar 

  55. Enzyme electrode, P. Vadgama, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. II, Chap. 2, pp. 23–40, CRC Press Inc. Florida (1979).

    Google Scholar 

Instrumentation and Method of Preparation

  1. The development of membranes prepared from artificial cation-exchange materials with particular reference to the determination of sodium ion activities, M. R. Wyllie and H. W. Patnode,J. Phys. Chem.54, 204–227 (1950).

    CAS  Google Scholar 

  2. Fluoride microanalysis by linear null point potentiometry, R. A. Durst,Anal. Chem.40, 931–935 (1968).

    CAS  Google Scholar 

  3. Industrial analysis and control with ion selective electrodes, T. S. Light, In:Ion Selective Electrodes, R. A. Durst, ed., Nat. Bur. of Stand. Publ. No. 314, Chap. 10, pp. 349–374 (1969).

    Google Scholar 

  4. Ion selective membrane electrodes, II. Nonglass membrane electrode, G. J. Moody, R. B. Oke, and J. D. R. Thomas,Lab. Pract. 18, 1056–1062 (1969).

    CAS  Google Scholar 

  5. Differential potentiometry with ion selective electrodes. A new instrumental approach, M.J. D. Brand and G. A. Rechnitz,Anal. Chem.42, 616–622 (1970).

    CAS  Google Scholar 

  6. Computer approach to ion selective electrode potentiometry by standard addition methods, M. J. D. Brand and G. A. Rechnitz,Anal. Chem.42, 1172–1177 (1970).

    CAS  Google Scholar 

  7. Applications of ion selective electrodes in continuous analysis, B. Fleet and A. Y. W. Ho, In:Ion Selective Electrodes, E. Pungor, ed., pp. 17–35, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  8. Use of sensitive single chemical flow through electrode for automation of potentiometric CP determination in biol. materials according to flow stream principle, U. Tietz, U. Gruenke, P. Hastmann, and E. Keil, Z.Med. Laboratoriumsdiagn, 19 (5), 327–332 (1978) (Ger).

    CAS  Google Scholar 

  9. Automated semi-micro determination with ion selective electrodes, W. A. Lingerak, F. Bakker, and J. Slanina,Ion Selective electrode Conference 1977, 453–462 (1978).

    Google Scholar 

  10. Application of computers in potentiometric studies of complexation equilibriums, Majer Vladimir, Stulik, and Karel,Chem. Listy 72 (8), 785–800 (1978) (Czech).

    Google Scholar 

  11. Novel computer evaluation of multiple standard addition with ion selective electrodes, G. Horvai, L. Domokos, and E. Pungor,Fresenius Z. Anal. Chem. 292 (2), 132–134 (1978).

    Google Scholar 

  12. An evaluation of some pharmaceutical applications of an ion selective electrodes-Auto analyzer II system, A. W. Finnerty, H. Luttrell, Zudeck, and Steven,Adv. Autom. Anal. Technic Int. Congr. 7th,2, 210–214 ( 1976 ) ( Pub. 1977 ) E. C. Barton, ed., Mediad Inc., Tarrytown, N. Y.

    Google Scholar 

  13. Evaluation of multiple standard addition data obtained with ion selective electrodes. I. Evaluation using a desk-lop computer, G. Horvai, L. Domoskos, and E. Pungor (Altalanos Anal. Kem. Tansz. Budapesti Musz. Fgy, Budapest, Hung).Magy. Kem. Foly 84 (11), 481–483 (1978) (Hung.).

    CAS  Google Scholar 

  14. Electrode system for determining ions in solution, Bocke Jan. Ger Off en. 2726271 (CI GOIN 27128) 22 Dec. 1977.

    Google Scholar 

  15. Method and apparatus for the continuous measurements of gas traces with ion selective electrodes, Fritze, Ulrich, Herschinger and Heinz, Ger Offen. 2723310 (CI GOIN 27/46) CA 90 (1979) 91782 d.

    Google Scholar 

  16. Computer automation of potentiometric analysis with ion selective electrodes, J. Slanina, F. Bakkar, J. J. Moels, J. E. Ordelman, and A. G. M. Bruyen-Hes,Anal. Chim. Acta 112 (1), 45–54 (1979).

    CAS  Google Scholar 

  17. Microcomputer controlled potentiometric analysis system, R. M. Charles and H. Freiser,Anal. Chem.51 (7), 803–807 (1979).

    Google Scholar 

  18. Instrumentation for ion selective electrodes, P. R. Burton, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. I, Chap. 2, pp. 21–41, CRC Press Inc. Florida (1979).

    Google Scholar 

Applications

  1. The use of membrane electrodes in the analysis of ionic concentrations, E. Pungor and E. Hallos-Rockosinyi,Acta. Chim. Acad. Sci. Hung. 27, 63–68 (1961) (German).

    CAS  Google Scholar 

  2. Selective ion electrodes in analysis instrumentation, T. S. Light, Vol. 5, L. Fowler, R. G. Harmon, and D. K. Roe, eds., pp. 73–87, Plenum Press, New York (1968).

    Google Scholar 

  3. Activity standards for ion selective electrodes, R. G. Bates and M. Alfenaar, In:Ion Selective Electrodes, R. A. Durst, ed., Natl. Bur. of Stand. Publ. No. 314, Chap. 6, pp. 191–214 (1969).

    Google Scholar 

  4. Ion selective electrodes in biomedical research, R. N. Khuri, In:Ion Selective Electrodes, R. A. Durst, ed., Nat. Bur. of Stand. Publ. No. 314, Chap. 8, pp. 287–312 (1969).

    Google Scholar 

  5. Analytical studies on ion selective membrane electrodes, G. A. Rechnitz, In:Ion Selective Electrodes, R. A. Durst, ed., Nat. Bur. of Strand. Publ. No. 314, Chap. 9, pp. 313–348 (1969).

    Google Scholar 

  6. Analytical techniques and applications of ion selective electrodes, R. A. Durst, In:Ion Selective Electrodes, R. A. Durst, ed., Nat. Bur. of Stand. Publ. No. 314, Chap. 11, pp. 375–414 (1969).

    Google Scholar 

  7. Application of ion selective electrode systems to industrial processes, R. L. Beals,Ann. Instrum. 7, 74–79 (1969).

    CAS  Google Scholar 

  8. Ion selective electrodes—Industrial applications, T. S. Light,Ind. Water Eng. 6 (9), 33–37 (1969).

    CAS  Google Scholar 

  9. Measurements of inorganic water pollutants by specific ion electrode, J. M. Riseman,Am. Lab. 32–39, July (1969).

    Google Scholar 

  10. Ion selective electrodes in science, medicine and technology, R. A. Durst,Am. Sci.59 (3), 354–361 (1971).

    Google Scholar 

  11. Ion selective electrode procedure for organophosphate pesticide analysis, G. Baum and F. B. Ward,Anal. Chem.43, 947–948 (1971).

    CAS  Google Scholar 

  12. Applications of ion selective electrodes—Application, W. E. Bazzelle,Anal. Chim. Acta 54, 29–39 (1971).

    CAS  Google Scholar 

  13. Intrinsic end point errors in pipette titrations with ion selective electrodes, P. W. Carr,Anal. Chem.43, 425–430 (1971).

    CAS  Google Scholar 

  14. Application of specific ion electrodes to electroplating analyses, M. S. Frant,Plating 58, 686–693 (1971).

    CAS  Google Scholar 

  15. Ion sensitive electrodes for individual ionic activity measurements, G. Milazzo, In:Ion Selective Electrodes, E. Pungor, ed., pp. 115–126, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  16. Ion selective electrodes, Crytur and B. Manek, In:Ion Selective Electrodes, E. Pungor, ed., pp. 219–224, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  17. The biomed. and related roles of ion selective electrodes, G. J. Moody and J. D. R. Thomas,Prog. Med. Chem.14, 51–104 (1977).

    CAS  Google Scholar 

  18. Recent analytical applications of ion selective electrodes, G. J. Moody and J. D. R. Thomas,Lab. Pract. Rev. Curr. Tech. Instrum. 1–20 (1977).

    Google Scholar 

  19. Sources of error in ion selective electrode potentiometry, R. A. Durst, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Chap. 5, pp. 311–338, Plenum Press, New York (1978).

    Google Scholar 

  20. Applications of ion selective electrodes, G. J. Moody and J. D. R. Thomas, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Chap. 6, pp. 339–433, Plenum Press, New York (1978).

    Google Scholar 

  21. Applicability of ion selective electrodes in automated systems for clinical analysis, W. Simon, D. Ammann, H. F. Osswald, P. C. Meier, and R. E. Drhneb,Adv. Autom. Anal. Technicon. Int. Congr. 7th 1976 (Pub. 1977 ) 1, 59–62.

    CAS  Google Scholar 

  22. Studies on ion selective electrodes. Part II. Calibration of ion selective electrodes with exponential dilution flask, V. Raune,Kem Kemi 5 (12), 614–617 (1978).

    Google Scholar 

  23. Electrode behaviour of anion selective membranes in solutions of surfactants, S. V. Timofeev, E. A. Materova, L. K. Arkhangelskii, and E. V. Chirkova,Vestn. Leningr. Univ. Fiz. Khim.3, 139–141 (1978).

    Google Scholar 

  24. The use of ion selective electrodes in diary science, E. Tschager,Milchwirtsch Ber. Bun- desanst. Wolfpassing Rotholz 56, 189–194 (1978).

    CAS  Google Scholar 

  25. Evaluation of multiple standard addition data obtained with ion selective electrodes. II. A study on the precision of the multiple standard addition method, G. Horvai, K. Toth, and E. Pungor,Mogy. Kem. Foly 84 (11), 483–485 (1978) (Hung.).

    CAS  Google Scholar 

  26. New achievements in the flow solution analysis with ion selective electrodes, G. Nagy, Z. Feher, K. Toth, and E. Pungor,Ion Selective Electrode Conf.1977, 477–490 (1978).

    Google Scholar 

  27. Trends in the standardization of ion selective electrodes, R. G. Bates and R. A. Robinson,Ion Selective Electrode Conf.1977 (1978).

    Google Scholar 

  28. The use of combination electrodes in automated systems, M. Vandeputte, L. Dryon, and D. L. Massart (Pharm. Inst. Univ. Brussels, St. Genesius Rode. Belg),Ion Selective Electrodes Conf.1977, 583–587 (1978).

    Google Scholar 

  29. Analytical techniques involving ion selective electrodes, J. D. R. Thomas,ISE Conference 1977; 175–198 (1978).

    Google Scholar 

  30. Present status and future applications of coated wire electrodes, H. Freiser,Theory Des Biomeel Appl. Solidstate Chem. Sensor Workshop 1977, 177–182 (1978).

    Google Scholar 

  31. Survey of flow through analytical systems employing ion selective electrodes as detectors, G. Nagy, Z. Feher, K. Toth, and E. Pungor,Hung. Sci. Instrum.41, 27–39 (1977).

    CAS  Google Scholar 

  32. Errors and error propagation using ion selective electrodes evaluation of concentrations, S. Ebel, E. Glaser, and A. Seuring,Fresenius, Z.Anal. Chem. 291 (2), 108–112 (1978).

    CAS  Google Scholar 

  33. Studies on standard addition method in ion selective electrodes—An equation, a plot and a monograph involving A£, Chao Tsao-Fang,K’OHsueh TungPao.24 (5), 212–214 (1979).

    Google Scholar 

  34. Ion selective electrodes in organic elemental and functional group analysis—a review, W. Selig, Report 1977(CA 90, 161712 g) (1979).

    Google Scholar 

  35. Practical techniques for ion selective electrodes, R. J. Simpson, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. I, Chap. 3, pp. 13–66, CRC Press Inc. Florida (1979).

    Google Scholar 

  36. Ion Selective Electrodes in Medicine and Medical Research, D. M. Band and T. Treasure, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. II, Chap 3, pp. 41–63, CRC Press Inc. Florida (1979).

    Google Scholar 

  37. Analytical methods involving ion selective electrodes (including flow methods), K. Toth, G. Nagy, and E. Pungor, In:Ion Selective Electrode methodology, A. K. Covington, ed., Vol. II, Chap. 4, pp. 65–122, CRC Press Inc. Florida (1979).

    Google Scholar 

Solid Membrane Electrodes: Theory

  1. Electrode for sensing fluoride ion activity in solutions, M. S. Frant and J. W. Ross, Jr.,Science 154, 1553–1555 (1966).

    CAS  Google Scholar 

  2. Glass electrodes for hydrogen and other cations—Principles and Practice, G. Eisenman, ed., Marcel Dekker, New York (1967).

    Google Scholar 

  3. Theory of potential distribution and response of solidstate membrane electrodes, R. P. Buck,Anal. Chem.40, 1432–1439 (1968).

    CAS  Google Scholar 

  4. Alkaline earth and lanthanum ion electrodes of the third kind based on the hydrogen ion responsive glass electrode. Thermodynamic solubility products of long chain normal fatty acids and their alkaline earth and lanthanum salts in water, A. A. A. A1 Attar and W. H. Beck,J. Electroanal. Chem. Interfacial Electrochem.27, 59–67 (1970).

    Google Scholar 

  5. Study of the behaviour of membrane and single crystal electrodes with respect to some univalent ions, N. Bottazzini and V. Crespi,Chim. Ind. (Milan) 52, 866–869 (1970).

    CAS  Google Scholar 

  6. Recent results in the field of precipitate based ion selective electrodes, K. Toth, In:Ion Selective Electrodes, E. Pungor, ed., pp. 145–164, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  7. The low response of silicone rubber electrodes to low levels of activity, P. L. Bailey and E. Pungor, In:Ion Selective Electrodes, E. Pungor, ed., pp. 167–171, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  8. Response to Ca+2 ions of CaF2 crystal membrane electrode, G. Malathiet ah, Analyst (Lond ) 103 (1228), 768–770 (1978).

    Google Scholar 

  9. Effect of pH on response of a CN ISE, M. Gratzletal., Anal. Chim. Acta 102, 85–90 (1978).

    Google Scholar 

  10. Study of mechanism of ion selective electrode using impedance measurements, J. Mertens, P. Vanden Winkel, and J. Verecken,Bioelectrochem. Broenerg. 5 (4), 699–712 (1978).

    CAS  Google Scholar 

  11. Response of Cu(II) ion selective electrode to some complexing agents, I. L. Sekara and F. Josef,Anal. Lett.All (5), 415–427 (1978).

    Google Scholar 

  12. Dynamic response studies of solidstate CP ISE in presence of Fe(III) with an on line computer, J. W. Bixler, R. Nee, and S. P. Perone,Anal. Chim. Acta 99 (2), 225–232 (1978).

    CAS  Google Scholar 

  13. Transient characteristics of a cadmium ion selective electrode, E. Niki and H. Shirai (Fac. Technol. Univ. Tokyo, Japan),Elektrokhimiya 14 (5), 714–718 (Russ) (1978).

    Google Scholar 

  14. Grain boundary effects in solidstate ion selective electrodes, R. E. Vander Leest and A. Geven,J. Electroanal. Chem. Interfacial Electrochem.90 (1) 97–104 (1978).

    Google Scholar 

  15. Structure and electrical properties of the ion selective electrode membranes based on AgX-Ag2S (X = CI, Br, I), Yu. G. Vlasov and S. B. Kocheregin,Ion Selective Electrode Conf. 1977, 597–601 (1978).

    Google Scholar 

  16. Interpretation of the response mechanism of solidstate ion selective electrodes regarding diffusion process, A. Hulanicki and A. Leuenstam,ISE Conf.1977, 395–402 (1978).

    Google Scholar 

  17. The behaviour of solidstate ISE in the presence of complexing agents, W. E. Vander Linden and G. J. M. Heigne,ISE Conf.1977, 445–452 (1978).

    Google Scholar 

  18. Polyvinyl chloride matrix membrane ion selective electrodes, G. J. Moody and J. D. R. Thomas, In:Ion selective Electrode Methodology, A. K. Covington, ed., Vol. I, Chap. 7, pp. 111–130, CRC Press Inc., Florida (1979).

    Google Scholar 

  19. Heterogeneous membrane, carbon support and coated wire ion selective electrodes, R. W. Cattrall, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. 1, Chap. 8, pp. 131–173, CRC Press Inc., Florida (1979).

    Google Scholar 

  20. Crystalline and pressed powder; Solid membrane electrodes, R. P. Buck, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. 1, Chap. 9, pp. 175–250, CRC Press Inc., Florida (1979).

    Google Scholar 

  21. Gas-sensing probes, M. Riley, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. II, Chap. 1, pp. 1–21, CRC Press Inc., Florida (1979).

    Google Scholar 

Solid Membrane Electrodes: Instrumentation and Methods of Preparation

  1. Permselective membrane electrodes, J. S. Parsons,Anal. Chem. 30, 1262–1265 (1958).

    CAS  Google Scholar 

  2. Electrochemical generation of fluoride ion by solid-state transference, R. A. Durst and J. W. Ross,Anal. Chem.40, 1343–1344 (1968).

    CAS  Google Scholar 

  3. Nitrate determinations in soil extracts with the nitrate electrode, A. Oeien and A. R. Selmer-Olsen,Analyst (Lond) 94 (1123), 888–894 (1969).

    CAS  Google Scholar 

  4. Ion selective combination electrode of synthetic materials, D. N. Hoole and G. L. Klein, Ger. Offen. 1918590 (CI GOIN) 30 Oct. 1969.

    Google Scholar 

  5. Plastic electrodes selective for organic ions, T. Higuchi, C. R. Glian, and J. L. Tossounian,Anal. Chem. 42, 1674–1676 (1970).

    CAS  Google Scholar 

  6. Construction of ion selective glass electrodes by vacuum deposition of metals, J. P. Guignard and S. M. Friedman,J. Appl. Physiol.29, 254–257 (1970).

    CAS  Google Scholar 

  7. Copper(I) sulfide ceramic membrane as selective electrodes for copper(II), H. Hirata, K. Higashiyama, and K. Date,Anal. Chim. Acta 51, 209–212 (1970).

    CAS  Google Scholar 

  8. The p-n-p transistor used exponentially to linearize the voltage out put of the pC02 physiological electrode, C. E. W. Hahn,Rev. Sci. Instrum. 42, 1164–1168 (1971).

    CAS  Google Scholar 

  9. Differential potentiometric determination of parts per billion chloride with ion selective electrodes, T. M. Florence,J. Electroanal Chem. Interfacial Electrochem. 31, 77–86 (1971).

    CAS  Google Scholar 

  10. Apparatus for producing ion selective electrodes, F. Oehme, Ger. Offen. 2006194 (CI GOIN) 11 Feb. 1971.

    Google Scholar 

  11. Ion specific electrodes, J. Ruzicka, CG. Lamm, and JC. Tjell, Ger. Offen. 2034686 (CI GOIN) 11 Feb. 1971.

    Google Scholar 

  12. New type of solid-state ion selective electrodes with insoluble sulfides or halides, J. Ruzicka and C. G. Lamm,Anal. Chim. Acta 53 (1), 206–208 (1971).

    CAS  Google Scholar 

  13. Electrode—the universal ion selective solidstate electrode, I. Halides, J. Ruzicka and C. G. Lamm,Anal. Chim. Acta 54 (1), 1–12 (1971).

    Google Scholar 

  14. New type of lead(II) ion selective ceramic membrane electrode, H. Hirata and K. Higashiyama,Anal. Chim. Acta 54 (3), 415–422 (1971).

    CAS  Google Scholar 

  15. A further study on a chelate forming selective electrode, P. Gabor-Klatsmanyi, K. Toth, and E. Pungor, In:Ion Selective Electrodes, E. Pungor, ed., pp. 183–190, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  16. Development of a silicone-rubber potassium membrane electrode, J. Pick, K. Toth, M. Vasale, E. Pungor, and W. Simon, In:Ion Selective Electrodes, E. Pungor, ed., pp. 245–252, Akademiai Kiadu, Budapest (1973).

    Google Scholar 

  17. Polyvinyl chloride) matrix membrane ion selective electrodes, G. J. Moody and J. D. R. Thomas, In:Ion Selective Electrodes in Analytical Chemistry, H. Freiser, ed., Chap. 4, pp. 287–309, Plenum Press, New York (1978).

    Google Scholar 

  18. Electrodes for determination of ion activity, J. Vesely, J. Jindara, and F. Gvegr, Czech. 176359 (CI GOIN 27130) 15 Jan 1979.

    Google Scholar 

  19. Ion selective electrodes process control, J. M. Zimmer Theo,Mess. Pruef. 9, 521–524 (1978).

    Google Scholar 

  20. Ion selective electrode, J. Wedzicha, J. Pogorzelski, S. Walizak, Pol. 95511 (CI GOIN 27/30) 29 Apr 1978.

    Google Scholar 

  21. Superhigh sensitivity of a CuSe-Ag2S solid membrane Cu2+ ion selective electrode in several metal buffer solutions, Y. Umezawa,Bull. Chem. Soc. Jpn.52 (3), 945–946 (1979).

    CAS  Google Scholar 

  22. Specific electrode with modular construction, J. Tacussel, Fr. Demonde 2,363,798 (CI GOIN 27/30) 31 Mar 1978.

    Google Scholar 

  23. Ion sensitive inplantable electrodes fabricated by hybrid technology, S. S. Yee and M. A. Afromowitz,Theory Des Biomed, Appl. Solid State Sensor Workshop 1977, 81–89 (1978).

    Google Scholar 

  24. Potassium film electrodes based on macrocyclic polyesters, Sh. K. Norov et al.,Elektrok- himiya, 14 (10), 1615 (1978) (Russ).

    CAS  Google Scholar 

  25. Electrode coatings, S. Grabiec, E. Lubaszha, and I. Janczarski, Pol. 86912 (CI GOIN 27/30) 30 June 1978.

    Google Scholar 

  26. Carbon paste for Ca2+ ion selective electrode, G. A. Qureshi,Libyan J. Sci.8A, 37–41 (1978).

    Google Scholar 

  27. Construction and behaviour of micro flow through Cu(II) ion selective electrodes, W. E. Van der Linden andR. Oostervink,Anal. Chim. Acta 101 (2), 419–422 (1978).

    Google Scholar 

  28. Ion selective electrode, C. J. Battaglia, J. C. Chang, and D. S. Daniel,Res. Disci.176, 15–16 (1978).

    CAS  Google Scholar 

  29. Selective ion electrode, M. Lebl, J. Vesely, and J. Jindara, Czech 172449 (CI GOIN 27/30) 15 May 1978.

    Google Scholar 

  30. Measurement of chloride ion concentrations in microsamples, R. K. Popp, J. D. Frantz, G. L. Vogel, and P. E. Hare (Geophys. Lab. Carnegie Inst. Washington, Washington, DC) Year Book—Carnegie Inst. Washington 1977, 913–917 (1978).

    Google Scholar 

  31. Use of combination electrodes in automated systems, M. Vandeputte, L. Dryon, and D. L. Massart,Ion Selective Electrode Conf.1977, 583–587 (1978).

    Google Scholar 

  32. Construction of Cu2+, Cd2+ and Pb2+ ion selective electrode, A. Takashi,Denki Kagaka Oyobi Kogyo Butsuri Kagaku 46 (5), 259–263 (1978).

    Google Scholar 

  33. Polypropylene glycol adducts as sensor for ion selective electrodes, A. M. Y. Jaber, G. J. Moody, and J. D. R. Thomas,Ion Selective Electrodes Conf.1977, 411–417 (1978).

    Google Scholar 

  34. A fluoride sensitive electrode based on bismuth fluoride, V. Ebock and C. Neiser, Z.Chem.18 (9), 343–344 (1978) (Ger.).

    CAS  Google Scholar 

  35. New solid state ion selective electrodes for phosphate and chloride activity measurements, J. Tacussel and J. J. Fombon,Ion Selective Electrodes Conf.1977, 567–575 (1978).

    Google Scholar 

  36. Construction of CP, Br~, I”, S~, SCN~ and CN~ ion selective electrodes, A. Takashi,Denki Kagaku Oyobi Kogyo Butsuri Kagaku 46 (6), 343–347 (1978).

    Google Scholar 

  37. A new type of homogeneous chalcogenide ion selective electrodes, M. Neshkova and H. Sheytanov,Ion Selective Electrode Conf.1977, 503–510 (1978).

    Google Scholar 

  38. Technological investigations with ion selective electrodes for the purpose of determination of S04, W. Misniakiewicz and K. Raszkes,Ion Selective Electrode Conf. 1977, 467–475 (1978).

    Google Scholar 

  39. The formation of mixed CuS-Ag2S membranes for Cu2+ ion selective electrodes. Part III. Electrode response in presence of complexing agents, G. J. M. Heijne and W. E. Vander Linden,Anal. Chim. Acta 96 (1), 13–22 (1978).

    CAS  Google Scholar 

  40. Applications of chloride electrodes based on mercurous chloride/mercuric sulfide, P. L. Bailey, J. Wilson, S. Karpel, and M. Riley,Ion Selective Electrodes Conf.1977, 201–206 (1978).

    Google Scholar 

  41. A new type of homogeneous chalcogenide ion selective electrodes, M. Neshkova and H. Sheytanov,Ion Selective Electrodes Conf.1977, 503–510 (1978).

    Google Scholar 

  42. Heterogeneous ion selective electrodes based on epoxy resin. A CP ion selective electrode K. Sykut and E. Nowakowska,Biul. Lubel Two Nauk Mat. Fiz. Chem.19 (1), 89–93 (1977).

    CAS  Google Scholar 

  43. Cl~ and Br~ ion selective electrodes, J. Siemroth and I. Henning, Ger (East) 127997 (CI GOIN 27/30) 26 Oct 1977.

    Google Scholar 

  44. New solid state ion selective electrodes for phosphate and CP measurement, J. Tacussel and J. J. Fombon,Ion Selective Electrode Conf.1977, 567–575 (1978).

    Google Scholar 

  45. K+ ion selective electrode and digital apparatus for measurements, J. Havas, L. Keskes, and R. Somods,Orv. Tech.15 (2), 41–46 (1977) (Hung.).

    CAS  Google Scholar 

  46. Ion selective electrode crytur, M. Sember and M. Manek,Ion Selective Electrode Conf.1977, 529–537 (1978).

    Google Scholar 

  47. Determination of water miscible organic solvents by ion selective electrodes, G. J. Kakabadse,Solvents-Neglected Parameter, Solvents Symp. 2nd 1977, CA 90, 97119q (1979).

    Google Scholar 

Solid Membrane Electrodes: Applications

  1. Analytical study of a sulphide ion selective membrane electrode in alkaline solutions, G. A. Rechnitz and T. M. Hesa,Anal. Chem.40, 1054–1060 (1968).

    Google Scholar 

  2. Activity measurements with a fluoride selective membrane electrode, K. Srinivasan and G. A. Rechnitz,Anal. Chem.40, 509–512 (1968).

    CAS  Google Scholar 

  3. Trace fluoride determination with specific ion electrode, E. W. Baumann,Anal. Chim. Acta 42 (1), 127–132 (1968).

    CAS  Google Scholar 

  4. Lead poisoning in children: detection by ion selective electrode, G. A. Rechnitz,Science 166 (3904), 532 (1969).

    CAS  Google Scholar 

  5. Electrometric determination of iodine in organic material, B. Paletta and K. Panzenbeck,Clin. Chim. Acta 26, 11–14 (1969).

    CAS  Google Scholar 

  6. Analysis of alkaline pulping liquor with sulfide ion selective electrode, J. L. Swartz and T. S. Light,Tappi 53, 90–95 (1970).

    CAS  Google Scholar 

  7. Potentiometric measurements in aqueous, non-aqueous and biological media using a lead ion selective membrane electrode, G. A. Rechnitz and N. C. Kenny,Anal. Lett. 3, 259–271 (1970).

    CAS  Google Scholar 

  8. Potentiometric microdetermination of phosphate with an ion selective lead electrode, W. Selig,Mikrochim. Acta 564–571 (1970).

    Google Scholar 

  9. Semi-micro determination of oxalate with a lead specific electrode, W. Selig,Microchem. J.15, 452–458 (1970).

    CAS  Google Scholar 

  10. Determination of the cyanide ion in the atmosphere, drinking water, industrial wastes and biological media by a specific electrode, C. Collombel, J. P. Durand, J. Bureacy, and J. Cotte,J. Eurip. Toxicol. 3, 291–299 (1970).

    CAS  Google Scholar 

  11. Determination of cyanides with ion selective membrane electrodes, K. Toth and E. Pungor,Anal. Chim. Acta.51, 221–230 (1970).

    CAS  Google Scholar 

  12. Determination of fluoride in silicate rocks without separation of aluminium using a specific ion electrodes, B. L. Ingram,Anal. Chem.42, 1825–1827 (1970).

    CAS  Google Scholar 

  13. Determination of thiois with a specific ion electrode, L. C. Gruen and B. S. Harrap,Anal. Biochem.42, 377–381 (1971).

    CAS  Google Scholar 

  14. Iodide selective electrodes in reacting and in equilibrium systems, J. H. Woodson and H. A. Liebhafsky,Anal Chem.41, 1894–1897 (1969).

    CAS  Google Scholar 

  15. Standard addition titration method for the potentiometric determination of fluoride in sea water, T. Anfalt and D. Jagner,Anal. Chim. Acta 53, 13–22 (1970).

    Google Scholar 

  16. Potentiometric determination of halide ions in solution, M. Bartusek, J. Senkyr, J. Janosova, and M. Polasek, In:Ion Selective Electrodes, E. Pungor, ed., pp. 173–182, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  17. Bromide-selective electrode for use in following the Zhabotinsky-type oscillating chemical reaction, E. Koris and M. Bunger, In:Ion Selective Electrodes, E. Pungor, ed., pp. 191–203, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  18. Potentiometric studies on thioacetamide and thiourea by means of a sulphide ion selective membrane electrode, M. K. Papay, K. Toth, and E. Pungor, In:Ion Selective Electrodes, E. Pungor, ed., pp. 225–243, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  19. Method for following the formation of aluminium chloride di-isopropylate with a chloride- selective membrane electrode, I. Simonyi and I. Kalman, In:Ion Selective Electrodes, E. Pungor, ed., pp. 253–258, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  20. Application of ion selective membrane electrodes in organic analysis. Part II. Applications in organic analysis, G. E. Baiulescu and V. V. Cosofret (Eng. Trans), Chap. 6-9, 10.3, 11.1.2, 11.2.1, and 15.1 and 15.3. 2, Ellis Horwood Ltd. Publ., Chichester (1977).

    Google Scholar 

  21. Application of ion selective electrodes in steel industry, M. E. Hofton,Proc. Chem. Conf.1975,28, 72–80 (1976).

    Google Scholar 

  22. Indirect determination of small amounts of Co in presence of Zn ions and other metallic ions via cyanide ion selective electrodes, A. Duca and M. Florica,Rev. Chim. (Bucharest) 28 (12), 1186–1188 (1977).

    CAS  Google Scholar 

  23. Ion selective electrodes,Anon (Engl) Res. Disch.161, 29–39 (1977).

    Google Scholar 

  24. Behaviour of copper (II) ion selective electrodes in various copper ion buffers, T. Hashizume,Kitakyushu Kogyo Keto semmon Gakko Kenkyu Hokoku 11, 183–188 (1978).

    CAS  Google Scholar 

  25. CP selective liquid membrane electrodes based on lipophilic methyl-tri-N-alkyl ammonium compounds and their applicability to blood serum measurements, K. Hartman, S. Luterotti, H. F. Osswals, M. Oehme, P. C. Meier, D. Ammann, and W. Simon,Mikrochim. Acta 2, (3-4), 235–246 (1978).

    CAS  Google Scholar 

  26. Method for the determination of methanol in binary methanol-water mixtures by use of ion selective electrodes, G. J. Kakabadse, H. A. Maleilaet al.,Analyst (Lond) 103 (1231), 1046–1052 (1978).

    CAS  Google Scholar 

  27. Application of a copper electrode as a detector for high-performance liquid chromatography, C. R. Loscombe, G. B. Coz, and J. A. W. Dalziel,J. Chromatogr.166 (2), 403–410 (1978).

    CAS  Google Scholar 

  28. Measurement of critical miscellaneous concentration by ion selective electrodes, J. E. Newberg and V. Smith,Colloid Polym. Sci. 256 (5), 494–495 (1978).

    Google Scholar 

  29. Measurements of ionic activities in aqueous solution using epoxy based ion exchange membrane electrode, K. M. Joshi and G. M. Ganu,Ind. J. Technol. 16 (2), 53–55 (1978).

    CAS  Google Scholar 

  30. Determination of H2S in air using ion selective electrodes, Heyessy and Gyorgy,Munkavedelen , 24 (1–3), 21–25 (Hung.) (1978).

    Google Scholar 

  31. The limits of detection of gas sensing probes—Application to NH3 sensor, F. Van der Pol,Anal. Chim. Acta 97 (2), 245–252 (1978).

    Google Scholar 

  32. Solid state ion selective electrode SCN~ ion, Yu. V. Shavnya and Yu. M. Chikin,Elektrokhimiya 14 (2), 336 (1978).

    CAS  Google Scholar 

  33. Determination of tartrate ion activity using a commercial selectrode, L. P. Dorsett and D. E. Mucahy,Anal. Lett.A11 (11), 53–61 (1978).

    Google Scholar 

  34. Behaviour of a polycrystalline fluoride-selective membrane electrode in organo-aqueous media, L. I. Manakova, N. V. Bausova, V. E. Moiseev, V. G. Bamburov, and A. P. Sivoplyas,Zh. Anal. Khim. 33 (8), 1517–1520 (1978) (Russ.).

    CAS  Google Scholar 

  35. Determination of concentration of phosphate and arsenate ions, T. Tanaka, K. Hiiro, and A. Kawahara, Japan Kokai 7839193 (CI GOIN 27/56), 10 April 1978(CA 89 122625 r-1978).

    Google Scholar 

  36. Automated immunoassay with a silver sulfide ion-selective electrode, R. L. Solsky and G. A. Rechnitz,Anal. Chim. Acta 99 (2), 241–246 (1978).

    CAS  Google Scholar 

  37. Determination of F~ in organo-aqueous solutions using a F~ ion selective electrode, S. A. Gava, N. S. Poluckton, and G. N. Koroleva,Zh. Anal. Khim.33 (3), 506–510 (1978).

    CAS  Google Scholar 

  38. Simple potentiometric method for determination of reducing substances in unine with Cu2+ ion selective electrode, D. P. Nikolelis et al,Anal. Chim. Acta 98 (2), 227–232 (1978).

    CAS  Google Scholar 

  39. Determination of sulfates in natural waters using a barium selective electrode, G. Ouzounian and G. Michard,Anal. Chim. Acta 96 (2), 405–409 (1978).

    CAS  Google Scholar 

  40. Applications of ion selective electrodes to metal finishing industries, G. Subramanian, N. Chandra, and G. Prabhakara Rao,J. Electrochem. Soc. India 27 (1), 37–42 (1978).

    CAS  Google Scholar 

  41. Optimisation and control of lab. sulfidization of oxidised copper ores with ion selective electrodes, M. H. Jones and J. T. Woodcock,Proc. Austr. Inst. Min. Metall. 266, 11–19 (1978).

    CAS  Google Scholar 

  42. Evaluation of ion selective electrodes for control of Na2S additions during lab. flotation of oxidized ores, M. H. Jones and J. T. Woodcock,Trans. Inst. Min. Metall Sect. C 87, 99–105 (1978).

    CAS  Google Scholar 

  43. Clinical applications of ion selective electrodes, C. Fuchs, D. Dorn, and C. J. Preusse,Ion Selective Electrodes Conf.1977, 373–378 (1978).

    Google Scholar 

  44. Application of chloride ion selective electrodes in the production of synthetic fibers, L. N. Bykova, N. A. Kazaryan, N. S. Chernova, I. D. Shakhova, and N. M. Kvasha,Ion Selective Electrodes Conf.1977, 289–295 (1978).

    Google Scholar 

  45. Determination of S032-, S02 and HS03 by zero current chronopotentiometry, I. Sekera andJ. F. Lechner,Anal. Chim. Acta 99 (1), 99–104 (1978).

    Google Scholar 

  46. Free cyanide analyser, R. A. Purch,Ion Selective Electrode Conf.1977, 359–362 (1978).

    Google Scholar 

  47. An investigation of halide ion selective electrodes in mixed solution, L. N. Bykova, N. A. Kzaryn, E. Pungor, and N. S. Chernova,Ion Selective Electrodes Conf.1977, 281–287 (1978).

    Google Scholar 

  48. Potentiometric determination of alkylxanthates with ion selective electrodes, G. E. Baillescu, V. V. Cosofret, and M. Blasnic,Ion Selective Electrode Conf.1977, 207–214 (1978).

    Google Scholar 

  49. Determination of Pd(II) as Pdl2 by l~ ion selective electrode, V. Vajgand and V. Kalajligeva,Ion Selective Electrode Conf. 1977, 577–581 (1978).

    Google Scholar 

  50. Analysis of multi-ionic solution with several ion selective electrodes, V. Rauno,Ion Selective Electrode Conf 1977., 589–595 (1978).

    Google Scholar 

  51. Experiments with PVC matrix membrane Ca2+ ion selective electrodes, B. J. Birch, A. Craggs, G. J. Moody, and J. D. R. Thomas,J. Chem. Educ. 55 (11), 740–741 (1978).

    CAS  Google Scholar 

  52. Testing and characteristics of colbutinol ion selective electrodes, K. Fukamachi and N. Ishibashi, Yakugaku Zasshi,99 (2), 126–130 (1979) (Japan).

    CAS  Google Scholar 

  53. Continuous measurement and automatic control of aluminum for paper making systems, F. Deheme, TAPPI Papermakers conf. (Proc) 41–47 (1979).

    Google Scholar 

  54. Ion selective electrodes in organic functional group analysis: Microdetermination of hydrazines with the copper electrode, S. S. M. Hassan and M. T. M. Zaki,Mikrochim. Acta 1 (1-2), 137–144 (1979).

    CAS  Google Scholar 

Liquid Ion Exchange Membrane Electrodes: Theory

  1. Liquid ion exchange membranes of extreme selectivity and permeability of anions, K. Sollner and G. M. Shean,J. Am. Chem. Soc.86, 1901–1902 (1964).

    CAS  Google Scholar 

  2. Liquid ion exchange membranes of extreme ionic selectivity and high transmissivity, K. Sollner and G. M. Shean,Protoplasma 63 (1-3), 174–180 (1967).

    CAS  Google Scholar 

  3. Calcium selective electrode with liquid ion exchanger, J. W. Ross, Jr.,Science 156, 1378–1379 (1967).

    CAS  Google Scholar 

  4. Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties, J. Sandblom, G. Eisensmair, and J. L. Walker, Jr.,J. Phys. Chem.71 (12), 3862–3870 (1967).

    CAS  Google Scholar 

  5. Liquid ion exchange membranes with weakly ionised groups. I. A theoretical study of their steady state properties, J. Sandblom,J. Phys. Chem.73, 249–264 (1969).

    CAS  Google Scholar 

  6. Electrochemical behaviour of liquid anion membranes. Bionic potentials with the NOJ-CP, NOg-Br”, Br~-Cl~ couples, G. Scibona, P. R. Danesi, F. Salvemini, and B. Seuppa,J. Phys. Chem.75 (4), 554–561 (1971).

    Google Scholar 

  7. Bi-ionic potentials of a liquid membrane electrode selective toward calcium, J. Bagg, O. Nicholoson, and R. Vinen,J. Phys. Chem. 75, 2138–2143 (1971).

    CAS  Google Scholar 

  8. Selectivity parameter and partition coefficient for a calcium selective electrode, J. Bagg and W. P. Chung,Aus. J. Chem.24, 1963–1966 (1971).

    CAS  Google Scholar 

  9. Experience of using chloride electrodes in blood, Z. A. Alagova, G. I. Shumilova, and K. I. Sulka,Nauchn. Tr. Kofan Gos. Univ. 232, 148–152 (1977) (Russ.).

    CAS  Google Scholar 

  10. Effect of phenol deriv on the selectivity of an organic sulphonate selective electrode, F. Taitiro, O. Satoshi, and H. Hirokazu,Chem. Lett.11, 1201–1202 (1978).

    Google Scholar 

  11. Effect of solvent nature on the selectivity of liquid Br~ ion selective electrodes, G. L. Starobinets, E. M. Rakhmanko, and R. Del Toro Renis,Vestsi Akad. Nauk BSSR Ser Khim. Nauk 4, 75–78 (1978).

    Google Scholar 

  12. Dynamic behaviour of a liquid membrane electrode reversible to nicotinate ion, L. Companella, T. Ferri, D. Gozzi, and G. Scorcelletti,Ion Selective Electrode Conf.1977, 307–316 (1978).

    Google Scholar 

  13. A mechanistic tool for liquid membrane ion selective electrodes investigation: Polarization of the liquid/liquid interface, J. Korytaet al.,Ion Selective Electrode Conf.1977, 441–444 (1978).

    Google Scholar 

  14. Exchange kinetics at a K+ selective liquid membrane electrode, C. Karl,Anal. Chem.50 (7), 936–940 (1978).

    Google Scholar 

  15. Relationship between activity and concentration measurements of plasma potassium, D. M. Band, J. Kratochvil, P. A. Poole Wilson, and T. Treame,Analyst (Lond) 103 (1224), 246–251 (1978).

    CAS  Google Scholar 

  16. Recent development in field of neutral carrier based ion selective electrodes, W. E. Morf and W. Simon,Ion Selective Electrodes Conf.1977, 149–159 (1978).

    Google Scholar 

  17. Ion transport in free and supported nitrobenzene aliquat nitrate liquid membrane ion selective electrodes. I. Bulk electrical properties including association and dielectric concentration, D. E. Mathis and R. P. Buck,J. Membr. Sci.4 (3), 379–394 (1979).

    CAS  Google Scholar 

  18. Ion transport in free and supported nitrobenzene aliquat nitrate liquid membrane ion selective electrodes. II. Interfacial kinetics and time dependent phenomena, D. E. Mathis, F. S. Stover, and R. P. Buck,J. Membr. Sci.4 (3), 395–413 (1979).

    CAS  Google Scholar 

  19. A study of the mechanism of response of liquid ion exchange Ca2+ ion selective electrode. Part I. Zero current potential of commercial and modified electrodes, M. Van Nicole and C. Garkch,J. Electroanal. Chem. Interfacial Electrochem.97 (2), 151–161 (1979).

    Google Scholar 

  20. Liquid ion exchange types, A. K. Covington and P. Davison, In:Ion Selective Electrode Methodology, A. K. Covington, ed., Vol. 1, Chap. 6, pp. 85–110, CRC Press Inc. Florida (1979).

    Google Scholar 

Liquid Ion Exchange Membrane Electrodes: Instrumentation and Method of Preparation

  1. A study of Ca-K ioa-exchange equilibrium with the help of membrane electrodes, S. K. Bose,J.Ind. Chem. Soc.37, 465–472 (1960).

    CAS  Google Scholar 

  2. Liquid anion membrane electrodes sensitive to metal cation concentration, G. Scibona, L. Mantella, and P. R. Danesi,Anal. Chem.42, 844–848 (1970).

    CAS  Google Scholar 

  3. A liquid ion exchange electrode specific to iodide ions, A. L. Grekovich, E. A. Materova, and T. I. Pronkina,Electrokhimiya 7, 436–438 (1971);Sov. Electrochem.7, 421–422 (1971).

    Google Scholar 

  4. Cation selectivity of liquid membrane electrodes based upon new ligands, W. Simon and W. E. Morf, In:Ion Selective Electrodes, E. Pungor, ed., pp. 127–143, Akademiai Kiado, Budapest (1973).

    Google Scholar 

  5. Liquid membrane electrodes with bromide CP functions, Moskvinet al.,Zh. Anal. Khim. 32 (8), 1559–1563 (1977).

    CAS  Google Scholar 

  6. Ion selective thiocyanate electrode for monitoring technological solutions at gold-extracting plants, Yu. Shavnya, Yu. M. Chikin, and V. A. Pronin,Nauchn. Tr. Irkutsk. Gos. Nauchno- Issted Inst. Redk. Tsventn. Met.31, 63–66 (1977) (Russ.).

    Google Scholar 

  7. Construction of a new perbromate selective electrode. Kinetic study of the Fe(II) perbromate reaction and microdetermination of iron, L. A. Lazarou and T. P. Hadjioannou,Anal. Lett.A11 (10), 719–795 (1978).

    Google Scholar 

  8. Liquid ion selective electrodes based on Zn tetrathiocyanate anion, E. M. Rakhmembo, G. L. Starobinets, V. L. Lomako, and A. Beisis,Vestsi. Akad. Nauk. BSSR Ser Khim. Nauk 6, 68–71 (1978) (Russ.).

    Google Scholar 

  9. Calcium ion selective electrodes based on calcium bis sensor and trialkyl phosphate mediators, G. J. Moody, N. S. Nassory, and J. D. R. Thomas,Analyst (Lond.) 103 (1222), 68–71 (1978).

    CAS  Google Scholar 

  10. An ion-extractive liquid membrane anionic surfactant sensitive electrode and its analytical applications, N. Ciocan and D. F. Anghel,FrtseniuoZ. Anal. Chem. 290 (3), 237–240 (1978).

    CAS  Google Scholar 

  11. Ion selective electrodes based on uranyl bis (2-ethylhexyl) phosphate, V. A. Mikhrilov, V. V. Ospov, and N. V. Serebrennikova,Zh. Anal. Khim.33 (6), 1154–1158 (1978).

    Google Scholar 

  12. Research and development of selective membrane electrodes. Communication in hydrogen chromate selective electrodes, Yu. I. Urusov, V. V. Sergievskii, A. F. Zhukov, and A. V. Gordievskii,Zh. Anal. Khim.34 (1), 156–160 (1979).

    CAS  Google Scholar 

  13. Ion exchanger and ion selective electrodes, Y. Shibazaki and N. Hanaoka, Japan Kokai Tokyo Koho 7923092 (CI BOIJ 1/04) 21 Feb. 1979.

    Google Scholar 

  14. Substance for indicator membranes of ion selective electrodes for determining potassium, ammonium and ocsium ions, A. V. Gordievskii, Yu. I. Urusov, and V. Syrchenk,Otkrytiya. Izofret, Prom. Obraztsy Tovarnye Znaki 6, 143 (1979).

    Google Scholar 

  15. Combination ion selective electrode based on solvent polymeric membranes, R. E. Dohner and W. Simon,Anal. Lett.12 (A3), 205–212 (1979).

    CAS  Google Scholar 

Liquid Ion Exchange Membrane Electrodes: Applications

  1. Studies with ion exchange calcium electrodes in biological fluids: Some applications in biomedical research and clinical medicine, E. W. Moore, In:Ion Selective Electrodes, R. A. Durst, ed., Nat. Bur. of. Stand. Publ. No. 314, Chap. 7, pp. 215–285 (1969).

    Google Scholar 

  2. Nitrate determination in soil extracts with the nitrate electrode, A. Oien and A. R. Selmer-Olsen,Analyst (Lond.) 94 (1123), 888–894 (1969).

    Google Scholar 

  3. Response of calcium selective and divalent cation selective electrodes to cyclohexyl ammonium ion, H. B. Collier,Anal. Chem.42, 1443 (1970).

    CAS  Google Scholar 

  4. Determination of nitrogen dioxide and nitric oxide in the parts per million range in flowing gaseous mixtures by means of the nitrate-specific ion electrode, R. DiMartini,Anal. Chem. 42, 1102–1105 (1970).

    CAS  Google Scholar 

  5. Analysis of plants soils and waters for nitrate by using an ion selective electrode, P. J. Milham, A. S. Awad, R. E. Paull, and J. H. Bull,Analyst (Lond.) 95 (1133), 751–757 (1970).

    CAS  Google Scholar 

  6. Determination of nitrate in waters with the nitrate selective ion electrode, D. R. Keeney, B. H. Byrnes, and J. J. Genson,Analyst (Lond.) 95 (1125), 383–386 (1970).

    CAS  Google Scholar 

  7. Analytical applications of liquid ion exchangers, A. R. Prabhu and S. M. Khopkai,J. Sci. Ind. Res.30, 16–22 (1971).

    CAS  Google Scholar 

  8. Application of ion selective membrane electrodes in organic analysis. Part II. Application in Organic Analysis, G. E. Baiulescu and V. V. Cosofret (Eng. Trans), Chap. 11, 13, 15, 16. 3, Ellis Horwood Ltd. Publ., Chichester (1977).

    Google Scholar 

  9. Potentiometric determination of boric acid in elemental boron with a fluoborate specific electrode, R. O. Inlow, Report 1977, NBL 287, 7 pp. (1977).

    Google Scholar 

  10. Ion selective electrode for determining anions, K. W. Sykut, J. Dumkiewicz, A. R. Duonkiewicz, Pol. 93,227 (CI GOIN 27/30) 15 Dec. 1977.

    Google Scholar 

  11. A study of surfactant solutions using the liquid membrane electrode selective to alkyl sulphate ions, A. Yamauchiet al,Bull. Chem. Soc. Jpn.51 (10), 2791–2794 (1978).

    CAS  Google Scholar 

  12. Ion selective membrane electrodes for organic analysis. Acetylcholins selective liquid membrane electrode, E. Hopirtem and M. Miklos,Rev. Chim (Bucharest) 29 (12), 1178–1181 (1978) (Rom.).

    Google Scholar 

  13. Study of a sodium ion selective electrode, E. A. Materova, Z. S. Alagova, G. I. Shomilova, and L. P. Vatlina,Vestn. Leningr. Univ. Fiz. Khim.4, 112–115 (1978) (Russ.).

    Google Scholar 

  14. Liquid membrane ion selective electrodes for some alkaloids, T. Goina, S. Hobai, and L. Razenberg,Farmecka (Bucharest) 26 (3), 141–147 (1978) (Rom.).

    CAS  Google Scholar 

  15. Application of ion selective electrodes in the purity test for CP and Pb2+ in several DAB and DAC substances, Ali Syed Laik, Stock, Wilfried,Pharm. Ztg.123 (41), 1815–1823 (1978).

    Google Scholar 

  16. Ion selective electrodes without reference solutions, Sh. K. Norov et al.,Elektrokhimiya 14 (10), 1613 (1978) (Russ.).

    CAS  Google Scholar 

  17. Serum Ca2+ and K+ determination by split membrane ion selective electrodes technique, R. W. Cattrall and T. Fong Kwok,Talanta 25 (9), 541–543 (1978).

    CAS  Google Scholar 

  18. Liquid state ion selective electrodes for determination of acidic and basic dyes, A. G. Fog and K. S. Yoo,Ion Selective Electrode Conf.1977, 369–372 (1978).

    Google Scholar 

  19. A dual ion selective electrode detector for the simultaneous detection of bromine and chlorine containing compounds in gas chromatography, K. Tsugioet al.,Anal. Chim. Acta 101 (2), 273–281 (1978).

    Google Scholar 

  20. Ion selective electrode responsive to chlorate ion, K. Hitoshi,Kitakyushu Kogyo Koto semmon Gakko Kenbyu Hokoku 11, 159–164 (1978).

    Google Scholar 

  21. Determination of gold in cyanide solutions with an ion selective electrode, Yu. V. Shavnya, A. S. Bychkov, O. M. Petrukhim, V. A. Zarinskii, L. V. Bakhtinova, and Yu. A. Zolotov,Zh. Anal. Khim 33 (8), 1531–1538 (1978) (Russ.).

    CAS  Google Scholar 

  22. New chloramine T and picrate ion selective electrode, T. P. Hadjiioannou, M. A. Koupparis, and E. P. Diamandis,Proc. Anal. Div. Chem. Soc.15 (3), 78–80 (1978).

    CAS  Google Scholar 

  23. Alcohol, lactate and glutamate sensors based on oxidoreductases with regeneration of nicotinamide adenine dinucleotide, A. Malinavskas and J. Kulys,Anal. Chim. Acta 98 (1), 31–37 (1978).

    Google Scholar 

  24. Measurement of free Ca2+ ion in capillary blood and serum, C. F. A. Niel, F. Torben, L. Komarmy, and O. Siggaard-Anderson,Clin. Chem. (Winston-Salem, N.C.)24(9), 1545–1552 (1978).

    Google Scholar 

  25. Determination of CP, F~, K+ and Na+ ion concentration of biological fluids by ion sensitive microcapillary electrode, J. Havas,et al.,Hung. Sci. Instrum.43, 7–14 (1978).

    CAS  Google Scholar 

  26. Recording intracellularly with K+ ion selective electrodes from single cortical neurons in awake cats, B. Wong and C. Woody,Exp. Neurol.61 (1), 219–225 (1978).

    CAS  Google Scholar 

  27. The calibration and use of a calcium ion specific electrode for kinetic studies of microhondrial calcium transport, R. K. Yamazaki, D. L. Mickey, and M. Story,Anal. Biochem. 93 (2), 430–441 (1979).

    CAS  Google Scholar 

Enzyme Electrodes: Theory

  1. Mechanism of action of valinomycin on mitochondria, C. Moore and B. C. Pressman,Biochem. Biophys. Res. Commun.15 (6), 562–567 (1964).

    CAS  Google Scholar 

  2. A highly selective cation electrode system based on in vitro behaviour of macrotetrolides in membranes, Z. Stefanac and W. Simon,Chimia 20 (12), 436 (1966) (Ger.).

    CAS  Google Scholar 

  3. The analytical role of ion selective and gas sensing electrodes in enzymology, C. J. Moody and J. D. R. Thomas,Analyst 100, 609–619 (1975).

    CAS  Google Scholar 

  4. Standard proton affinity of water-alcohol and water-ketone media determined using G ferricerium electrode, A. A. Pendin, O. L. Kucherova, T. K. Bunding, O. M. Susareva, and B. P. Nikol’skii,Dokl. Akad. Nauk SSSR 241 (2), 404–407 (1978) (Phys-Chem) (Russ.).

    CAS  Google Scholar 

Enzyme Electrodes: Instrumentation and Method of Preparation

  1. Electrodes for measuring urease enzyme activity, J. G. Montalvo, Jr.,Anal. Chem.41, 2093–2094 (1969).

    CAS  Google Scholar 

  2. A urea-specific enzyme electrode, G. Guilbault and J. G. Montalvo,J. Amer. Chem. Soc.91, 2164 (1969).

    CAS  Google Scholar 

  3. An electrode for determination of amino acids, G. G. Guilbault and E. Harbankova,Anal. Chem.42, 1779–1783 (1970).

    CAS  Google Scholar 

  4. Enzyme electrode for amygdalin, G. A. Rechnitz and R. Llendada,Anal. Chem.43, 283 (1971).

    CAS  Google Scholar 

  5. A novel penicillin enzyme electrode, C. J. Olliff, R. T. Williams, and J. M. Wright,Pharm. Pharmacol.30, 45 pp (1978).

    Google Scholar 

  6. An enzyme electrode for acetylcholine, D. Patrick, D. Alain, and T. Daniel,Biochem. Biophys. Acta 527 (1), 277–281 (1978).

    Google Scholar 

  7. Flexible valinomycin electrodes for on line determination of intravascular and myocardial K+, J. L. Hillet al., Am. J. Physiol.235 (4), 1455–1459 (1978).

    Google Scholar 

  8. Electrochemical studies of NADH in order to produce an enzyme electrode, H. Jaegfeldt and A. Torstensson,Ion Selective Electrodes Conf.1977, 403 (1978).

    Google Scholar 

Enzyme Electrodes: Applications

  1. Application of ion selective membrane electrodes in organic analysis. Part II. Application in organic analysis, G. Bainlescu and V. V. Cosofret (Eng. Trans), Chap. 10, 12–14, 16.1–16.2, 17, Ellis Horwood Ltd. Publ., Chichester (1977).

    Google Scholar 

  2. Determination of glucose in blood by H202 measurement with an enzyme electrode, F. Scheller, M. Jaenchen, O. Ristau, and I. Seyer,Fruchdiabetes Pathog Diagn. Pract. Kailsbugu Symp. Dabetes fragen 9th 2, 348–351 (1977) (Ger.).

    CAS  Google Scholar 

  3. Enzyme electrodes for L. lysine, L. histidine and L. tyrosine and L. arginine, W. C. White, 173 pp (1977) Avail. From Univ. Microfilms Int. Order No. 7809023.

    Google Scholar 

  4. Enzyme electrodes, A. Takasaka,Riusho Kensa 22 (5), 556–559 (1978) (Japan).

    CAS  Google Scholar 

  5. Membrane electrode measurement of lysozyme enzyme using living bacterial cells, P. D’Orazio, M. E. Meyerholf, and G. A. Rechnitz,Anal. Chem. 50 (11), 1531–1534 (1978).

    Google Scholar 

  6. Lysine specific enzyme electrode for determination of lysine in grains and foodstuff, W. C. White and G. G. Guilbault,Anal. Chem. 50 (11), 1481–1486 (1978).

    CAS  Google Scholar 

  7. An electrode for glucose Part 4. Measurements in diluted and undiluted whole blood samples with a simple arrangement, P. G. Reitnaver, Z.Med. Laboratoriumsdiagn.19 (3), 176–186 (1978) (Ger.).

    Google Scholar 

  8. Determination of L-amino acids and alcohols with oxidate enzymes and a tubular iodide- selective electrode, M. Ma Scini and G. Palleschi,Anal. Chim. Acta 100, 215–222 (1978).

    Google Scholar 

  9. Enzyme collagen membranes for electrochemical determination of glucose, D. R. Thevenotet al.,Anal. Chem.51 (1), 96–100 (1979).

    CAS  Google Scholar 

  10. Potentiometric enzyme electrode for lactate, T. Shinbo,et al.,Anal. Chim. 51 (1), 100–104 (1979)

    CAS  Google Scholar 

  11. Enzyme electrode for exhibitors determination urcate fluoride system, T. M. Canhet al.,Anal. Chem.51 (1), 91–95 (1979).

    Google Scholar 

General Principles, Reviews, and Books

  1. Studies in electrode polarisation. Part IV. The automatic control of the potential of a working electrode, A. Hickling,Trans. Faraday Soc.38, 27–36 (1974).

    Google Scholar 

  2. Coulometric analysis, J. J. Lingange,J. Am. Chem. Soc. 67, 1916–1922 (1945).

    Google Scholar 

  3. Electroanalysis, S. E. Q. Ashley,Anal. Chem.24, 91–95 (1952).

    CAS  Google Scholar 

  4. Electroanalytical Chemistry, J. J. Lingane, Interscience Publishers, Inc., New York (1953).

    Google Scholar 

  5. Electroanalysis, D. Deford,Anal. Chem. 26, 135–140 (1954).

    CAS  Google Scholar 

  6. Electroanalysis at controlled potential and related methods, In:New Instrumental Methods in Electrochemistry, P. Delahay, Chap. 12, pp. 282–298, Interscience Publishers, Inc., New York (1954).

    Google Scholar 

  7. Coulometry at controlled current, In:New Instrumental Methods in Electrochemistry, P. Delahay, Chap. 14, pp. 301–315, Interscience Publishers, Inc., New York (1954).

    Google Scholar 

  8. Instrumentation in coulometry at controlled current, In:New Instrumental Methods in Electrochemistry, P. Delahay, Chap. 19,402–407, Interscience Publishers, New York (1954).

    Google Scholar 

  9. Coulometric methods, W. D. Cooke, In:Organic Analysis, J. Mitchell, Jr., I. M. Kolthoff, E. S. Prosakauer, and A. Weissberger, eds., Vol. 2, pp. 169–193, Interscience Publishers,* New York (1954).

    Google Scholar 

  10. Electroanalysis, D. Deford,Anal. Chem.28, 660–666 (1956).

    CAS  Google Scholar 

  11. Electroanalysis and coulometric analysis, D. Deford and R. C. Bowers,Anal. Chem.30, 613–619 (1958).

    CAS  Google Scholar 

  12. Controlled potential electrolysis, L. Meites, In:Physical Methods of Organic Chemistry, A. Weissberger, ed., Vol. 1, Part IV, Chap. XLIX, pp. 3281–3333, Interscience Publishers, Inc., New York (1959).

    Google Scholar 

  13. Electroanalysis and coulometric analysis, D. Deford,Anal. Chem. 32, 31R–37R (1960).

    CAS  Google Scholar 

  14. Coulometric analysis, K. Abresch and I. Classen, (Eng. Trans), General principles, end point detection: Sec. 2-5, pp. 19–55; Electrolysis cells and instrumentation, Sec. 6–12, pp. 56–133; Analytical applications, pp. 137–151, pp. 217–238; Coulometric titrations, pp. 152–216, Chapman and Hall Ltd., London (1961).

    Google Scholar 

  15. Electroanalysis and coulometric analysis, A. J. Bard,Anal. Chem.34, 57R–64R (1962).

    CAS  Google Scholar 

  16. Coulometric analysis, D. D. Deford and J. W. Miller, In:Treatise on Analytical Chemistry, I. M. Kolthoff, P. J. Elving and S. B. Sandell, eds., Part I, Vol. 4, pp. 2475–2531, Interscience Publishers, New York (1963).

    Google Scholar 

  17. Electroanalysis and coulometric analysis, A. J. Bard,Anal. Chem. 36, 70R–79R (1964).

    CAS  Google Scholar 

  18. Controlled potential electroanalysis, coulometry, In:Polarographic Techniques, L. Meites, Chap. 10, pp. 511–538, Interscience Publishers, New York (1965).

    Google Scholar 

  19. Electroanalysis and coulometric analysis, A. J. Bard,Anal. Chem. 38, 88R–91R (1966).

    Google Scholar 

  20. Electroanalysis and coulometric analysis, A. J. Bard,Anal. Chem.40, 64R–79R (1968).

    Google Scholar 

  21. A. J. Bard and K. S. V. Santhanam, InElectroanalytical Chemistry, Vol. 4, Theory: pp. 217–251 A. J. Bard, ed.; Application: pp. 252–288; Experimental Methods: pp. 288 - 309; Marcel Dekker, Inc., New York (1970).

    Google Scholar 

  22. Instrumentation for process applications: Coulometry, C. D. Lewis, In:Treatise on Analytical Chemistry, I. M. Kolthoff, P. J. Elving, and S. B. Sandell, eds., Part I, Vol. 10, Chap. 105, pp. 6339–6347, Wiley-Interscience, New York (1972).

    Google Scholar 

  23. Techniques, apparatus and analytical applications of controlled potential coulometry, J. E. Harrar, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 8, Principles and scope of coulometric techniques: pp. 4–23; Instrumentation and electrolysis cell design: pp. 23–86; Operational techniques: pp. 86–106; Analytical applications: pp. 106–167; Marcel Dekker, Inc., New York (1975).

    Google Scholar 

  24. Continuous analysis based on electrochemistry. III. Coulometry. H. L. Kies,Rev. Anal. Chem. 2 (3), 229–277 (1975).

    CAS  Google Scholar 

  25. Coulometry and coulometric titrations, S. Ebel, (Ger), Pharm. Unseres. Zeit 5 (5), 139–144 (1976).

    CAS  Google Scholar 

  26. Potential scanning coulometry: Theory and application to the study of chemical reactions associated with the electrode reaction, E. Laviron, L. Roullier, and R. Gavasso,J. Electroanal. Chem. Interfacial Electrochem.75 (1), 287–300 (1977).

    CAS  Google Scholar 

  27. Coulometric analysis, I. A. Kedrinskii, 32 pp., Sibirskii Tekhnologicheskii Institut., Krasnoyarsk, USSR (1977).

    Google Scholar 

  28. Application of controlled potential coulometry to reaction kinetics of species at tracer scale concentration: ‘The radio coulometry’, K. Samhoun and F. David, Report 1977, IPNO-RC- 77–05, 15 pp. (Eng). Avail. INIS from INIS Atomindex 8 (23) Abstr. No. 342851 (1977).

    Google Scholar 

  29. Coulometric analyzers at a controlled potential (Review), R. F. Salikhdzhanova,Zavod. Lab.44 (1), 9–11 (1978).

    CAS  Google Scholar 

  30. Modern electrochemical techniques in chemical, biochemical and pharmaceutical analysis. II. Coulometric techniques, G. T. Patriarche,Labo-Pharma-Probl. Tech. 26 (280), 817–826 (Fr.) (1978).

    CAS  Google Scholar 

  31. Coulometry in non-aqueous media, E. A. M. F. Dahmen and M. Bos,Proc. Anal. Div. Chem. Soc.15 (3), 86–91 (1978).

    CAS  Google Scholar 

  32. Amperometry, coulometry, conductimetry and potentiometry used in routine biochemistry, F. Paolaggi,Dimanche, Bid. Lariboisiere (C.R.) 20, 66–102 (Fr.) (1980).

    CAS  Google Scholar 

Theory and Its Application to Kinetic Studies

  1. Controlled potential electroanalysis, J. J. Lingane,Anal. Chim. Acta 2, 591 (1948).

    Google Scholar 

  2. Reduction of some nitro-compounds at stirred mercury surface, L. Bergman and J. C. James,Trans. Faraday Soc.50, 60–65 (1954).

    CAS  Google Scholar 

  3. Pulse coulometry, M. A. V. Devanathan and Q. Fernando,Trans. Faraday Soc.52, 1332–1337 (1956).

    CAS  Google Scholar 

  4. Current efficiency and titration efficiency in coulometric titration with electrogenerated eerie ion. Determination of iodine, J. J. Lingane, C. H. Langford, and F. C. Anson,Anal. Chim. Acta 16, 165–174 (1957).

    CAS  Google Scholar 

  5. Semi-micro hydrogenation with electrolytically generated hydrogen, J. W. Miller and D. D. DeFord,Anal. Chem.30, 295–298 (1958).

    CAS  Google Scholar 

  6. ‘96493’ coulombs, J. J. Lingane,Anal. Chem.30, 1716–1723 (1958).

    CAS  Google Scholar 

  7. Constant potential coulometric reduction of organic nitro and halogen compounds, V. B. Ehlers and J. W. Sease,Anal. Chem.31, 16–22 (1959).

    CAS  Google Scholar 

  8. Background corrections in controlled potential coulometric analysis, L. Meites and S. Moros,Anal. Chem.31, 23–28 (1959).

    CAS  Google Scholar 

  9. Evaluation of the effect of secondary reactions in controlled potential coulometry, D. S. Geske and A. J. Bard,J. Phys. Chem. 63, 1057–1062 (1959).

    CAS  Google Scholar 

  10. Classification and nomenclature of electroanalytical methods, P. Delahay, G. Chariot, and W. A. Laitinent,Anal. Chem. 32, 1034 (1960).

    Google Scholar 

  11. A study of the molybdenum-catalyzed reduction of perchlorate, G. A. Rechnitz and H. A. Laitinen,Anal. Chem. 33, 1473–1477 (1961).

    CAS  Google Scholar 

  12. Utilisation d’un convertisseur tension-frequence pan l’integration coulometrique, R. Amsmann and J. Desbanes,J. Electroanal. Chem. 4, 121–122 (1962).

    Google Scholar 

  13. Precise wide-range direct reading electronic integrators, E. N. Wise,Anal. Chem. 34, 1181 (1962)

    CAS  Google Scholar 

  14. High speed coulometer based on a voltage to frequency converter, A. J. Bard and E. Solon,Anal. Chem. 34, 1181–1183 (1962).

    CAS  Google Scholar 

  15. A new method for the study of intermetallic compound formation in mixed amalgams, H. K. Ficker and L. Meites,Anal. Chim. Acta 26, 172–179 (1962).

    CAS  Google Scholar 

  16. Secondary reaction in controlled potential coulometry. II. Secondary electrode reactions, A. J. Bard and J. S. Mayell,J. Phys. Chem. 66, 2173–2179 (1962).

    CAS  Google Scholar 

  17. Experimental evaluation of rate constants for dimerization of intermediates formed in controlled potential electrolyses, L. Meites,J. Electroanal. Chem. 5, 270–280 (1963).

    CAS  Google Scholar 

  18. Physico-chemical hydrodynamics (translated by Scripta Technica Inc. Englewood Cliffs, N.J. Prentice Hall, 1962 700 pp.) V. G. Levich,Physico Chemical Hydrodynamics, Prentice Hall (1963)

    Google Scholar 

  19. Secondary reactions in controlled potential coulometry. III. Preceding and simultaneous chemical reactions, A. J. Bard and E. Solon,J. Phys. Chem. 67, 2326–2330 (1963).

    CAS  Google Scholar 

  20. Evaluation of rate constants for consecutive and competing first or pseudo-first order reactions with specific reference to controlled potential electrolysis, R. I. Gelb and L. Meites,J. Phys. Chem. 68, 630–639 (1964).

    CAS  Google Scholar 

  21. Effect of working electrode potential on the rates and extents of controlled potential electrolysis, L. Meites,J. Electroanal. Chem. 7, 337–342 (1964).

    Google Scholar 

  22. Study of kinetics of iridium (III) chlorate reaction by steady-state controlled potential coulometry, G. A. Rechnitz and J. E. Mc’Clure,Anal. Chem. 36, 2265–2270 (1964).

    Google Scholar 

  23. The value of the Faraday, W. J. Harner and D. N. Craig,J. Electrochem. Soc.111, 1434 (1964).

    Google Scholar 

  24. Coulometric analysis with gas volume measurement, D. M. King and A. J. Bard,Anal. Chem. 36, 2351–2352 (1964).

    CAS  Google Scholar 

  25. Secondary reactions in controlled potential coulometry. IV. Reversal coulometry and following chemical reactions, A. J. Bard and S. V. Tatwavadi,J. Phys. Chem.68, 2676–2682 (1964).

    CAS  Google Scholar 

  26. Application of steady-state controlled potential coulometry to the study of homogeneous solution reactions, G. A. Rechnitz and J. E. McClure,Talanta 12 (2), 153–158 (1965).

    CAS  Google Scholar 

  27. Consecutive electrochemical processes in controlled potential electrolysis. The isolation of intermediates, J. G. Mason,J. Electroanal. Chem. 11, 462–466 (1966).

    CAS  Google Scholar 

  28. Kinetics and mechanism of controlled potential coulometric oxidation of catechol, G. Sivaramiah and V. R. Krishnan,Ind. J. Chem. 4 (12), 541–542 (1966).

    Google Scholar 

  29. The application of sub-stoichiometric radiosotopic dilution principles to controlled potential coulometry and solvent extraction, A. R. Lavelsebe, L. T. Mclendon, S. R. DeVoe, P. A. Pella, and W. C. Purdy,Anal. Chim. Acta 39, 151–159 (1967).

    Google Scholar 

  30. Current-time curves in controlled potential electrolysis and the rates of reactions of intermediates, S. Karp and L. Meites,J. Electroanal. Chem. Interfacial Electrochem. 17, 253–265 (1968).

    CAS  Google Scholar 

  31. Undervoltage effects in the determination of silver by scanning and coulometry, R. C. Propst,J. Electroanal. Chem. Interfacial Electrochem. 16, 319–326 (1968).

    CAS  Google Scholar 

  32. Solid electrolyte coulometry. Silver bromide electrolyte, J. H. Kennedy and F. Chen,J. Electrochem. Soc. 115, (9), 918–924 (1968).

    CAS  Google Scholar 

  33. Electrochemical reduction of beta-diketones in dimethylsulfoxide, R. C. Buchta and D. H. Evans,Anal. Chem.40, 2181–2185 (1968).

    CAS  Google Scholar 

  34. Controlled potential electrolysis and the rate of homogeneous reactions, L. Meites,Pure Appl. Chem.18 (1–2), 35–79 (1969).

    CAS  Google Scholar 

  35. Solid electrolyte coulometry: Silver sulfide bromide electrolyte, J. H. Kennedy and F. Chen,J. Electrochem. Soc.116 (2), 207–211 (1969).

    CAS  Google Scholar 

  36. Mass and charge transfer kinetics and coulometric current efficiencies. III. Pattern theory and its application to oxidation reduction electrode processes,R. E. Bishop,Analyst 97 (1159), 761–771 (1972).

    CAS  Google Scholar 

  37. Mass and charge transfer kinetics and coulometric current efficiencies. IV. Application of pattern theory to solvent molecule and solvent ion reactions and the evaluation of current efficiencies, E. Bishop,Analyst 97 (1159), 772–782 (1972).

    CAS  Google Scholar 

  38. Investigation of electrodeposition and electrodissolution of silver at a platinum electrode studied by a galvanostatic method, E. A. Maznichenko, V. V. Sobol, and L. K. Tarasova,Elektrokhimiya 8 (12), 1888–1882 (Russ.) (1972).

    CAS  Google Scholar 

  39. Least squares adjustment of the fundamental constants, E. R. Cohen and B. N. Taylor,J. Phys. Chem. Ref. Data 2, 663–734 (1973).

    CAS  Google Scholar 

  40. Coupling organic and biological reactions with electrochemical measurements for analytical purposes, P. J. Elving,Bioelectrochem. Bioenergy 2 (4), 251–286 (1975).

    CAS  Google Scholar 

  41. Numerical solution of the disproportionation mechanism in controlled potential coulometry, J. Mock and D. I. Bustin,J. Electroanal. Chem. Interfacial Electrochem.79 (2), 307–317 (1977).

    Google Scholar 

  42. Anodic stripping coulometry at a thin film mercury electrode, R. Eggli,Anal. Chim. Acta 91 (2), 129–138 (1977).

    CAS  Google Scholar 

  43. Analogue solution of kinetics of the disproportionation following a first-order chemical reaction, J. Mocak, D. I. Bustin, and V. Pencak,Chem. Zvesti 31 (2), 153–164 (1977).

    CAS  Google Scholar 

  44. Coulometry in non-aqueous media, E. A. M. F. Dahmen, and M. Bos,Proc. Anal. Div. Chem. Soc. 15 (3), 86–91 (1978).

    CAS  Google Scholar 

  45. Measurements of homogeneous reaction rate by concentration-step, Controlled potential electrolysis, S. Unchiyama, G. Muto, and K. Nozaki,J. Electroanal. Chem. Interfacial Electrochem.91 (3), 301–308 (1978).

    Google Scholar 

  46. Numerical methods for evaluation of kinetics of coupled chemical reactions in controlled potential coulometry, J. Mock, D. Bustin, and D. Kysela,Coulom. Anal. Conf. (Pub. 1979), 269–277 (1978).

    Google Scholar 

  47. Advantages of generation of coulometric reagents during anodic dissolution of metals, A. I. Kostromin, A. A. Akhmetov, and I. F. Abdullin,Zh. Anal. Khim.34 (7), 1243–1246 (1979).

    CAS  Google Scholar 

  48. An electrochemical method for measuring redox potentials of low potential proteins by microcoulometry at controlled potentials, G. D. Watt,Anal. Biochem.99 (2), 399–407 (1979).

    CAS  Google Scholar 

  49. Radiocoulometry: its application to kinetics and mechanism studies of amalgamation reactions of barium (2+), calcium (3+) europium (3+), samarium (3+) and californium (3+) in aqueous media, K. Samhoun and F. David,J. Electroanal. Chem. Interfacial Electrochem.106, 161–163 (1980).

    CAS  Google Scholar 

Instrumentation, Cells, etc.

  1. Apparatus for automatic control of electrodeposition with graded cathode potential, C. W. Caldwell, R. C. Parker, and H. Diehl,Ind. Eng. Chem. Anal. Ed. 16, 532–535 (1944).

    CAS  Google Scholar 

  2. Electronic trigger circuit for automatic potentiometric and photometric titration, R. H. Muller and J. J. Lingane,Anal. Chem.20, 795–797 (1948).

    CAS  Google Scholar 

  3. Apparatus for electrolysis at controlled potential, C. J. Penther and D. J. Pompeo,Anal. Chem.21, 178–180 (1949).

    CAS  Google Scholar 

  4. The automatic recording titrator and its application to the continuous measurement of the concentration of organic sulphur compounds in gas streams, R. R. Austin,Am. Gas. Assoc. Proc. Annual Meeting 31, 505–515 (1949).

    CAS  Google Scholar 

  5. Methods for constant potential control, E. B. Thomas and R. J. Nook,J. Chem. Educat. 27, 217 - 219 (1950).

    Google Scholar 

  6. Improved potentiostat for controlled potential electrolysis, J. J. Lingane and St. L. Jones,Anal. Chem. 22, 1169–1172 (1950).

    CAS  Google Scholar 

  7. Electromechanical integrator for coulometric analysis, J. J. Lingane and St. L. Jones,Anal. Chem. 22, 1220–1221 (1950).

    CAS  Google Scholar 

  8. Microcoulometry: I. Construction and operation of an apparatus for the determination of polarographicn-values, St. Bogan, L. Meites, E. Peters, and J. M. Sturtevant,J. Am. Chem. Soc. 73, 1584–1587 (1951).

    CAS  Google Scholar 

  9. Millicoulometric redox-titration, L. Meites,Anal. Chem.24, 1057–1059 (1952).

    CAS  Google Scholar 

  10. Controlled potential electroanalyser, D. J. Bode, S. W. Levine, and R. W. Kress,Anal. Chem.25, 518 (1953).

    Google Scholar 

  11. Apparatus for automatic control of cathodic potential in electroanalysis, J. F. Palmer and I. Vogel,Analyst 78, 428–439 (1953).

    CAS  Google Scholar 

  12. Apparatus and techniques for semi-micro coulometric analyis, G. Packman,Anal. Chem. 26, 784 (1954).

    Google Scholar 

  13. Cells, apparatus and methodology for precise analysis by coulometry at controlled potential, L. Meites,Anal. Chem. 27, 116–119 (1955).

    Google Scholar 

  14. Automatic limited potential electrolysis using an electronic coulometer, E. L. Martin,Dissertation Abstracts 15, 1323–1324 (1955).

    Google Scholar 

  15. The hydrogen ion coulometer, H. W. Hoyer,J. Phys. Chem. 60, 372–373 (1956).

    CAS  Google Scholar 

  16. A hydrogen-nitrogen gas coulometer, J. A. Page and J. J. Lingane,Anal. Chim. Acta 16, 175–179 (1957).

    CAS  Google Scholar 

  17. Instrument for controlled potential electrolysis and precision coulometric integration, G. L. Booman,Anal. Chem.29, 213–218 (1957).

    CAS  Google Scholar 

  18. Apparatus for automatic controlled potential electrolysis using an electronic coulometer, L. L. Merrit, E. L. Marin, and R. D. Bedi,Anal. Chem. 30, 487–492 (1958).

    Google Scholar 

  19. Electronic controlled potential coulometric titrator, D. J. Fischer, M. T. Kelley, and H. C. Jones,Anal. Chem.31, 488–491 (1959).

    Google Scholar 

  20. Electronic controlled potential coulometric titrator, M. T. Kelley, H. C. Jones, and D. J. Fisher,Anal. Chem.31, 956 (1959).

    CAS  Google Scholar 

  21. Voltage scanning coulometry for the determination of traces of iron, F. A. Scott, R. M. Peekema, and R. E. Cennally,Anal. Chem. 33, 1024–1027 (1961).

    CAS  Google Scholar 

  22. A high sensitivity scanning coulometer with automatic background correction and proportional scan rate titration of plutonium and other redox species, R. C. Propst,Anal. Chem.35, 958–963 (1963).

    CAS  Google Scholar 

  23. Generalised circuits for electroanalytical instrumentation, W. M. Schwarz and I. Shain,Anal. Chem.35, 1770–1778 (1963).

    CAS  Google Scholar 

  24. Simplified use of transfer functions in analysis of operational amplifier electroanalytical instrumentation, I. Shain, J. E. Harrar, and G. L. Booman,Anal. Chem. 37, 1768–1769 (1965).

    CAS  Google Scholar 

  25. Differential controlled potential coulometry application to the determination of uranium, G. C. Gorde and J. Herrington,Anal. Chim. Acta 38, 369–375 (1967).

    Google Scholar 

  26. Differential controlled potential coulometry utilizing substoichiometric radioisotope dilution, P. A. Pella, A. R. Landgrebe et al.,Anal. Chem. 39, 1781–1785 (1967).

    CAS  Google Scholar 

  27. Study on the controlled potential coulometric analyzer, S. Emura and S. Okazaki,Bunseki Kagaku 16 (7), 718–720 (1967) (Japan).

    CAS  Google Scholar 

  28. Lanthanum hexaboride as an electrode material for electrochemical studies, D. J. Curran and K. S. Fletcher,Anal. Chem.40, 78–82 (1968).

    CAS  Google Scholar 

  29. An all-transistorized potential-controlled coulometric titrator for analytical purposes, W. Warzanskyj, A. Diez Moreno, and V. Almagro,J. Electroanal. Chem. Interfacial Electrochem.18, 107–113 (1968).

    Google Scholar 

  30. Modular solid-state unit for electrochemical studies, G. Dryhurst, M. Rosen, and P. J. Elving,Anal. Chim. Acta 42 (1), 143–152 (1968).

    CAS  Google Scholar 

  31. Simple low-current potentiostat coulometric analysis, J. T. Stock,J. Chem. Educ.45 (11), 736–738 (1968).

    CAS  Google Scholar 

  32. Reagent controller for electrolysis at essentially constant current, J. T. Stock,Microchem. J.13 (4), 656–663 (1968).

    CAS  Google Scholar 

  33. Microcell for coulometric titration, G. D. Christian and F. J. Feldman,Anal. Chem.40, 1168 (1968).

    CAS  Google Scholar 

  34. Precise integration of voltage (current) time functions with a fixed-field direct current motor-counter, J. J. Lingane,Anal. Chim. Acta 44 (1), 199–203 (1969).

    CAS  Google Scholar 

  35. Controlled potential coulometers based upon modular electronic units, G. Phillips and G. W. C. Milner,Analyst 94, 833–839 (1969).

    CAS  Google Scholar 

  36. Controlled potential coulometers based upon modular electronic units. Part II. The determination of ruthenium by controlled potential coulometry, G. Weldrick, G. Phillips, and G. W. C. Milner,Analyst 94, 840–843 (1969).

    CAS  Google Scholar 

  37. Transistorized power sources for constant current coulometric titration, J. T. Stock,J. Chem. Educ.46 (12), 858–860 (1969).

    CAS  Google Scholar 

  38. Coulometry of metal ions separated by liquid chromatography, G. Muto, T. Kawaguchi, and Y. Takada, Japan 75, 15, 393 (CI GOIN 31/08) 04 Jun 1975, Appl. 69147, 604, 18 Jun 1969.

    Google Scholar 

  39. Operational amplifier instruments for electrochemistry—circuits for controlled potential electrolysis, coulometry and coulometric titrations, R. R. Schroeder, In:Electrochemistry, Calculations, Simulations and Instrumentation, J. S. Mattson, H. B. Mark Jr., and H. C. MacDonald, Jr., eds., Chap. 10, pp. 289–293, Marcel Dekker, New York (1972).

    Google Scholar 

  40. Electrolytic gaps between electrodes for the microcoulometry of mercury, J. Grzebalski, J. Maciejewski, and J. Moszczynska, Pol. 84, 467 (CI. GOIN 27/26) 15 Oct 1976, Appl. 160, 680, 10 Feb. 1973, 2 pp.

    Google Scholar 

  41. Manual of controlled potential coulometric methods, J. E. Harrar, Report 1970, UCID- 15527, 45, PIP, Avail. Dep. NTIS fromNucl. Sci. Abstr.27 (7), 14497 (1973).

    Google Scholar 

  42. Determination of palladium by controlled potential coulometry. New platinum working electrode cell for controlled potential coulometry, L. P. Rigdon and J. E. Harrar,Anal. Chem.46, (6), 696–700 (1974).

    CAS  Google Scholar 

  43. Versatile, multitime range, integrated circuit, constant current coulometric titrator. Application to determination of microgram and nanogram quantities, L. B. Haycox, 1973, 198 pp. Avail. Univ. Microfilms Ann. Arbor, Mich. Order No. 74,8560. From Diss A6Str. Int. B 34 (10), 4858 (1974).

    Google Scholar 

  44. Effect of cell geometry on coulometric titrations, T. Damokas,Magy. Kem. Foly.80 (3), 123–126 (1974) (Huong.).

    Google Scholar 

  45. Precise set up for coulometric analysis with controlled potential, I. G. Sentyvrin, A. N. Mogilevskii, I. S. Skylarenko, I. A. Trifonova, N. S. Radionova, and I. A. Kazakov,Zh. Anal. Chim.30(1), 53–58 (1975) (Russ.).

    Google Scholar 

  46. Effect of stirring on the reduction current in constant potential coulometry, W. Rutkowski, Sobkowsky, and Aleksandra,Chem. Anal. (Warsaw) 20 (2), 383–388 (1975) (Pol.).

    CAS  Google Scholar 

  47. Computer-compatible instrumentation for automated controlled current coulometry, potentiometry and galvanostic measurements, J. E. Harrar and C. L. Pomernacki,Chem. Instrum. (N.Y.) 7 (4), 229–239 (1976).

    CAS  Google Scholar 

  48. Methods and instruments for measuring the thickness of layers, W. H. Guehring,Detektos- kopiya 4, 113–125 (1977).

    Google Scholar 

  49. Real-time computer optimized scanning potential coulometry for multi-component trace analysis, N. W. Petty, 1977,127 pp, Avail. Univ. Microfilms Int. Order No. 7731122. From Diss. Abstr. Inst. B38 (3), 3662 (1978).

    Google Scholar 

  50. Metal rod and wire electrode holders, E. A. Gaston and B. Edmund,Anal. Chem. 49 (12), 1880–1881 (1977).

    Google Scholar 

  51. Auxiliary compartment for coulometric titration, G. A. East and E. Bishop,Anal. Chem.49 (12), 1885–1886 (1977).

    CAS  Google Scholar 

  52. Highly selective coulometric method and equipment for the automated determination of plutonium, D. D. Jackson, R. M. Hollen, F. R. Roensch, and J. E. Rein,Anal. Chem. Nucl. Fuel. Re Process Proc. ORNL Conf. 21st 1977, 151–158 (1978).

    Google Scholar 

  53. A detailed study of sample injection into flowing streams with potentiometric detection, Z. Feher, G. Nagy, K. Toth, and E. Pungor,Anal. Chim. Acta 98 (2), 193–203 (1978).

    CAS  Google Scholar 

  54. Recent advances in data processing in controlled potential electrolysis, L. Meites,Coulom. Anal. Conf.1978 (1979).

    Google Scholar 

  55. Applications of thin layer minigrid electrodes. I. Analytical methods for halide and constant current coulometry with logical end point. II. Application for study of biological redox systems, M. L. Meckstoth, 155 pp. (1978) Avail. Univ. Microfilms Inst. Order No. 7904750. From Diss. Abstr. Int. B39 (9), 4311 (1979).

    Google Scholar 

  56. Controlled potential coulometry with the flow-through reticulated vitreous carbon electrode, A. N. Strohl and D. J. Curran,Anal. Chem. 51 (7), 1050–1053 (1979).

    CAS  Google Scholar 

  57. Current generator with digital control for coulometry. I. Apparatus for the triangle programmed coulometric titration technique, L. Kovacs, G. Nagy, and M. Kadar,Magy. Kem. Foly 85 (7) 331–334 (Hung.) (1979).

    CAS  Google Scholar 

  58. Flow coulometry with ring-disc electrode, T. Fujinaga, S. Okazaki, and H. Hirai,Bull. Inst. Chem. Res. Kyoto Univ.57 (5-6), 376–380 (1979).

    CAS  Google Scholar 

  59. Voltammetry and coulometry of iridium in a two-sided thin-layer system, L. V. Eliseeva and O. L. Kabanova,Zh. Anal. Khim.35 (3), 465–470 (1980).

    CAS  Google Scholar 

  60. Corrections for systematic errors from analog integration in controlled potential coulometry, L. T. Frazzini, M. K. Holland, J. R. Weiss, and E. Pietric,Anal. Chem. 52 (13), 2112–2116 (-1980).

    CAS  Google Scholar 

  61. Apparatus for use in rapid and accurate controlled potential coulometric analysis, T. L. Frazzini, M. K. Holland, C. E. Pietri, and J. R. Weiss, U.S. Pat. Appl. 69,152, 24 Oct. 1980, Appl. 23 Aug. 1979, 22 pp. Avail NTIS Order No. PAT Appl. 069152.

    Google Scholar 

  62. Determination of reduction potentials and electron transfer stoichiometrics for biological redox species by thin-layer pulse and staircase coulometry C. H. Su and W. R. Heineman,Anal. Chem.53 (4) 594–598 (1981).

    CAS  Google Scholar 

Applications

  1. Electrochemical jet test. Determination of local thickness of electrodeposited coatings, A. Ogarew,J. Appl. Chem. (USSR) 19, 31188 (1946) (Eng. Trans),Metal Ind. (Lond.) 70, 338–40 (1947).

    Google Scholar 

  2. Controlled potential electrolytic separation and determination of copper, bismuth, lead, and tin, J. J. Lingane and St. L. Jones,Anal. Chem.23, 1798–1806 (1951).

    CAS  Google Scholar 

  3. Galvanic determination of traces of oxygen in gases, P. Hersch,Nature 169, 792–793 (1952).

    CAS  Google Scholar 

  4. Electrochemical method for oxygen determination in gases, M. G. Jacobson,Anal. Chem.25, 586–591 (1953).

    CAS  Google Scholar 

  5. Dual intermediates in coulometric titration equilibria in copper(II) bromide solutions, P. S. Farrington, D. J. Meier, and E. H. Swift,Anal. Chem.25, 591–595 (1953).

    CAS  Google Scholar 

  6. Thickness of electrodeposited coatings by the anodic solution method, C. F. Waite,Plating 40, 1245–1248 (1953).

    CAS  Google Scholar 

  7. A millicoulometer method for the determination of polarographic n-values, Th. De Vries and J. L. Kroon,J. Am. Chem. Soc. 75, 2484–2486 (1953).

    Google Scholar 

  8. Standardisation of a titrated solution of hydrochloric acid by constant current coulometry, J. Badoz-Lambling,Anal. Chim. Acta 25, 1574 (1953).

    Google Scholar 

  9. Galvanic measurement of dissolved oxygen, A. G. Dowson and I. J. Backland,Nature 177, 712–713 (1956).

    CAS  Google Scholar 

  10. Coulometric determination of uranium(VI) at controlled potential, G. L. Booman, W. B. Holbook, andJ. E. Rein,Anal. Chem.29, 219–221 (1957).

    CAS  Google Scholar 

  11. Coulometric titration of aluminium, R. J. Iwamoto,Anal. Chim. Acta 19, 272–276 (1958).

    CAS  Google Scholar 

  12. Controlled potential coulometric determination of copper and uranium, W. D. Shults andP. F. Thomason,Anal. Chem.31, 492–494 (1959).

    CAS  Google Scholar 

  13. Application of coulometric titration to clinical and toxicological analysis, W. C. Purdy,FreseniusZ. Anal. Chem.243, 17–28 (1968).

    CAS  Google Scholar 

  14. High sensitivity coulometric analysis in acetonitrile, R. R. Bessettle and J. W. Olver,J. Electroanal. Chem. Interfacial Electrochem. 17, 327–334 (1968).

    Google Scholar 

  15. Coulometric estimation of phenylthiourea, thioglycolic acid and cysteine, K. S. V. Santhanam and V. R. Krishnan, Z.Anal. Chim.234 (4), 256–260 (1968).

    CAS  Google Scholar 

  16. The rapid dissolution of plutonium dioxide by a sodium peroxide-sodium hydroxide fusion, followed by determination of the plutonium content by controlled potential coulometry, G. W. C. Milner and D. Crossely,Analyst 93, 429–432 (1968).

    CAS  Google Scholar 

  17. Coulometric titration in industrial analysis, W. Buetchler, P. Gisske, and J. Meier,Fresenius Z. Anal. Chim.239 (5), 289–294 (1968).

    Google Scholar 

  18. Indirect controlled potential coulometry with mercury(II) DPTA complex., T. Kawaguchi and G. Muto,Bunseki Kagaku 17 (1), 38–42 (1968) (Japan).

    CAS  Google Scholar 

  19. Determination of plutonium by controlled current coulometry, J. R. Stokely, Jr. and W. D. Shults,Anal. Chim. Acta 45 (3) 528–532 (1969).

    CAS  Google Scholar 

  20. Controlled potential coulometric determination of americium, J. R. Stokely, Jr. and W. D. Shults,Anal. Chim. Acta 35 (3) 417–424 (1969).

    Google Scholar 

  21. Controlled potential coulometry and voltammetry of manganese in pyrophosphate medium, J. E. Harrar and L. P. Rigdon,Anal. Chem.41, 758–765 (1969).

    CAS  Google Scholar 

  22. Electrochemical methods in ultramicroanalysis. V. Coulometric determination of copper in the big scale, W. F. Helbig, Z.Anal. Chim.246 (6), 353–357 (1969).

    CAS  Google Scholar 

  23. New coulometric titration method. Application to the determination of uranium, J. J. Lingane,Anal. Chim. Acta 50 (1), 1–14 (1970).

    CAS  Google Scholar 

  24. Electrochemical methods in analytical chemistry. X. Constant current coulometry, F. P. Ijsseling,Chem. Tech.26 (11), 297–230, (12), 325–328 (1971).

    CAS  Google Scholar 

  25. Coulometric method for determining the thickness of silver electrolyte coatings, T. K. Khamrakulov andP. K. Agasyan,Zavod. Lab.38, (1), 24–26 (1972).

    CAS  Google Scholar 

  26. Copper electrode in coulometry, A. I. Kostromin and R. M. Badakshanov,Zh. Anal. Khim.21 (10), 2046–2049 (2972).

    Google Scholar 

  27. Simultaneous determination of platinum (II) platinum (IV) by controlled reagent coulometry, O. Ginstrop,Anal. Chim. Acta 63 (1), 153–163 (1973).

    Google Scholar 

  28. Use of copper electrode in galvanostatic coulometry, A. I. Kostomin and R. M. Badakshanov,Zh. Anal. Khim.29 (9), 1782–1787 (1974).

    Google Scholar 

  29. Application of controlled potential coulometry to the automatic recording of liquid chromatography. VI. Liquid chromatographic separation of carboxylic acids with the hydrogen form cation exchange resin, Y. Takata and Y. Arikawa,Bunseki Kagaku 23 (12), 1522–1527 (1974).

    CAS  Google Scholar 

  30. Coulometric microdetermination of organic compounds by controlling the potential. Structure of the apparatus and determination of picric acid as a model substance, J. Senkyr and M. Fialka,Ser. Fac. Sci-Nat. Univ. Purkynianae Brun. 5 (5), 19–27 (1975).

    CAS  Google Scholar 

  31. Controlled potential coulometric determination of some dithiaalkanediols, E. G. Semmertt, F. Rousselet, M. L. Girard, and M. Chemla,Analysis 3 (8), 456–459 (1975).

    Google Scholar 

  32. Coulometric method for determining the composition of alloys produced by electrolysis, N. Ciureanu and E. Grunichevi,Rev. Chim. (Bucharest) 26 (12), 1047–1049 (1975).

    CAS  Google Scholar 

  33. Application of controlled potential coulometry to the automatic recording of liquid chromatography. VII. Cation exchange chromatography of rare earths, Y. Takta and Y. Arikawa,Bunseki Kagaku 24 (12), 762 - 767 (1975).

    Google Scholar 

  34. Use of electrically generated iron(II) in constant current coulometry, A. I. Kostromin, L. L. Makarova, and L. I. Il’ina,Zh. Anal. Khim.31 (2), 240–243 (1976).

    CAS  Google Scholar 

  35. Precise coulometric determination of actinides: application to trace amounts. I. Uranium, J. Ravenel, C. Soret, and C. Bergey,Talanta 23 (8), 569–572 (1976).

    Google Scholar 

  36. Coulometry in clinical chemistry, W. C. Purdy,CRCCrit. Rev. Clin. Lab. Sci.7 (3), 227–237 (1977).

    CAS  Google Scholar 

  37. Recent electroanalytical studies in molten fluorides, D. L. Manning and G. Mamantov, Report 1976, CONF 7608110-1, 20 pp (Eng) Avail. NTIS from Energy Res. Abstr. 2 (24) Abstr. No. 60532 (1977).

    Google Scholar 

  38. Cell and method for the coulometric determination of the contents of water soluble components, R. O. Hallberg, C. H. M. Lindstroem, and L Westerberg, Swed. 407,983 (CI. GOIN 27/42) 30 Ap. 1979, Appl. 77/10,308, 14 Sep Is 9 pp.

    Google Scholar 

  39. The detection limit of anodic stripping coulometry at mercui j film glassy carbon electrodes, R. Eggli,Anal. Chim. Acta 97 (1), 195–198 (1978).

    CAS  Google Scholar 

  40. Basis for the accuracy and comparability of chemical analysis\sults. Part II. Use of the Faraday, T. Yoshimoni, Z.Chem.18 (7), 251–254 (1978).

    Google Scholar 

  41. Different ranges of fission products by a coulometric method, A. K. Jayak and S. Mukherji,Nucl. Instrum. Method 170 (1–3), 193–196 (1980).

    Google Scholar 

  42. Controlled current coulometry—high precision assay procedure, J. Bercik, M. Cakrt, and Z. Hlady,Coulom. Anal. Conf.1978, 155–164 (1979).

    Google Scholar 

  43. Simultaneous thickness and electrochemical potential determination of individual layers in multilayer nickel deposits, E. P. Harbulak,Plat. Surf. Finish 67 (2), 49–54 (1980).

    CAS  Google Scholar 

  44. Flow through coulometry stripping analysis and the determination of manganese by cathodic stripping voltammetry, A. Trojanek and F. Opekar,Anal. Chim. Acta 126, 15–21 (1981).

    CAS  Google Scholar 

  45. Precious metal analysis by controlled potential coulometry, J. E. Harrar and M. C. Waggner,Plat. Surf. Finish 68 (1), 41–45 (1981).

    CAS  Google Scholar 

  46. The coulometric response of tubular electrodes applied to flow injection determinations, P. L. Meschi, D. C. Johnson, and G. R. Luecke,Anal. Chim. Acta 124 (2), 315–320 (1981).

    CAS  Google Scholar 

  47. Electrogeneration of coulometric reagents: applications to drug control, J. C. Vire, M. Chateau-Gosselin, and G. J. Patriarche,Microchim Acta 1 (3-4), 227–239 (1981).

    CAS  Google Scholar 

General Principles and Theory

  1. Voltammetry at controlled current, P. Delahay, In:New Instrumental Methods in Electrochemistry, Chap. 8, pp. 179–209, Interscience Publishers, Inc., New York (1954).

    Google Scholar 

  2. J. J. Lingane, Chronopotentiometry, In:Electroanalytical Chemistry, Chap. XXII, pp. 617–638, Interscience Publishers, Inc., New York (1958).

    Google Scholar 

  3. Chronopotentiometry, P. Delahay, In:Treatise on Analytical Chemistry, I. M. Kolthoff, P. J. Elving, and E. B. Sandell, eds., Part I, Vol. 4, Chap. 44, pp. 2233–2267, Interscience Publishers, New York (1963).

    Google Scholar 

  4. Applications of chronopotentiometry to problems in analytical chemistry, D. G. Davis, In:Electroanalytical Chemistry, Vol. I, A. J. Bard, ed. pp. 157–196, Marcel Dekker, Inc., New York (1966).

    Google Scholar 

  5. Chronopotentiometric measurements of chemical reaction rates. I. Programmed current studies of the ECE mechanism, H. B. Herman and A. J. Bard,J. Phys. Chem.70, 396–404 (1956).

    Google Scholar 

  6. Potentiometry, conductometry, coulometry, electroanalysis, and other electrochemical methods, V. A. Zarinskii,Zh. Anal. Khim. 22, 1669–1678 (1967) (Russ.).

    CAS  Google Scholar 

  7. Chronopotentiometry, M. Paunovic,J. Electroanal Chem. Interfacial Electrochem.14, 447–474 (1967).

    CAS  Google Scholar 

  8. Derivative chronopotentiometry, S. L. Burden, Jr., Diss. Abstr. B27(10), 3424 (1967); Univ. Microfilm, Ann Arbor. Mich., Order No. 67-3650, 147 pp.

    Google Scholar 

  9. Rapid chronopotentiometry; effects of double layer charging and adsorption, D. C. Noonan, Diss. Abstr. B.28 (2) 522 (1967), Univ. Microfilm, Ann. Arbor. Mich., Order No. 67-9360, 156 pp.

    Google Scholar 

  10. Polarography with controlled current density or chronopotentiometry with current density sweep at a dropping mercury electrode, H. L. Kies,J. Electroanal. Chem. Interfacial Electrochem.16, 279–281 (1968).

    CAS  Google Scholar 

  11. Chronopotentiometric measurements of chemical reaction rates. II. Kinetics and mechanism of the dehydration of p-hydroxyphenyl hydroxyl amine, H. N. Blount and H. B. Herman,J. Phys. Chem.72, 3006–3012 (1968).

    CAS  Google Scholar 

  12. Cyclic chronopotentiometry systems involving kinetic complications, H. B. Herman and A.J. Bard,J. Electrochem. Soc.115, 1028–1033 (1968).

    CAS  Google Scholar 

  13. Effect of double layer charging in programmed current chronopotentiometry, W. T. De Vries,J. Electroanal. Chem. Interfacial Electrochem.19 (1/2), 55–60 (1968).

    Google Scholar 

  14. Double layer charging in constant current chronopotentiometry at a mercury film electrode, W. T. De Vries,J. Electroanal. Chem. Interfacial Electrode,19 (1/2), 41–53 (1968).

    Google Scholar 

  15. Constant-current chronopotentiometry with current reversal at mercury-film electrode, P. Bos and E. Van Dalen,J. Electroanal. Chem. 17 (1/2), 21–30 (1968).

    CAS  Google Scholar 

  16. Theory of chronopotentiometry with current reversal for measuring heterogeneous electron transfer rate constants, F. H. Beyerlein and R. S. Nicholson,Anal. Chem. 40, 286–288 (1968).

    CAS  Google Scholar 

  17. Chronopotentiometry, E. Tvrzicka and J. Dolezal,Chem. Listy 63, 538–576 (1969) (Czech).

    Google Scholar 

  18. Chronopotentiometry and its applications, C. Herdlicka,Stud. Cercet. Chim.17, 779–799 (1969).

    CAS  Google Scholar 

  19. Cyclic chronopotentiometry, Determination of types and rates of second order chemical reactions following electron transfer, M. Vukovic and V. Pravdic,Croat. Chem. Acta,42, 21–32 (1970).

    CAS  Google Scholar 

  20. New device for measuring electrode reactions by pulse techniques, J. Vondrak and O. Spalek,Chem. Listy 64, 609–614 (1970) (Czech.).

    CAS  Google Scholar 

  21. Chronopotentiometric measurements of chemical reaction rates. III. Finite difference approach to the ECE mechanism, H. N. Blount and H. B. Herman,J. Electrochem. Soc.117 (4), 504–507 (1970).

    CAS  Google Scholar 

  22. Amalgam chronopotentiometry in a two side thin film system, V. A. Igolinski and N. M. Igolinskaya,Electrokhimiya 7, 1496–1498 (1971).

    Google Scholar 

  23. Chronopotentiometry of mixtures. I. Reduction at a mercury pool and at a mercury film electrode,P. Bos,J. Electroanal. Chem. Interfacial Electrochem.33, 379–391 (1971).

    CAS  Google Scholar 

  24. Effect of the diffusion of an adsorbing depolariser on “transient” time at large currents, E. M. Podgaetskii and Yu. V. Filinovskii,Elektrokhimiya 7, 1856–1859 (1971).

    CAS  Google Scholar 

  25. Cyclic chronopotentiometry on a rotating disk electrode, V. I. Chernenko, K. I. Litovckenko, and Yu. E. Udovenko,Elektrochimiya 7, 1476–1480 (1971).

    CAS  Google Scholar 

  26. Kinetics of electrode reactions in constant current electrolysis, XVI. Parallel irreversible consecutive reactions of different orders, O. Dracka,Collect. Czech. Chem. Commun.36, 1889–1897 (1971).

    CAS  Google Scholar 

  27. Chronopotentiometric measurement adsorption in the case of an isotherm with two plateaus, E. M. Podgaetskii and V. Yu. Filinovskii,Elektrokhimiya 1, 1042–1047 (1971).

    Google Scholar 

  28. Kinetics of electrode reactions in constant current electrolysis. XV. Reversible consecutive reactions of the second order, O. Dracka,Collect. Czech. Chem. Commun. 36, 1876–1888 (1971).

    CAS  Google Scholar 

  29. Current Step; Galvanostatic method or chronopotentiometry, In:A Guide to the Study of Electrode Kinetics, H. R. Thirsk and J. A. Harrison, eds., pp. 50 - 54, Academic Press, London and New York (1972).

    Google Scholar 

  30. Transient mass transfer at the rotating disk electrode, L. Nanis and I. Klein,J. Electrochem. Soc.119, 1683 - 1687 (1972).

    CAS  Google Scholar 

  31. Polarographic theory, instrumentation and methodology, R. S. Nicholson,Anal. Chem. 44, 478R–489R (1972).

    Google Scholar 

  32. Chronopotentiometry: Theoretical study of metal ion reduction by current inversion at transition time r. Kinetic parameters of manganese(II), iodate, nickel(II) and manganese(II) oxalate complex, R. Bennes,J. Electroanal. Chem. Interfacial Electrochem. 36,11–22 (1972) (Fr.).

    CAS  Google Scholar 

  33. Chronopotentiometry: (I) theoretical principles, A. Kisza,Wiad. Chem. 26, 413–426 (1972) (Pol.).

    CAS  Google Scholar 

  34. Chronoamperometry, potential sweep chronoamperometry and chronopotentiometry, J. Hladik, In:Physics of Electrolytes, J. Hladik, ed., Vol. 2, pp. 867–930, Academic Press, London (1972).

    Google Scholar 

  35. The a.c. chronopotentiometry: theoretical study of the reversible deposition of an insoluble substance, N. P. Bansal and H. L. Jindal,J. Ind. Chem. Soc. 49, 957–961 (1972).

    CAS  Google Scholar 

  36. A.C. chronopotentiometry: Theoretical study of an irreversible electrode processes preceded by a chemical reaction, H. L. Jindal, N. P. Bansal, and K. Bansal,Rev. Roum. Chim.17, 1969–1975 (1972).

    CAS  Google Scholar 

  37. Film stripping chronopotentiometric study of reversible electrodissolution of a metal from the surface of an indifferent electrode accompanied by complexing, M. S. Zakharov, V. V. Pnev, and L. A. Moskovskikh,Tr. Tyumen. Ind. Inst. 32–34 (1972),CA 82:1407077g.

    Google Scholar 

  38. Theory of chronopotentiometry with current reversal from a stationary state, A. Kisza and U. Twardoch,Bull. Acad. Pol. Sci. Ser. Sci. Chem.20, 1063–1067 (1972) (Eng.).

    Google Scholar 

  39. Differential and derivative chronopotentiometry, A. J. Engel, 196 pp. (1972), Diss. Abstr. Int. B 1972,33 (1), 86–87,CA 78:23238 h.

    Google Scholar 

  40. Stripping chronopotentiometry with periodic current reversal, V. V. Pnev and M. S. Zakharov,Tr. Tyumen. Ind. Inst. 57–63 (1972) (Russ.)CA 82:1643862.

    Google Scholar 

  41. Transient response of a disk electrode, K. Nisanciogln and J. Newman,J. Electrochem. Soc.120, 1339–1356 (1973).

    Google Scholar 

  42. Anodic chronopotentiometry on a film electrode for reversible processes during stirring of solutions. Theory, L. I. Komarova,Sov. Electrochem. 9, 1286–1290 (1973).

    CAS  Google Scholar 

  43. Current reversal chronopotentiometry of EC processes involving an insoluble product, K. W. Hanck and M. L. Deanhardt,Anal. Chem.45, 179–182 (1973).

    CAS  Google Scholar 

  44. Theory of stripping chronopotentiometry for reversible electrode processes involving complexes on a mercury rotating disk microelectrode, V. I. Bakanov, M. S. Zakharov, and N. M. Cheremnykh,Tr. Tyumen. Industr. Inst. (22), 46–50 (1974) (Russ.); CA: 84 5 1417h.

    Google Scholar 

  45. Theory of chronopotentiometry with current reversal from a stationary state. II. Anodic dissolution of metals with the stepwise reversible electrode process, A. Kisza,Bull. Acad. Pol. Sci. Ser. Sci. Chim.23, 341–344 (1975).

    CAS  Google Scholar 

  46. Studies in derivative chronopotentiometry. I. Instrumentation and diffusion controlled systems, P. E. Sturrock, J. L. Hughey, B. Vandrewil, and G. E. O’Brien,J. Electrochem. Soc.122, 1195–1200 (1975).

    CAS  Google Scholar 

  47. Stripping chronopotentiometry with a glassy carbon disk electrode. Fundamental factors and comparison with stripping voltammetry, L. Luong and F. Vydra,Collect. Czech. Chem. Commun.40, 1490–1503 (1975).

    CAS  Google Scholar 

  48. Studies in derivative chronopotentiometry. IV. Chemical reactions preceding reversible charge transfer, R. H. Gibson and P. E. Sturrock,Electrochem. Soc.123, 1170–1173 (1976).

    CAS  Google Scholar 

  49. Chronopotentiometry, Z. Galus, In:Fundamentals of Electrochemical Analysis, Z. Galus, pp. 43–46, Chap. 5, Chap. 6, pp. 193–196, 208; Chap. 7, pp. 239–245; Chap. 8, pp. 275–278; Chap. 9, pp. 303–305; Chap. 10, pp. 321–322; Chap. 11, pp. 336–337; Chap. 12, pp. 347–351; Chap. 15, pp. 391–393; Chap. 16, pp. 411–413; Chap. 17, pp. 434–440; Chap. 18, pp. 454–456; Ellis Horwood Ltd. Publ., Chichester, Halsted Press, New York (1976).

    Google Scholar 

  50. Chronopotentiometric measurements of chemical reaction rates. I. Programmed current studies of the ECE mechanism, H. B. Herman and A. J. Bard,J. Phys. Chem. 70, 396–404 (1966).

    CAS  Google Scholar 

  51. Applications of chronopotentiometry to problems in analytical chemistry, D. G. Davis, In:Electroanalytical Chemistry, Vol. I, A. J. Bard, ed., pp. 157–196, Marcel Dekker, Inc., New York (1966).

    Google Scholar 

  52. Critique of chronopotentiometry as a tool for study of adsorption, P. J. Lingane,Anal. Chem.39, 485–494 (1967).

    CAS  Google Scholar 

  53. Chronopotentiometric measurements of chemical reaction rates. II. Kinetics and mechanism of the dehydration ofp- hydroxy phenyl hydroxyl-amine, H. N. Blount and H. B. Herman,J. Phys. Chem. 72, 3006 - 3012 (1968).

    CAS  Google Scholar 

  54. Aspects of electroanalytical chemistry, J. J. Lingane,Ind. Chim. Beige 33, (Spec. No) 136–139 (1968).

    CAS  Google Scholar 

  55. Power-of-time current chronopotentiometry: circuit design, construction and evaluation of a new instrumental approach, H. C. Kluge II (Secton Hall Univ., S. Orange N.J.), Diss. Abstr. B28 (7), 2746 (1968) Univ. Microfilms, Ann Arbor, Mich., Order No. 67-16, 351, 129 pp.

    Google Scholar 

  56. Chronopotentiometry and its use in analysis and electrochemical studies, V. G. Barikov and O. A. Songina,Sovrem. Metody Anal. Mater. 121–134 (1969) (Russ.). (ed) Orient I. M. Otd. ‘Metallurfia’, Moscow (USSR) (1969).

    Google Scholar 

  57. New circuit for current reversal chronopotentiometry, H. B. Herman, E. B. Smith, and B. C. Rudy,Chem. Instrum. 2, 257–265 (1969).

    CAS  Google Scholar 

  58. Controlled potential and controlled current voltammeter, T. R. Mueller and H. C. Jones,Chem. Instrum. 2, 65–81 (1969).

    CAS  Google Scholar 

  59. Measuring transition time in chronopotentiometry, R. Yu. Bek, I. I. Burenkov, and A. S. Lifshits,Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk. 2, 3–6 (1969);CA 71:66716 k.

    Google Scholar 

  60. Unsteady conditions of electrolysis by an asymmetric rectified current, V. I. Chernenko and K. I. Litovchenko,Ukr. Khim. Zh.35, 472–477 (1969);CA 71:45039 b.

    Google Scholar 

  61. Graphical method for correcting the charge of a double layer in chronopotentiometry, Deroo, J. Guitton, and J. Besson,J. Chim. Phys. Physicochim. Biol. 67, 1097 - 1100 (1970).

    CAS  Google Scholar 

  62. Chronopotentiometry with current reversal switching from a steady state, A. N. Barabc and O. N. Vinogradov Zhalnov,Tr. Inst. Elektrokhim. Akad. Nauk SSSR, Ural Filia 15, 118–125 (1970) (Russ.);CA 75: 83535a.

    Google Scholar 

  63. Electronic instrument for cyclic chronopotentiometry, T. Rabuzin, G. Similjanic, and F. Jovic,J. Electroannal. Chem. Interfacial Electrochem. 27, 397–402 (1970).

    CAS  Google Scholar 

  64. Apparatus for cyclic chronopotentiometry in non-aqueous solvents, J. H. English,J. Sci. Instrum. 3 (I), 69–72 (1970).

    CAS  Google Scholar 

  65. Apparatus for automatic monitoring of metal cations by stripping chronopotentiometry, G. G. Raneev and I. M. Kogol,Autom. Proizvod. Processov. Tsvet. Met. 109–111 (1971) (Russ.).

    Google Scholar 

  66. Anodic amalgam voltammetry with a programmed current on a mercury spherical electrode, M. S. Zakharov and V. V. Pnev,Izv. Tomsk. Politekh. Inst. 51–54 (1971);CA 76:120820 h.

    Google Scholar 

  67. Electronic device for measuring transition time in chronopotentiometry, I. I. Burenkov, A. S. Lifshits, and R. Yu. Bek,Izv. Sib. Otd. Akad. Nauk. SSSR, Ser. Khim. Nauk 5, 145–147 (1971).

    Google Scholar 

  68. Chronopotentiometry. II. New chronopotentiometric techniques and applications of chronopotentiometry, A. Kisza,Wiad. Chem. 26, 491–502 (1972) (Pol.).

    CAS  Google Scholar 

  69. Thin layer electrochemistry, R. S. Tyurin, Yu. S. Lyalikov, and S. I. Zhadanov,Usp. Khim.41, 2272–2299 (1972).

    CAS  Google Scholar 

  70. Stripping chronopotentiometry with a mercury rotating disk electrode, M. S. Zakharov, V. A. Antipeva, and V. I. Bakanov,Tr. Tyumen. Ind. Inst. 3–7 (1972);CA 82:147073 c.

    Google Scholar 

  71. Release time of a metal from a mercury film electrode in stripping chronopotentiometry, V. I. Bakanov and M. S. Zakharov,Tr. Tyumen. Ind. Inst. 12–14 (1972);CA 82:147074 d.

    Google Scholar 

  72. Stripping chronopotentiometric study of the kinetics of electrode processes involving the complex ions with a fixed mercury film electrode, M. S. Zakharov, I. V. Shelomentseva, and N. K. Ivanov,Tr. Tyumen, Ind. Inst. 23–25 (1972);CA 82: 147075 e.

    Google Scholar 

  73. Stripping chronopotentiometry. I. Electrodissolution of metal from the surface of an indifferent electrode, M. S. Zakharov, V. V. Pnev, and L. A. Moskovskikh,Tr. Tyumen. Ind. Inst. 26–31 (1972);CA 82:147076 f.

    Google Scholar 

  74. Resistive effects in thin electrochemical cells. Digital simulation of current and potential steps in thin layer electrochemical cells, I. B. Goldberg and A. J. Bard,J. Electroanal. Chem. Interfacial Electrochem.38, 313–322 (1972).

    CAS  Google Scholar 

  75. Improvement of the chronopotentiometric method by the use of a potentiostat and a capacity-current addition device, P. Bos and E. Van Dalen,J. Electroanal. Chem. Interfacial Electrochem.45, 165–179 (1973).

    CAS  Google Scholar 

  76. Experimental testing of the adsorption theory of chronopotentiometry. I. Electrolytic dissolution of silver from the surface of a graphite electrode, V. V. Pnev, L. A. Moskovskikh, and M. S. Zakharov,Tr. Tyumen. Ind. Inst. 60–63 (1973);CA 83:67929 s.

    Google Scholar 

  77. Inverse voltammetry at graphite electrodes. II. Experimental verification of the absorption. Theory of chronopotentiometry, V. V. Pnev, L. A. Moskovskikh, and M. S. Zakharov,Usp. Polyargr. Nakopleniem 157 (1973);CA 81:162662 s.

    Google Scholar 

  78. A new circuit for cyclic and reverse current chronopotentiometry, M. Declecq and A. Withagen-Declezg,Anal. Chim. Acta 63, 427–433 (1973).

    Google Scholar 

  79. Conventional and scanning chronopotentiometry on a rotating disk electrode, V. I. Cherenko and K. I. Litovchenko,Ukh. Khim. Zh.39, 344–347 (1973) (Russ.).

    Google Scholar 

  80. Digital automatic polarograph for stripping chronopotentiometry with amalgam accumulation and trace analysis of elements,Usp. Polyarogr. Nakopleniem 220-222 (1973);CA 81:145070 e.

    Google Scholar 

  81. Automatic instrument for stripping chronopotentiometry with amalgam accumulation, E. V. Galinker,Usp. Polyarogr. Nakopleniem 182–184 (1973) (Russ.);CA 81:145071 f.

    Google Scholar 

  82. Stripping chronopotentiometry on a graphite electrode. Experimental testing of the parametric theory, L. A. Moskovskikh, V. V. Pnev, and M. S. Zakharov, Jr.,Tyumen Ind. Inst. 73–77 (1973) (Russ.);CA 83:1255873.

    Google Scholar 

  83. Anodic stripping chronopotentiometry on a glassy carbon disk electrode, F. Vydra and L. Luong,J. Electroanal. Chem. Interfacial Electrochem.54, 447 (1974).

    CAS  Google Scholar 

  84. Starting and switching problems and their solution in instruments for fast cyclic chronopotentiometry, F. Jovic and I. Koutusic,J. Electroanal. Chem. Interfacial Electrochem. 50, 269–276 (1974).

    CAS  Google Scholar 

  85. Measurement of rates of chemical reactions coupled to electron transfer by chronopotentiometry. Disproportionation reaction and the ECE mechanism at a plane electrode, D. Cukman and V. Pravdic,J. Electroanal. Chem. Interfacial Electrochem.49, 415–419 (1974).

    CAS  Google Scholar 

  86. Improvements in digital simulation, J. Sandifer and R. P. Buck,J. Electroanal. Chem. Interfacial Electrochem.49, 161–170 (1974).

    CAS  Google Scholar 

  87. Multipurpose instruments for chronopotentiometric measurements, A. Dupre and C. Caullet,Analysis 3, 392–395 (1975).

    CAS  Google Scholar 

  88. Derivative chronopotentiometry. II. Analysis of multicomponent systems, P. E. Sturrock, B. Vandrenil, and R. H. Gibson,J. Electrochem. Soc. 122, 1311–1315 (1975).

    CAS  Google Scholar 

  89. Stripping chronopotentiometry using a mercury rotating disk electrode. I., V. I. Bakanov, M. S. Zakharov, V. A. Antipeva, and N. M. Cheremnykh,Elektrokhimiya 11, 95–98 (1975).

    CAS  Google Scholar 

  90. Electroanalytical techniques in trace metal ion analysis, E. E. Brooks and H. B. Mark,Rev. Anal. Chem. 3 1–26 (1975).

    CAS  Google Scholar 

  91. Chronopotentiometry as an electrochemical method of investigation and analysis, P. K. Agasyan, A. I. Kamanev, and M. I. Luner,Zh. Anal. Khim. 31, 121–142 (1976) (Russ.).

    CAS  Google Scholar 

  92. Studies in derivative chronopotentiometry. III. Application to submillisecond transition times, P. E. Sturrock and R. H. Gibson,J. Electrochem. Soc.123, 629–631 (1976).

    CAS  Google Scholar 

Alloy Electrodes

  1. Electrochemical characterisation of the surface composition of heterogeneous platinum-gold alloys, M. W. Breiter,J. Phys. Chem. 69, 901–904 (1965).

    CAS  Google Scholar 

  2. Hydrogen adsorption on heterogeneous platinum-gold alloys in sulphuric acid solution, M. W. Breiter,Trans. Faraday Soc. 61, 749–754 (1965).

    Google Scholar 

  3. Reactivity and surface composition. Anodic methanol oxidation on platinum-gold alloys, M. W. Breiter,J. Phys. Chem. 69, 3377–3383 (1965).

    CAS  Google Scholar 

  4. Electrolytic codeposited palladium-gold electrodes. Effect of potential cycles on surface properties, R. Woods,Electrochim. Acta 14, 632–635 (1969).

    CAS  Google Scholar 

  5. Cyclic voltammetry of mixed metal electrodes, J. S. Mayell and W. A. Barber,J. Electrochem. Soc.116, 1333–1338 (1969).

    CAS  Google Scholar 

  6. Behaviour of Pt-Rh alloys during electro-oxidation of ethylene, A. A. Michri, A. G. Pshenichnikov, R. Kh. Burshtein, and V. S. Bernard,Sov. Electrochem. 5, 558–560 (1969).

    Google Scholar 

  7. Chemisorption of hydrogen and oxygen on platinum-rhodium alloys, K. A. Radyushkina, R. Kh. Burshtein, M. R. Tarasevich, V. V. Kuprina, and L. A. Cheriyaev,Sov. Electrochem. 5, 1309–1312 (1969).

    Google Scholar 

  8. Electrolytically codeposited platinum-gold electrodes and their electrocatalytic activity for acetate ion oxidation, R. Woods,Electrochim. Acta 14, 553 (1969).

    Google Scholar 

  9. Oxygen reduction on gold alloys in alkaline electrolyte, J. Giner, J. M. Parry, and L. W. Surette,Adv. Chem. Ser.90, 102–113 (1969).

    Google Scholar 

  10. Determination of the surface composition of smooth noble metal alloys by cyclic voltammetry, D. A. J. Rand and R. Woods,J. Electroanal. Chem. Interfacial Electrochem. 36, 57–69 (1972).

    CAS  Google Scholar 

  11. Adsorption of hydrogen on platinum, osmium and platinum-osmium electrodes, A. A. Sutyagina, I. N. Golyanitskaya, and G. D. Vovchenko,Sov. Electrochem.8, 884–886 (1972).

    Google Scholar 

  12. Electrosorption characteristics of thin layers of noble metal substrates, D. A. J. Rand and R. Woods,J. Electroanal. Chem. Interfacial Electrochem.44, 83–89 (1973).

    CAS  Google Scholar 

  13. Chemisorption at electrodes, hydrogen and oxygen on noble metals and their alloys, R. Woods, In:Electroanalytical chemistry, A. J. Bard, Vol. 9, pp. 1–162, Marcel Dekker, Inc., New York (1976).

    Google Scholar 

Solid Electrodes

  1. Voltammetry with solid microelectrodes, In:Polarography, I. M. Kolthoff and J. J. Lingane, Vol. 1, pp. 399–420, Interscience Publishers, New York (1952).

    Google Scholar 

  2. Polarographic oxidation of phenolic compounds (graphite indicator electrode), V. F. Gaylor and P. J. Elving,Anal. Chem.25, 1078–1082 (1953).

    CAS  Google Scholar 

  3. Convection controlled limiting currents. I. The platinum wire convection electrode, I. M. Kolthoff and J. Jordon,J. Am. Chem. Soc. 76, 3843 (1954).

    CAS  Google Scholar 

  4. Rotated and stationary platinum wire electrodes. Residual current voltage curves and dissolution patterns in supporting electrolytes, I. M. Kolthoff and N. Tanaka,Anal. Chem. 26, 632–636 (1954).

    CAS  Google Scholar 

  5. Polarographic studies with gold, graphite and platinum electrodes, S. S. Lord, Jr. and L. B. Rogers,Anal. Chem. 26, 284–295 (1954).

    CAS  Google Scholar 

  6. Oxidation of platinum electrodes in poltentiometric redox titrations, J. W. Ross and I. Shain,Anal. Chem.28, 548–555 (1956).

    CAS  Google Scholar 

  7. Chemical evidence for oxide films on platinum electrometric electrodes, F. Anson and J. J. Lingane,J. Am. Chem. Soc.79, 4961–4904 (1957).

    Google Scholar 

  8. Behaviour of rotating gold microelectrodes, F. Baumann and I. Shain,Anal. Chem. 29, 303–306 (1957).

    CAS  Google Scholar 

  9. Studies of gold, platinum and palladium indicating electrodes in strongly oxidising aqueous solutions, J. K. Lee, R. N. Adams, and C. E. Bricker,J. Am. Chem. Soc. Anal. Chim. Acta 17, 321–328 (1957).

    CAS  Google Scholar 

  10. Anodic chromopotentiometry with platinum and gold electrodes. The iodide-iodine-iodate system, F. C. Anson and J. J. Ligane,J. Am. Chem. Soc.79, 1015–1020 (1957).

    CAS  Google Scholar 

  11. Carbon paste electrodes, R. N. Adams,Anal. Chem. 30, 1576 (1959).

    Google Scholar 

  12. Voltammetry at inert electrodes. I. Analytical applications of boron carbide electrodes, T. R. Mueller and R. N. Adams,Anal. Chim. Acta 23, 467 (1960).

    CAS  Google Scholar 

  13. Voltammetry at boron carbide and carbon paste electrodes, T. R. Mueller, C. L. Olson, and R. N. Adams, In:Advances in Polarography, I. S. Longmuir, ed., Vol. 1, pp. 198–209, Pergamon Press, London (1960).

    Google Scholar 

  14. Voltammetry at electrodes with fixed surfaces, R. N. Adams, In:Treatise on Analytical Chemistry, I. M. Kolthoff, P. J. Elving, and E. B. Sandell, eds., Part I. Vol. 4, Chap. 47, pp. 2381–2416, Interscience Publishers, New York (1963).

    Google Scholar 

  15. Graphite indicating electrodes: Theory, methodology and applicability, P. J. Elving, I. Fried, and W. R. Turner, In:Polarography 1964, G. J. Hills, ed., Vol. 1, pp. 277–297, Macmillan, New York (1965).

    Google Scholar 

  16. Behaviour of carbon electrodes in aqueous and non-aqueous systems, R. E. Panzer and P. J. Elving, /.Electrochem. Soc. 119, 864–874 (1972).

    CAS  Google Scholar 

  17. Electrocapillary phenomena at the stress annealed pyrolytic graphite electrode, I. Morcos,J. Phys. Chem. 76, 2750–2753 (1972).

    CAS  Google Scholar 

  18. Rapid voltammetric method for the estimation of tocopherols and antioxidants in oils and fats, M. D. McBride and D. H. Evans,Anal. Chem.45, 446–449 (1973).

    CAS  Google Scholar 

  19. A study of seven different carbon paste electrodes, J. Lindquist,J. Electroanal. Chem. Interfacial Electrochem. 52, 37 (1974).

    CAS  Google Scholar 

  20. Etude du comportement de la pate de carbone a compose electroactif incorpore, D. Bauer and M. Ph. Gaillochet,Electrochim. Acta 19, 597–606 (1974).

    CAS  Google Scholar 

  21. Anodic stripping with collection using thin mercury films, D. Laser and M. Ariel,J. Electroanal. Chem. Interfacial Electrochem.49, 123 (1974).

    CAS  Google Scholar 

  22. Metallic electrodes; specialised electrodes, In:Introduction to Bioelectrodes, C. D. Ferris, Chap. 1 and 8, Plenum Press, New York and London (1974).

    Google Scholar 

  23. Spectroelectrochemistry of optically transparent electrodes, T. Kuwana and N. Winograd, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol 7, pp. 29–39, Marcel Dekker, Inc., New York (1974).

    Google Scholar 

  24. An improved glassy carbon electrode, S. C. Levy and P. R. Farina,Anal. Chem.47, 604 (1975).

    CAS  Google Scholar 

  25. Optically transparent carbon films electrodes for infrared spectroelectrochemistry, J. S. Mattson and C. A. Smith,Anal. Chem.47, 1122 (1975).

    CAS  Google Scholar 

  26. Mercury thin film minigrid optically transparent thin layer electrochemical cell, W. R. Heinemann, P. P. Angelis, and J. F. Goelz,Anal. Chem.47, 1364 (1975).

    Google Scholar 

  27. Silver based mercury film electrode. I. General characteristics and stability of the electrode, Z. Stojek and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem. 60, 349 (1975).

    CAS  Google Scholar 

  28. Styrene impregnated cobalt-60 irradiated graphite electrodes for anodic stripping analysis, R. G. Clenn and A. F. Sciamannia,Anal. Chem.47, 276 (1975).

    Google Scholar 

  29. The reduction of oxygen at a metallized membrane electrode, C. McCallum and D. Pletcher,Electrochim. Acta 20, 811–814 (1975).

    CAS  Google Scholar 

  30. Chemically modified tin oxide electrode, P. R. Moses, L. Wier, and R. W. Murray,Anal. Chem.47, 1882–1886 (1975).

    CAS  Google Scholar 

  31. A chiral electrode, B. F. Walkins, J. R. Bebiling, E. Kariv, and L. L. Miller,J. Am. Chem. Soc. 97, 3549–3550 (1975).

    Google Scholar 

  32. Illustrative electrochemical behaviour reactants irreversibly adsorbed on graphite electrode surfaces, A. P. Brown, C. Koval, and F. C. Anson,J. Electroanal. Chem. Interfacial Electrochem.72, 379–387 (1976).

    CAS  Google Scholar 

  33. Graphite epoxy mercury thin film working electrode for anodic stripping voltammetry, J. E. Anderson and D. E. Tallman,Anal. Chem.48, 209 (1976).

    CAS  Google Scholar 

  34. Surface electrochemistry of iron porphyrins and iron on tin oxide electrodes, D. G. Davis and R. W. Murray,Anal. Chem.49, 194–198 (1977).

    CAS  Google Scholar 

  35. Molecular anchors for the attachment of metal complexes to graphite electrode surfaces, A. P. Brown and F. C. Anson,J. Electroanal. Chem. Interfacial Electrochem.83, 203–206 (1977).

    CAS  Google Scholar 

  36. Chemically modified electrodes. VI. Binding and reversible electrochemistry of tetra (aminophenyl) porphyrin on glassy carbon, J. C. Lennox and R. W. Murray,J. Electroanal. Chem.78, 395–401 (1977).

    CAS  Google Scholar 

  37. Application of a novel thermistor mercury electrode to the study of changes of activity of an adsorbed enzyme on electrochemical reduction and oxidation, K. S. V. Santhanam, N. Jespersen, and A. J. Bard,J. Am. Chem. Soc. 99, 274–276 (1977).

    CAS  Google Scholar 

  38. Radiation cured polymer impregnated graphite electrodes for anodic stripping voltammetry, K. G. McLaren and G. E. Batley,J. Electroanal. Chem. Interfacial Electrochem. 79, 169 (1977).

    CAS  Google Scholar 

  39. Semiconductor electrodes. XIV. Electrochemistry and electroluminescence at n-type Ti02 in aqueous solutions, R. N. Noufi, P. A. Kohl, S. N. Frank, and A. J. Bard,J. Electrochem. Soc. 125, 246–252 (1978).

    CAS  Google Scholar 

  40. Semiconductor electrodes. XV. Photoelectrochemical cells with mixed polycrystalline n-type Cds-CdSe electrodes, R. N. Noufii, P. A. Kohl, and A. J. Bard,J. Electrochem. Soc. 125, 375–379 (1978).

    Google Scholar 

  41. Electrochemical and solid state studies of phthalocyanine thin film electrodes, H. T. Tachikawa and L. R. Faulkner,J. Am. Chem. Soc. 100, 4379–4385 (1978).

    CAS  Google Scholar 

  42. Chemically modified electrodes. 10. Electron spectroscopy for chemical analysis and alternating current voltammetry of glassy carbon-bound tetra (aminophenyl) porphyrins, J. C. Lennox and R. W. Murray,J. Am. Chem. Soc. 100, 3710–3714 (1978).

    CAS  Google Scholar 

  43. Preparation of chemically derivatized platinum and gold electrode surfaces. Synthesis, characterization and surface attachment of trichlorosilyl ferrocene, (1,1’ ferrocenediyl) dichlorosilane, and 1,1’ bis(triethoxysilyl)ferrocene, M. S. Wrighton, M. C. Palazzoto, A. B. Bocarsly, J. M. Bolts, A. B. Fischer, and L. Nadjo,J. Am. Chem. Soc. 100, 7264–7271 (1978).

    CAS  Google Scholar 

  44. Introduction of amine functional groups on graphite electrode surfaces and their use in the attachment of ruthenium(II) to the electrode surface, N. Oyama, A. P. Brown, and F. C. Anson,J. Electroanal. Chem. Interfacial Electrochem.87, 435 (1978).

    CAS  Google Scholar 

  45. Cyanuric chloride as a general linking agent for modified electrodes: Attachment of redox groups to pyrolytic graphite, A. M. Yacnych and T. Kuwana,Anal. Chem.50, 640–645 (1978).

    Google Scholar 

  46. Electrode surface modification via polymer adsorption, L. C. Miller and M. R. Van De Mark,J. Am. Chem. Soc.100, 639–640 (1978).

    CAS  Google Scholar 

  47. Preparation, analysis and use of an electrode surface modified by polymer adsorption,-L. L. Miller and M. R. Van De Mark,J. Electroanal. Chem. Interfacial Electrochem. 88, 437–440 (1978).

    CAS  Google Scholar 

  48. The theory of light induced evolution of hydrogen at semiconductor electrodes, J. O. M Bockris and K. Uosaki,J. Electrochem. Soc.125, 223–227 (1978).

    CAS  Google Scholar 

  49. Organo-modified metal oxide electrode. IV. Analysis of covalently bound rhodamine B. photoelectrode, M. Fujihira, T. Osa, D. Hursh, and T. Kuwana,J. Electroanal. Chem. Interfacial. Electrochem. 88, 285–288 (1978).

    CAS  Google Scholar 

  50. Behavior of polymeric sulphur nitride (SN)X electrodes in aqueous media, R. J. Nowak, W. Kutner, H. B. Mark, and A. G. MacDiamid,J. Electrochem. Soc.125, 232–240 (1978).

    CAS  Google Scholar 

  51. The behaviour of an electrochemical detector used in liquid chromatography and continuous flow voltammetry. Part 2. Evaluation of low temperature isotropic carbon for use as an electrode material, B. R. Hepler, S. G. Weber, and W. C. Purdy,Anal. Chim. Acta 102, 41–59 (1978).

    CAS  Google Scholar 

  52. Evaluation of the basal plane of pyrolytic graphite as an electrochemical detector for liquid chromatography, R. M. Wightman, E. C. Park, S. Borman, and M. A. Dayton,Anal. Chem. 50, 1410–1414 (1978).

    CAS  Google Scholar 

  53. Charge transfer processes at semiconductor electrodes, R. Memming, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 11, pp. 1–84, Marcel Dekker, Inc., New York (1979).

    Google Scholar 

  54. Semiconductor Electrodes. XVII. Electrochemical behaviour of n- and p-type InP electrodes in acetonitrile solution, P. A. Kohl and A. J. Bard,J. Electrochem. Soc.126, 598–603 (1979).

    CAS  Google Scholar 

  55. Semiconductor electrodes. XIX. An investigation of S/Se substitution in single crystal CdSe and CdS, R. N. Noufii, P. A. Kohl, J. W. Rogers, J. M. White, and A. J. Bard,J. Electrochem. Soc.126, 949–954 (1979).

    Google Scholar 

  56. Semiconductor electrodes. XXI. The characterisation and behaviour of n-Type Fe203 electrodes in acetonitrile solutions, R. A. Frellein and A. J. Bard,J. Electrochem. Soc.126, 1892–1898 (1979).

    Google Scholar 

  57. Properties of Ru02 working electrodes in nonaqueous solvents, D. R. Rolison, K. Kuo, M. Umana, D. Brundage, and R. W. Murray,J. Electrochem. Soc. 126, 407–414 (1979).

    CAS  Google Scholar 

  58. Chemically modified carbon electrodes. Part XVII. Metallation of immobilized tetra (aminophenyl) porphyrin with manganese, iron, cobalt, nickel, copper, zinc and electrochemistry of diprotonated tetraphenyl porphyrin, R. D. Rocklin and R. W. Murray,J. Electroanal. Chem. Interfacial Electrochem.100, 271–282 (1979).

    CAS  Google Scholar 

  59. Chemically modified electrodes. VIII. The interaction of aqueous RuC13 with native and silanized Sn02 electrodes, L. Wier and R. W. Murray,J. Electrochem. Soc.126, 617 - 623 (1979).

    CAS  Google Scholar 

  60. An x-ray photoelectron spectroscopic study of multilayers of an electroactive ferrocene derivative attached to platinum and gold electrodes, A. B. Fischer, M. S. Wrighton, M. Umana, and R. W. Murray,J. Am. Chem. Soc.101, 3442–3446 (1979).

    CAS  Google Scholar 

  61. Facile attachment of transition metal complexes to graphite electrodes coated with polymeric ligands. Observation and control of metal-ligand coordination among reactants confined to electrode surfaces, N. Oyama and F. C. Anson,J. Am. Chem. Soc.101, 739–741 (1979).

    CAS  Google Scholar 

  62. Internal reflection spectroscopy at a Hg-Pt optically transparent electrode, J. E. Goelz, A. Y. Yacynych, H. B. Mark, Jr., and W. R. Heineman,J. Electroanal. Chem. Interfacial Electrochem.103, 277–280 (1979).

    CAS  Google Scholar 

  63. Two electron oxidations at illuminated n-type semiconducting silicon electrodes. Use of chemically derivatized photoelectrodes, A. B. Bocarsly, E. G. Walton, M. G. Bradley, and M. S. Wrighton,J. Electroanal. Chem. Interfacial Electrochem.100, 283–306 (1979).

    CAS  Google Scholar 

  64. Reticulated vitreous carbon flowthrough electrodes, A. N. Strohl and D. I. Curran,Anal. Chem.51, 353–357 (1979).

    CAS  Google Scholar 

  65. Optically transparent thin layer electrode techniques for the study of biological redox system, W. R. Heineman, M. L. Meckstroth, B. J. Norris, and C. H. Su,Bioelectrochem. Bioeng. 6, 577–585 (1979).

    CAS  Google Scholar 

  66. Metallized plastic optically transparent electrodes, R. Cieslinski and N. R. Armstrong,Anal. Chem.51, 565–568 (1979).

    CAS  Google Scholar 

  67. Characterisation of Hg-Pt optically transparent electrodes, J. F. Goelz and W. R. HeinemanJ. Electroanal. Chem.103, 147–154 (1979).

    CAS  Google Scholar 

  68. Mercury film nickel minigrid optically transparent thin layer electrochemical cell, W. R. Heineman, T. P. De Angelis, and J. F. Goelz,Anal. Chem.47, 1364 (1975).

    CAS  Google Scholar 

  69. A thin layer spectroelectrochemical study of Cob.(I) alamin to Cob.(Ill) alamin oxidation process, T. M. Kenyhalz and H. B. Mark, Jr.,J. Electroanal. Chem. Interfacial Electrochem.23, 1656–1662 (1976).

    Google Scholar 

  70. Optically transparent thin layer electrode for anaerobic measurements on redox enzymes, B. J. Norris, M. L. Meckstroth, and W. R. Heineman,Anal. Chem.48, 630–632 (1976).

    CAS  Google Scholar 

  71. Infrared spectrophotometric observations of the absorption of fibrinogen from solution at optically transparent carbon film electrode surfaces, J. S. Mattson and T. T. Jones,Anal. Chem.48, 2164–2167 (1976).

    CAS  Google Scholar 

  72. Electrochemical oxidation of 5-6 diaminouracil. An investigation by thin layer spectroelectrochemistry (gold minigrid), J. L. Owens and G. Dryhurst,J. Electroanal. Chem. Interfacial Electrochem. 88, 171–180 (1977).

    Google Scholar 

  73. Mercury-gold minigrid optically transparent thin layer electrode, M. L. Meyer, T. P. De Angelis, and W. R. Heineman,Anal. Chem.49, 602–666 (1977).

    CAS  Google Scholar 

  74. Carbon and mercury-carbon optically transparent electrodes, T. P. De Angelis, R. W. Hurst, A. M. Yacynycl, H. B. Mark, Jr., W. R. Heineman, and J. S. Mattson,Anal. Chem. 49, 1395–1398 (1977).

    Google Scholar 

  75. Optically transparent vitreous carbon electrode, V. E. Norrell and G. Mamantov,Anal. Chem.49, 1471–1478 (1977).

    Google Scholar 

  76. The specific absorption of anions on a Hg-Pt optically transparent electrode by transmission spectroelectrochemistry, W. R. Heineman and J. F. Goelz,J. Electroanal. Chem. Interfacial Electrodes,89, 437–441 (1978).

    CAS  Google Scholar 

Liquid Electrodes

  1. Polarographic current-voltage curves with dropping amalgam electrodes, J. J. Lingane,J. Am. Chem. Soc.61, 976–977 (1939).

    CAS  Google Scholar 

  2. Polarographic studies with the dropping mercury electrode. Part XI. The use of dilute amalgams in the dropping electrode, J. Heyrovsky and M. Kalousek,Collect. Czech. Chem. Commun.11, 464–473 (1939).

    CAS  Google Scholar 

  3. Oscillographische polarographie, J. Heyrovsky and J. Forejt,Z. Phys. Chem.193, 77–96 (1943).

    CAS  Google Scholar 

  4. Fundamentals and Applications of the Streaming Mercury Electrode, A. Rius, Academy of Sciences of Madrid, Bermejo, Madrid (1949).

    Google Scholar 

  5. A study of the polarographic behaviour of dropping amalgam electrodes, N. H. Furman and W. C. Cooper, /.Am. Chem. Soc.72, 5667–5676 (1950).

    CAS  Google Scholar 

  6. Electrochemical phenomena at a rotating mercury electrode. I. Reduction of metal ions, T. S. Lee,J. Am. Chem. Soc.74, 5001–5008 (1952).

    CAS  Google Scholar 

  7. Polarographic studies with a stationary mercury-plated platinum electrode, T. L. Marple and L. B. Rogers,Anal. Chem. 25, 1351–1354 (1953).

    CAS  Google Scholar 

  8. Coulometric determination of submicrogram amounts of cadmium and zinc with stationary mercury plated platinum electrodes, K. W. Gardiner and L. W. Rogers,Anal. Chem. 25, 1393–1397 (1953).

    CAS  Google Scholar 

  9. The discharge mechanism of simple and complex zinc ions, H. Gerischer, Z.Physk. Chem.202, 302–317 (1953).

    CAS  Google Scholar 

  10. Extension of sensitivity of polarographic analysis with rotating amalgam electrodes, \V. D. Cooke,Anal. Chem.25, 215 (1953).

    CAS  Google Scholar 

  11. Reduction at streaming mercury electrode. I. The limiting current, J. R. Weaver and R. W. Parry,J. Am. Chem. Soc. 76, 6258–6262 (1954).

    CAS  Google Scholar 

  12. a) The streaming mercury electrodes (b) The rotating solid electrode (c) The rotating mercury electrode and (d) Vibrating electrode, In:New Instrumental Methods in Electrochemistry, P. Delahay, Chap. 9, pp. 240–249, Interscience Publishers, New York (1954).

    Google Scholar 

  13. Kinetics of fast electrode reactions (hanging mercury drop electrode), T. Berzins and P. Delahay,J. Am. Chem. Soc. 77, 6448–6453 (1955).

    CAS  Google Scholar 

  14. Analytical applications of the hanging mercury drop electrode, J. W. Ross, R. D. DeMars, and I. Shain,Anal. Chem.28, 1768 (1956).

    CAS  Google Scholar 

  15. The rotated dropping mercury electrode as a new electrode in polarography, W. Stricks and I. M. Kolthoff,Am. Chem. Soc. 78, 2085–2094 (1956).

    CAS  Google Scholar 

  16. Equation for the limiting current at the rotated dropping mercury electrode, Y. Okinaka and I. M. Kolthoff, /.Am. Chem. Soc.79, 3326–3339 (1957).

    CAS  Google Scholar 

  17. Factors to be considered in quantitative polarography with the rotated dropping mercury electrode, I. M. Kolthoff and Y. Okinaka,Anal. Chim. Acta 18, 83–96 (1958).

    CAS  Google Scholar 

  18. A rotating hanging mercury drop electrode, E. Barendrecht,Nature 181, 764–765 (1958).

    Google Scholar 

  19. Application de la goutte pendante de mercure a la determination de minimes quantites de differents ions, W. Kemula and Z. Kublik,Anal. Chim. Acta 18, 104–111 (1958).

    CAS  Google Scholar 

  20. Voltammetry with hanging mercury drop electrode, W. Kemula, In:Advances in Polarography, I. S. Longmuir, ed., Vol. 1, pp. 105–143, Pergamon Press, London (1960).

    Google Scholar 

  21. The electrodes, In:Electrochemical Reactions, G. Chariot, J. Badoz-Lambling, and B. Tremilon, pp. 140–148, Elsevier Publ. Co., Amsterdam, New York (1962).

    Google Scholar 

  22. Dropping electrodes, In:Polarographic Techniques, L. Meites, pp. 73–83, Interscience Publishers, New York (1965).

    Google Scholar 

  23. Cyclic and stripping voltammetry with graphite based thin mercury film electrodes prepared “in situ”, Z. Strojek, B. Stepnik, and Z. Kublik,J. Electroanal. Chem. Interfacial Electrochem.74, 277 (1976).

    Google Scholar 

  24. Comparison of spinning dropping mercury electrode response with polarographic and rotating disc electrode theory, H. J. Mortko and R. E. Cover,Anal. Chem. 51, 1144–1149 (1979).

    CAS  Google Scholar 

  25. Modification of a commercial micrometer hanging mercury drop electrode, J. E. Bonelli, H. E. Taylor, and R. K. Skogerboe,Anal. Chem. 51, 2412–2413 (1979).

    CAS  Google Scholar 

  26. Static mercury drop electrode, W. M. Peterson,Am. Lab. No. 12, 69–78 (1979).

    Google Scholar 

  27. High speed device for synchronization of natural drop experiments with a DME, P. D. Tyma, M. J. Weaver, and C. G. Enke,Anal. Chem. 51, 2300–2302 (1979).

    CAS  Google Scholar 

Thin Layer Cells: Theory, Methodology, and Application

  1. Electrochemistry using thin layer cells, C. N. Reilley,Rev. Pure App. Chem. 18, 137 (1968).

    CAS  Google Scholar 

  2. The theory and practice of electrochemistry with thin layer cells, A. T. Hubbard and F. C. Anson, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 4, pp. 129–214, Marcel Dekker, Inc., New York (1970).

    Google Scholar 

  3. Thin layer electrochemistry, R. S. Tywin and Yu. S. Lyankov,Zhadonov. S.I. Usp. Khim.41, 2272–2299 (1972).

    Google Scholar 

  4. Homogeneous kinetics using electrochemical cells with a large ratio of electrode area to solution volume. Part II. M. Fleishmann, D. Pletcher, and A. Ratinski,J. Electroanal. Chem. Interfacial Electrochem.38, 329–336 (1972).

    Google Scholar 

  5. Spectroelectrochemical study of mixed valence pyrazine-decaamminediruthenium (II, III) complex, V. S. Srinivasan and F. C. Anson,J. Electrochem. Soc.120, 1359 (1972).

    Google Scholar 

  6. Resistive effects in thin electrochemical cells: digital simulations of current and potential steps in thin layer electrochemical cells, I. B. Goldberg and A. J. Bard,J. Electroanal. Chem. Interfacial Electrochem.38, 313–322 (1972).

    CAS  Google Scholar 

  7. Resistive effects in thin electrochemical cells: digital simulation of electrochemistry in electron spin resonance cells, I. B. Goldberg, A. J. Bard, and S. W. Feldberg,J. Phys. Chem. 76, 2550 (1972).

    CAS  Google Scholar 

  8. Electrochemistry in thin layers of solution, A. T. Hubbard,CRC Crit. Rev. Anal. Chem. 3, 201–242 (1973).

    CAS  Google Scholar 

  9. Construction of an optically transparent thin film electrochemical cell, D. Ratard, P. Belin, and V. Pickton,Analusis 2, 413–419 (1973).

    CAS  Google Scholar 

  10. Untersuchung der chloridasorption an silber und gold mit hilfe eines zweielektroden-dwins- chichtverfohrens, E. Schmidt and S. Stucki,J. Electroanal. Chem. Interfacial Electrochem.43, 425–440 (1873).

    Google Scholar 

  11. Measurement of enzyme E°’ values by optically transparent thin layer electrochemical cells, W. R. Heinemann, B. J. Norris, and J. F. Goelz,Anal. Chem. 47, 79 (1975).

    Google Scholar 

  12. Mercury film nickel minigrid optically transparent thin layer electrochemical cell, W. R. Heineman, T. P. De Angelis, and J. F. Goelz,Anal. Chem.47, 1364 (1975).

    CAS  Google Scholar 

  13. Use of optically transparent thin layer cells for determination of composition and stability constants of metal ion complexes with electrode reaction products, I. Piljack, M. Jkalee, and B. Grabaric,Anal. Chem.47, 1369 (1975).

    Google Scholar 

  14. Differential pulse anodic stripping voltammetry in a thin layer electrochemical cell, T. P. De Angelis and W. R. Heineman,Anal Chem. 48, 2262–2263 (1976).

    Google Scholar 

  15. Thin layer electrochemistry, E. Yeager and J. Kuta, In:Techniques in Electrochemistry, E. Yeager and A. J. Salkind, eds., Vol. 1, pp. 167–169 (1976).

    Google Scholar 

  16. Theoretical study of a two step reversible electrochemical reaction associated with irreversible chemical reaction in thin layer linear potential sweep voltammetry, V. Plichon and E. Laviron,J. Electroanal Chem. Interfacial Electrochem.71, 143–156 (1976).

    CAS  Google Scholar 

  17. Study of platinum electrodes by means of thin layer electrochemistry and low energy electron diffraction. Part I. Electrode surface structure after exposure to water and aqueous electrolytes, R. M. Ishikawa and A. T. Hubbard,J. Electroanal Chem. Interfacial Electrochem.69, 317 (1976).

    CAS  Google Scholar 

  18. A thin layer spectroelectrochemical study of Cob(I) alamin to Cob(III) alamin oxidation process, T. M. Kenyhelz and H. B. Mark, Jr.,J. Electroanal Chem. Interfacial Electrochem. 23, 1656–1662 (1976).

    Google Scholar 

  19. Electrochemical oxidation of 5,6 diaminouracil. An investigation by thin layer spectroelec- trochemistry, J. L. Owens and G. Dryhurst,J. Electroanal Chem. Interfacial Electrochem. 88, 171–180 (1977).

    Google Scholar 

  20. A coulometric thin layer flow cell for trace amount detection and its application to adsorption studies, H. Siegenthaler and E. Schmidt,J. Electroanal Chem. Interfacial Electrochem. 80, 129 (1977).

    CAS  Google Scholar 

  21. Thin layer differential pulse voltammetry, T. P. DeAngelis, R. E. Bond, E. E. Brooks, and W. R. Heineman,Anal Chem.49, 1792 (1977).

    CAS  Google Scholar 

  22. Small volume high performance cell for nonaqueous spectroelectrochemistry, F. M. Hawkridge, J. E. Pembestin, and H. L. Blount,Anal Chem.49, 1646–1647 (1977).

    CAS  Google Scholar 

  23. An electrochemical thin layer cell for spectroscopic studies of photosynthetic electron transport components, F. M. Hawkridge and B. Ke,Anal Biochem.78, 76–85 (1977).

    CAS  Google Scholar 

  24. Thin layer electrochemical technique for monitoring electrogenerated reactive intermediates, R. L. McCreery,Anal Chem. 49, 206–209 (1977).

    CAS  Google Scholar 

  25. Thin layer cell for routine applications, J. Caja, A. Cozerwinskii, and H. B. Mark, Jr.,Anal Chem.51, 1328–1329 (1979).

    CAS  Google Scholar 

  26. Thin layer spectroelectrochemistry for monitoring kinetics of electrogenerated species, E. A. Blubaugh, A. M. Yacynych, and W. R. Heineman,Anal Chem. 51, 561–565 (1979).

    CAS  Google Scholar 

  27. Studies of the thermodynamics of electron transfer reactions of blue copper proteins, N. Sallauta, F. C. Anson, and H. B. Gray,J. Am. Chem. Soc.101, 455–458 (1979).

    Google Scholar 

  28. A small volume thin layer spectroelectrochemical cell for the study of biological components, C. W. Anderson, H. B. Halsak, and W. R. Heineman,Anal Biochem.93, 366–372 (1979).

    CAS  Google Scholar 

  29. Circulating long optical path thin layer electrochemical cell for spectroelectrochemical characterisation of redox enzymes, J. L. Anderson,Anal Chem.51, 2312–2315 (1979).

    CAS  Google Scholar 

Rotating Ring Disc Electrode and Related Configurations

  1. Vibrating electrodes in amperometric titrations. Part II. Bromometric determinations of antimony and arsenic, E. D. Harris and A. J. Lindsay,Analyst 76, 647–650 (1951).

    CAS  Google Scholar 

  2. Hydrogen fluoride solvent system apparatus for polarographic studies. Rotating electrode, J. W. Sargent, A. Clifford, and W. R. Lemmon,Anal Chem.25, 1727–1729 (1953).

    CAS  Google Scholar 

  3. F. W. Stoll and H. BerBack,Monatsch Chem.84, 1179 (1953).

    CAS  Google Scholar 

  4. Behaviour of a rotating gold microelectrode, F. Bauman and I. Shain,Anal Chem.29, 303 (1957).

    Google Scholar 

  5. Diffusion coefficients at rotated microelectrodes, E. R. Nightingale, Jr.,Anal Chim. Acta 16, 493–496 (1957).

    CAS  Google Scholar 

  6. Die anwendung der rotierenden scheibenelektrode mit einen ringe zur untersuchung von zwischenprodukten elektrochemischer reaktionen, A. N. Frumkin, L. Nekrasov, B. Levich, and Ju. Ivanov,J. Electroanal. Chem. 1, 84 (1959/60).

    Google Scholar 

  7. Physico Chemical Hydrodynamics, V. G. Levich (Trans. Eng.), Chap. I, III, VI, Prentice Hall, Englewood Cliffs, N.J. (1962).

    Google Scholar 

  8. The rotating disk system, A. C. Riddiford, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay, ed., pp. 47–116, Interscience Pub., New York (1966).

    Google Scholar 

  9. Mechanistic analysis of oxygen electrode reactions, A. Damjanovic, In:Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Vol. 5, Chap. 5, pp. 409–427, Plenum Press, New York (1969).

    Google Scholar 

  10. Transport phenomena in electrochemical kinetics, A. J. Arvia and S. L. Marchiano, In:Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, ed., vol. 6, Chap. 3, pp. 159–241, Butterworths, London (1971).

    Google Scholar 

  11. Ring-disc electrodes, W. J. Albery and M. L. Hitchman, Clarendon Press, Oxford (1971).

    Google Scholar 

  12. Rotating disk electrode, Yu. V. Pleskov and V. Yu. Filinovski, Publ. “Nauka,” Moscow (1972) ( Russ.).

    Google Scholar 

  13. The fundamental principles of current distribution and mass transport in electrochemical cells, J. Newman, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 6, pp. 187–352, Marcel Dekker, Inc., New York (1973).

    Google Scholar 

  14. Electrochemical systems, J. S. Newman, Chap. 1,11-17, and 21, Prentice Hall, Inc., Englewood Cliffs, N.J. (1973).

    Google Scholar 

  15. Rotating ring-hemispherical electrode for electroanalytical application, D.-T. Chin,J. Electroanal. Chem. Interfacial Electrochem.120, 631–635 (1973).

    CAS  Google Scholar 

  16. Mass transfer on the rotating double ring electrodes. Reactions without gas evolution, V. Yu. Filinovskii, J. V. Kadija, B. Z. Nicolic, and M. B. Nakie,J. Electroanal. Chem. Interfacial Electrochem.54, 39–46 (1974).

    CAS  Google Scholar 

  17. Current distribution on a rotating sphere below the limiting current, K. Nisancioglu and J. Newman,J. Electrochem. Soc.121, 241–246 (1974).

    CAS  Google Scholar 

  18. Ionic mass transport at horizontal disc electrodes with longitudinal vibration, J. J. Podesta, G. F. Paws, and A. J. Arvia,Electrochim. Acta 19, 583–589 (1974).

    CAS  Google Scholar 

  19. Submicromolar analysis with rotating and hydrodynamically modulated disc electrodes, B. Miller and S. Bruckenstein,Anal. Chem.46, 2026–2032 (1974).

    CAS  Google Scholar 

  20. Rotating disc electrode voltammetry using small sample volumes, B. Miller and S. Bruckenstein,Anal. Chem.46, 2033 (1974).

    CAS  Google Scholar 

  21. Etude theorique dune electrode tournante a double anneau. Partie I. Recherche due factem d’efficacite par une methode de simulation numerique, J. Margarit and M. Levy,J. Electroanal. Chem. Interfacial Electrochem. 49, 369–376 (1974).

    CAS  Google Scholar 

  22. Digital simulation of a rotating photoelectrode: Photolysis of benzophenone in alkaline media, J. R. Lubbers, E. W. Resnick, P. R. Gainer, and D. C. Johnson,Anal. Chem.46, 865 (1974).

    CAS  Google Scholar 

  23. Mass transfer to an eccentric rotating disc electrode, C. M. Mohr, Jr. and J. Newman,J. Electrochem. Soc.122, 928–931 (1975).

    CAS  Google Scholar 

  24. Mass transfer at a rotating disc with rectangular patch electrodes, A. R. Despic, M. V. Mitrovic, B. Z. Nikovik, and S. D. Cvigoric,J. Electroanal. Chem. Interfacial electrochem.60, 141–149 (1975).

    CAS  Google Scholar 

  25. Rotating disc electrode, Yu. V. Pleskov and V. Yu. Filinovskii, (Eng. Trans.) Consultant Bureau, New York (1976).

    Google Scholar 

  26. The rotating cone electrode, Kirowa-Eisner and E. Gileadi,J. Electrochem. Soc. 123, 22–24 (1976).

    CAS  Google Scholar 

  27. Glassy carbon rotating ring-disc electrode for molten salt studies, J. Phillips, R. J. Gale, R. G. Wier, and R. A. Osteryoung,Anal. Chem. 48, 126 (1976).

    Google Scholar 

  28. Rotating ring-disc enzyme electrode for surface catalysis, F. R. Sluu and G. S. Wilson,Anal. Chem.48, 1679 (1976).

    Google Scholar 

  29. The semitransparent rotating disc electrode, W. J. Albery, M. D. Archer, and R. G. Egdell,J. Electroanal. Chem. Interfacial Electrochem.82, 199–208 (1977).

    CAS  Google Scholar 

  30. Unraveling reactions with rotating electrodes, S. Bruckenstein and B. Miller,Acc. Chem. Rev.10, 54 (1977).

    CAS  Google Scholar 

  31. Theory of a.c. voltammetry at a rotating disk electrode. Part I. Reversible electrode process, K. Tokuda and H. Matsuda,J. Electroanal. Chem. Interfacial Electrochem.82, 157–171 (1977).

    CAS  Google Scholar 

  32. Simultaneous reactions on a rotating disk electrode, R. White and J. Newman,J. Electroanal. Chem. Interfacial Electrochem.82, 173–186 (1977).

    CAS  Google Scholar 

  33. Ring disc electrodes. Part 18. Collection efficiency for high frequency a.c., W. J. Albery, R. G. Comptor, and A. R. Hillman,J. Chem. Soc. Faraday Trans.74, 1007–1019 (1978).

    CAS  Google Scholar 

  34. Theory of a.c. voltammetry at a rotating disk electrode. Part II. Quasireversible and irreversible redox electrode reactions, K. Tokuda and H. Matsuda,J. Electroanal. Chem. Interfacial Electrochem.90, 149–163 (1978).

    CAS  Google Scholar 

  35. Kinetics of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide applications to porous and rotating ring disk electrode, A. J. Appleby and M. Savy,J. Electroanal. Chem. Interfacial electrochem.92, 15–30 (1978).

    CAS  Google Scholar 

  36. Digital simulation of a rotating disc electrode with optically transparent ring, R. Doer and E. W. Grabner,Ber. Bungenges. Phys. Chem.82, 164–168 (1978).

    Google Scholar 

  37. An easy to build rotating dis electrode application to B-diketonates of Co(II) and Co(III), G. Ritzer and M. Gross,J. Electroanal. Chem. Interfacial Electrochem.94, 209–218 (1978).

    Google Scholar 

  38. Construction of a rotating ring disc electrode from irregular electrode materials, P. G. Rowley and J. G. Osteryoung,Anal. Chem.50, 1015–1016 (1978).

    CAS  Google Scholar 

  39. Theory of a.c. voltammetry at a rotating disk electrode. Part III. Redox electrode reactions coupled with first order chemical reactions, K. Tokuda and H. Matsuda,J. Electroanal. Chem. Interfacial Electrochem.95, 147–157 (1979).

    CAS  Google Scholar 

  40. Application of pulsed current electrolysis to a rotating disk electrode system. II. Electrochemical kinetics, K. Viswanathan and H. Y. Cheh,J. Electrochem. Soc. 125, 1616–1618 (1979).

    Google Scholar 

  41. Mass transfer effects of electrolysis by periodic currents, K. Viswanathan and H. Y. Cheh,J. Electrochem. Soc.126, 398–401 (1979).

    CAS  Google Scholar 

  42. H. J. Mortko and R. E. Cover,Anal. Chem. 51, 1144–1149 (1979).

    CAS  Google Scholar 

  43. Mass transfer to a rotating hemisphere in the laminar flow region, J. J. Kim and J. J. Jorne,J. Electrochem. Soc.126, 1937–1938 (1979).

    CAS  Google Scholar 

  44. Membrane covered rotated disc electrode, D. A. Gough and J. K. Leypoldt,Anal. Chem.51, 439–444 (1979).

    CAS  Google Scholar 

  45. Micrometer voltammetric analysis by ring electrode shielding at a rotating ring-disc electrode, S. Bruckenstein and P. R. Gifford,Anal. Chem.51, 250–255 (1979).

    CAS  Google Scholar 

  46. Rotated porous carbon disc electrode, W. J. Blaedel and J. Wang,Anal. Chem.52, 76–80 (1980).

    CAS  Google Scholar 

Microelectrodes

  1. Ion Selective Microelectrodes, H. J. Bermann and N. C. Herbert, eds., Plenum Press, New York (1974).

    Google Scholar 

  2. Microelectrodes, In:Introduction to Bio electrodes, C. D. Ferris, Chap. 4, pp. 57–82, Plenum Press, New York and London (1974).

    Google Scholar 

  3. Differential double pulse voltammetry at chemically modified platinum electrodes for in vivo determination of catecholamines, R. F. Lane and A. T. Hubbard,Anal. Chem.48, 1287 (1976).

    CAS  Google Scholar 

  4. Brain dopaminergic neurons: in vivo electrochemical information concerning storage, metabolism and release process, R. F. Lane, A. T. Hubbard, and C. D. Blaha,Bioelectrochem. Bioenerg.5, 504–525 (1978).

    CAS  Google Scholar 

  5. Methods for electroanalysis “in vivo,” J. Koryta, M. Brezina, J. Pradac, and J. Pradacova, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 11, pp. 85–140, Marcel Dekker Inc., New York (1979).

    Google Scholar 

  6. Application of semidifferential electroanalysis to studies of neurotransmitters in the central nervous systems, R. F. Lane, A. T. Hubbard, and C. D. Blaka,J. Electroanal. Chem. Interfacial Electrochem.95, 117–122 (1979).

    CAS  Google Scholar 

  7. Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines, J. L. Ponchen, R. Cespaglio, F. Gonon, M. Jouve, and J. F. Pujol,Anal. Chem.51, 1483–1486 (1979).

    Google Scholar 

  8. In vivo electrochemistry: Behaviour of microelectrodes in brain tissue, H. Y. Cheng, J. Scheuk, R. Huff, and R. N. Adam,J. Electroanal. Chem. Interfacial Electrochem. 100, 23–31 (1979).

    CAS  Google Scholar 

General Principles and Reviews

  1. Special techniques in the study of electrode processes and electrochemical adsorption, B. E. Conway,Tech. Electrochem. 1, 389–568 (1972).

    CAS  Google Scholar 

  2. Internal reflection spectroscopy in electrochemistry, W. N. Hansen, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. 9, Theory: pp. 1–42; Apparatus: pp. 48–51; Application: pp. 51–60, J. Wiley-Interscience Pub., New York (1973).

    Google Scholar 

  3. Specular reflection spectroscopy of the electrode solution interface, J. D. E. Mclntyre, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. 9, Theory: pp. 61–102 and 119–136; Instrumentation: pp. 102–119; Application, pp. 136–166, J. Wiley-Interscience Pub., New York (1973).

    Google Scholar 

  4. Principles of ellipsometry, R. H. Muller, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. 9, Theory: pp. 167–196; Instrumentation: pp. 197–226, J. Wiley-Interscience Pub., New York (1973).

    Google Scholar 

  5. Applications of ellipsometry to electrochemistry, J. Kruger, In:Advances in Electrochemistry and Electrochemical Engineering, P. Delahay and C. W. Tobias, eds., Vol. 9, pp. 227–280, J. Wiley-Interscience Pub., New York (1973).

    Google Scholar 

  6. Investigation of electrode surfaces by means of combined electrochemical and electron- scattering techniques, A. T. Hubbard, R. M. Ishikawa, and J. A. Schoeffel,Proc. Symp. Electrocatalysis, M. W. Breiter, ed., Electrochemical Society, Princeton, N.J., pp. 258–267 (1974).

    Google Scholar 

  7. Spectroelectrochemistry at optically transparent electrodes. I. Electrodes under semi-infinite diffusion conditions, T. Kuwana and N. Winograd, In:Electroanalytical Chemistry, A. J. Bard, ed., Vol. 7, pp. 1–78, Marcel Dekker, Inc., New York (1974).

    Google Scholar 

  8. Surface analysis by electron spectroscopy, B. G. Baker, In:Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Vol. 10, pp. 93–160, Plenum Press, New York (1975X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode, K. S. Kim, A. F. Grossmann, and N. Winograd,Anal Chem.46,197–200 (1974).

    Google Scholar 

  9. Electron desorption of adsorbates, J. H. Leek,Electron. Fis. Apl.17, 178–182 (1974).

    Google Scholar 

  10. New spectroscopic methods for electrochemical research, J. D. E. Mclntyre, In:Trends in Electrochemistry, J. O’M. Bockris, D. A. J. Rand, and B. J. Welch, eds., pp. 203–231, Plenum Press, New York (1977).

    Google Scholar 

  11. Recent advances in the understanding of electrocatalysis and its relation to surface chemistry, E. Yeager, In:Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, Proceedings, Vol. 77 - 6, The Electrochemical Society, Inc., Princeton, N.J. (1977).

    Google Scholar 

  12. The application of auger electron spectroscopy to the study of electrode surfaces, B. G. Baker, In:Trends in Electrochemistry, J. O’M. Bockris, D. A. J. Rand, and B. J. Welch, eds., pp. 233–239, Plenum Press, New York (1977).

    Google Scholar 

  13. Recent advances in some optical experimental methods, R. H. Muller,Electrochim. Acta 22, 951–965 (1977).

    CAS  Google Scholar 

  14. Application of auger and photoelectron spectroscopy to electrochemical problems, J. Augustynski and L. Balsenc, In:Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, Eds., Vol. 13, Chap. 4, Auger electron spectroscopy (AES) and X-ray excited photoelectron spectroscopy (XPS), pp. 253–290, AES and XPS for surface analysis, surface analysis applied to electrocatalysis and application of AES and XPS to passivity and corrosion studies, pp. 299–347, Plenum Press, New York (1978).

    Google Scholar 

  15. Spectroelectrochemistry: Combination of optical and electrochemical techniques for studies of redox chemistry, W. R. Heineman,Anal. Chem.50, 390A–402A (1978).

    Google Scholar 

  16. Electrocatalysis of fuel cell reactions—Present status and future prospects, W. E. O’Grady and S. Srinivasan, In:Proceedings of the Workshop on the Electrocatalysis of Fuel Cell Reactions, W. E. O’Grady, S. Srinivasan, and R. F. Dudley, eds., Proceed. Vol. 79-2, pp. 5–13, The Electrochemical Society Inc., Princeton, N.J. (1979).

    Google Scholar 

  17. Electrocatalyst—support interactions, K. Kinoshita, In:Proceedings of the Workshop on the Electrocatalysis of Fuel Cell Reactions, W. E. O’Grady, S. Srinivasan, and R. F. Dudley, eds., Proceed. Vol. 79-2, pp. 144–164, The Electrochemical Society, Inc., Princeton, N.J. (1979).

    Google Scholar 

  18. Role of surface science and heterogeneous catalysis in electrocatalysis—Present and future status, B. E. Conway and J. A. Joebstl, In:Proceedings of the Workshop on the Electrocatalysis of Fuel Cell Reactions, Proceedings Vol. 79-2, W. E. O’Grady, S. Srinivasan, and R. F. Dudley, eds., pp. 212–220, The Electrochemical Society, Inc., Princeton, N.J. (1979).

    Google Scholar 

X-ray Photoelectron Spectroelectrochemistry

  1. Ionisation spectroscopy of contaminated metal surfaces, R. L. Gerlach,J. Vac. Sci. Technol.8, 599–604 (1971).

    CAS  Google Scholar 

  2. Electronspectroscopy of platinum oxygen surfaces and application to electrochemical studies, K. S. Kim, N. Winograd, and R. E. Davis,J. Am. Chem. Soc. 93, 6296–6297 (1971).

    CAS  Google Scholar 

  3. Electron spectroscopy for chemical analysis and Moessbauer investigations of some porous teflon-active carbon-phthalocyanine electrodes, R. Larsson, J. Mrha, and J. Blomqvist,Acta Chem. Scand. 26, 3386–3388 (1972).

    CAS  Google Scholar 

  4. Trace analysis by ESCA (electron spectroscopy for chemical analysis) electrochemical measurements, J. S. Brinen and J. E. McClure,Anal. Lett.5, 737–743 (1972).

    CAS  Google Scholar 

  5. X-ray photoelectron spectra of lead oxides, K. S. Kim, T. J. O’Leary, and N. Winograd,Anal. Chem.45, 2214 (1973).

    CAS  Google Scholar 

  6. X-ray photoelectron spectroscopy of adsorbed oxygen and carbonaceous species on platinum electrodes, G. C. Allen, P. M. Tucker, A. Capon, and R. Parsons,J. Electroanal. Chem. Interfacial Electrochem.50, 335 (1974).

    CAS  Google Scholar 

  7. X-ray photoelectron spectroscopic studies of palladium oxides and the palladium-oxygen electrode, K. S. Kim, A. F. Grossmann, and N. Winograd,Anal. Chem.46, 197 - 200 (1974).

    CAS  Google Scholar 

  8. X-ray photoelectron spectroscopic studies of ruthenium-oxygen surfaces, K. S. Kim and N. Winograd.J. Catal 35, 66–72 (1974).

    CAS  Google Scholar 

  9. ESCA studies of the composition profile of low temperature oxide formed on chromium steels. II. Corrosion in oxygenated water, I. Olefjord and H. Fishmeister,Corros. Sci. 15, 699–707 (1975).

    Google Scholar 

  10. Etude potentiostatique et spectroscopique de 1’ aluminium reconvert par une couche d’oxyde: Effect de differents anions,J. Painot andJ. Augustynskii,Electrochim. Acta 20, 747–752 (1975).

    CAS  Google Scholar 

  11. Electrochemical formation and electron spectroscopic characterization of the platinum sulfide electrode, J. F. Evans, H. N. Blount, and C. R. Ginnard,J. Electroanal Chem. Interfacial Electrochem.59, 169 (1975).

    CAS  Google Scholar 

  12. X-ray photoelectron spectroscopic studies of oxide films on platinum and gold electrodes, Th. Dickinson, A. F. Povey and P. M. A. Sherwood,J. Chem. Soc. Faraday Trans. I 71, 298 (1975).

    Google Scholar 

  13. ESCA studies of the passive film on an extremely corrosion resistant amorphous iron alloy, K. Asami, K. Hashimoto, T. Masumoto, and S. Shimodaira,Corros. Sci.16, 909–914 (1976).

    CAS  Google Scholar 

  14. XPS study of the interaction between aluminium metal and nitrate ions, J. Augustynski, H. Berthon, and J. Painot,Chem. Phys. Lett.44, 221–224 (1976).

    CAS  Google Scholar 

  15. Electrochemical and surface characteristics of tin oxide and indium oxide electrodes, N. R. Armstrong, A. W. C. Lin, M. Fujihira, and T. Kuwana,Anal Chem.48 (4), 741–750 (1976).

    CAS  Google Scholar 

  16. The use of X-ray photoelectron spectroscopy in the analysis of passive layers on stainless steel, J. E. Castle and C. R. Clayton,Corros. Sci. 17, 7–26 (1977).

    CAS  Google Scholar 

  17. XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron-chromium alloys, K. Asami, K. Hashimoto, and S. Shimodaira,Corros. Sci. 17, 713–723 (1977).

    CAS  Google Scholar 

  18. Dissolution and passivation of nickel. An X-ray photoelectron spectroscopic study, Th. Dickenson, A. F. Povey, and P. M. A. Sherwood,J. Chem. Soc. Faraday I 73, 327–343 (1977).

    Google Scholar 

  19. X-ray photoelectron spectroscopic studies of tin electrodes after polarization in sodium hydroxide solution, R. O. Ansell, Th. Dickinson, A. F. Povey, and P. M. A. Sherwood,J. Electrochem. Soc.124, 1360–1364 (1977).

    CAS  Google Scholar 

  20. On the composition of the passivating film formed on aluminum in chromate solutions, M. Koudelkeva, J. Augustynskii, and H. Berthon,J. Electrochem. Soc. 124, 1165–1168 (1977).

    Google Scholar 

  21. X-ray photoelectron and auger spectroscopic study of the underpotential deposition of Ag and Cu on Pt electrodes, J. S. Hammond and N. Winograd,J. Electrochem. Soc. 124, 826–833 (1977).

    CAS  Google Scholar 

  22. Electrochemical and physicochemical studies of oxygen layers on iridium and ruthenium electrodes, D. A. J. Rand, R. Woods, and D. Michel, In:Proceed, of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., Proceed. 77–6, pp. 217–233, The Electrochemical Society Inc., Princeton, N.J. (1977).

    Google Scholar 

  23. X-ray photoelectron spectroscopic evidence of distinctive underpotential deposition states of Ag and Cu on Pt substrates, J. S. Hammond and N. Winograd,J. Electroanal Chem. Interfacial Electrochem.80, 123–127 (1977).

    CAS  Google Scholar 

  24. XPS spectroscopic study of potentiostatic and galvanostatic oxidation of Pt electrodes in H2S04 and HC104, J. S. Hammond and N. Winograd,J. Electroanal Chem. Interfacial Electrochem.78, 55–69 (1977).

    CAS  Google Scholar 

  25. X-ray photoelectron/ auger electron spectroscopic studies of tin and iridium metal foils and oxides, A. W. C. Lin, N. R. Armstrong, and T. Kuwana,Anal Chem.49 (8), 1228–1235 (1977).

    CAS  Google Scholar 

  26. An XPS study of the passivity of a series of iron-chromium alloys in sulphuric acid, K. Asami, K. Hashimoto, and S. Shimodaira,Corros. Sci.18, 151–160 (1978).

    CAS  Google Scholar 

  27. Passivity of Metals, J. Augustyskii, R. P. Frankenthal and J. Kruger, eds., The Electrochemical Soc. Inc., Princeton, N.J., p. 989 (1978).

    Google Scholar 

  28. A study of ruthenium electrodes by cyclic voltammetry and X-ray emission spectroscopy, D. Michel, D. A. J. Rand, and R. J. Woods,J. Electroanal. Chem. Interfacial Electrochem.89, 11–27 (1978).

    Google Scholar 

  29. X-ray photoelectron spectroscopic studies of Ru02-based film electrodes, J. Augustynskii, L. Balsenc, and J. Hinden,J. Electrochem. Soc. 125, 1093–1097 (1978).

    Google Scholar 

Auger Electron Spectroelectrochemistry

  1. Chemical analysis of electrodeposited Ni-Ni bonds by auger electron spectroscopy, H. L. Marcus, J. R. Wadrop, F. T. Schuler, and E. F. C. Cain,J. Electrochem. Soc.119, 1348 (1972).

    CAS  Google Scholar 

  2. Application of auger electron spectroscopy to the determination of the composition of passive films on type 316 SS, J. B. Lumsden and R. W. Staehle,Scr. Metall. 6, 1205 - 1208 (1972).

    CAS  Google Scholar 

  3. Electrochemistry in thin layers of solution, A. T. Hubbard,CRC Crit. Rev. Anal. Chem.3, 201–242 (1973).

    CAS  Google Scholar 

  4. Composition of Pt anode surfaces by auger spectroscopy, W. C. Johnson and L. A. Heldt,J. Electrochem. Soc.121, 34 (1974).

    CAS  Google Scholar 

  5. The passive film on iron: An application of auger electron spectroscopy, R. W. Revie, B. G. Baker, and J. O’M. Bockris,J. Electrochem. Soc.122, 1460 (1975).

    CAS  Google Scholar 

  6. Electron desorption of adsorbates, J. H. Leek,Electron. Fis. Apl.17, 178–182 (1974).

    Google Scholar 

  7. Electrochemical and surface characteristics of tin oxide and indium oxide electrodes, N. R. Armstrong, A. W. C. Lin, M. Fugihira, and T. Kuwana,Anal. Chem.48 (4), 741–750 (1976).

    CAS  Google Scholar 

  8. X-ray photoelectron and auger spectroscopic study of the underpotential deposition of Ag on Cu and Pt electrodes, J. S. Hammond and N. Winograd,J. Electrochem. Soc.124, 826–833 (1977).

    CAS  Google Scholar 

  9. Quantitative elemental analysis of substituted hydrocarbon monolayers on Pt by auger electron spectroscopy with electrochemical calibration, J. A. Schoeffel and A. T. Hubbard,Anal. Chem.49 (14), 2330–2336 (1977).

    CAS  Google Scholar 

  10. Electrocatalytic properties of single crystal Pt surfaces in aqueous acid electrolytes, P. N. Ross, In:Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., Proceedings Vol. 77-6, pp. 290–307, The Electrochemical Society Inc., Princeton, N.J. (1977).

    Google Scholar 

  11. Auger analysis of the anodic oxide film on iron in neutral solution, M. Seo, M. Sato, J. B. Lumsden, and R. W. Staehle,Corros. Sci.17, 209–217 (1977).

    CAS  Google Scholar 

  12. Study by auger spectrometry and cathodic reduction of passive films formed on ferritic stainless steels, M. da cunha Belo, B. Rondot, F. Pons, J. Le Hericy, and J. P. Langeron,J. Electrochem. Soc.,124, 1317–1324 (1977).

    Google Scholar 

  13. The composition of passive films on ferritic stainless steels, A. E. Yaniv, J. B. Lumsden, and R. W. Staehle,J. Electrochem. Soc.124, 490–496 (1977).

    CAS  Google Scholar 

  14. A comparison of electrochemical and auger analysis of the surface composition of platinum- rhodium alloys, B. G. Baker, D. A. J. Rand, and R. Woods,J. Electroanal. Chem. Interfacial Electrochem.97, 189–198 (1979).

    CAS  Google Scholar 

  15. The use of auger electron spectroscopy for the characterization of the surfaces of spherical gold electrodes, J. Clavilier and J. P. Chauvineau,J. Electroanal. Chem. Interfacial Electrochem.97, 199–210 (1979).

    CAS  Google Scholar 

  16. Chemical characterization by auger electron spectroscopy and voltammetry of platinum electrode surfaces prepared in the gas phase, J. Clavilier and J. P. Chauvineau,J. Electroanal Chem. Interfacial Electrochem.100, 461–472 (1979).

    CAS  Google Scholar 

Low Energy Electron Diffraction Spectroelectrochemistry

  1. Electrochemistry in thin layers of solution, A. T. Hubbard,CRC. Crit. Rev. Anal. Chem.3, 201–242 (1973). 1

    CAS  Google Scholar 

  2. Surface characterisation of electrocatalysts by LEED, auguer electron spectroscopy and related techniques, J. A. Joebstl, First Chemical Congress of North American Continent, Mexico City, Nov. 30-Dec. 5, Abs. PHSC-18 (1975).

    Google Scholar 

  3. Study of platinum electrodes by means of thin layer electrochemistry and low energy electron diffraction. Part I. Electrode surface structure after exposure to water and aqueous electrolytes, R. M. Ishikawa and A. T. Hubbard,J. Electroanal. Chem. Interfacial Electrochem.69, 317–338 (1976).

    CAS  Google Scholar 

  4. Electrode surface studies by LEED-auger, W. E. O’Grady, M. Y. C. Woo, P. L. Hagans, and E. Yeager,J. Vac. Sci. Technol.14, 365–368 (1977).

    Google Scholar 

  5. Ethylene hydrogenation and related reaction on single crystal and polycrystalline Pt electrodes, A. T. Hubbard, J. A. Schoeffel, and H. W. Walter, National Meeting, American Chem. Society, New Orleans, Mar. 1977, Abst. coll. 142.

    Google Scholar 

  6. Electrocatalytic properties of single crystal Pt surfaces in aqueous acid electrolytes, P. N. Ross, In:Proceedings of the Symposium on Electrode Materials and Processes for Energy Conversion and Storage, J. D. E. Mclntyre, S. Srinivasan, and F. G. Will, eds., Vol. 77-6, pp. 290–307, The Electrochemical Society, Inc., Princeton, N.J. (1977).

    Google Scholar 

  7. Electrochemical hydrogen adsorption on the Pt(III) and (100) surfaces, W. E. O’Grady, M. Y. C. Woo, P. L. Hagars, and E. Yeager,Proceed, of the Symp. on Electrode Materials and Processes for Energy Conversion and Storage, pp. 172–184, Vol. 77-6, The Electrochem. Soc. Inc., Princeton, N.J. (1977).

    Google Scholar 

  8. Electrode surface studies by LEED-auger, W. E. O’Grady, M. Y. C. Woo, P. L. Hagans, and E. Yeager,J. Vac. Sci. Technol.14, 365–368 (1977).

    Google Scholar 

  9. Study of platinum electrodes by means of electrochemistry and low energy electron diffraction. Part II. Comparison of the electrochemical activity of Pt(100) and Pt(lll) surfaces, A. T. Hubbard, R. M. Ishikawa, and J. Katekaru,J. Electroanal. Chem. Interfacial Electrochem. 86, 271–288 (1978).

    CAS  Google Scholar 

  10. L.E.E.D. and electrochemistry of iodine on Pt(100) and Pt(lll) single crystal surfaces, T. E. Fetter and A. T. Hubbard,J. Electroanal. Chem. Interfacial Electrochem.100, 473–491 (1979).

    Google Scholar 

Raman Spectroelectrochemistry

  1. Raman spectra from electrode surfaces, M. Fleischmann, P. J. Hendra, and A. J. McQuillan,J. Chem. Soc. Chem. Commun. 80–81 (1973).

    Google Scholar 

  2. Raman spectra of pyridine adsorbed at a silver electrode, M. Fleischmann, P. J. Hendra, and A. J. McQuillan,J. Chem. Phys. Lett.26, 163–166 (1974).

    CAS  Google Scholar 

  3. Laser Raman spectroscopy as a tool for study of diffusion controlled electrochemical processes, J. S. Clarke, A. T. Kuhn, and W. J. Orville-Thomas,J. Electroanal. Chem. Interfacial Electrochem.54, 253–262 (1974).

    CAS  Google Scholar 

  4. Resonance Raman spectroelectrochemistry. I. The tetracyano ethylene anion radical, D. L. Jeanmaire, M. R. Suchanaki, and R. P. Van Duyne,J. Am. Chem. Soc.97, 1699 (1975).

    CAS  Google Scholar 

  5. Raman spectrosopic investigation of silver electrodes, A. J. McQuillan, P. J. Hendra, and M. Fleischmann, J. Electroanal. Chem. Interfacial Electrochem. 65, 933–944 (1975).

    CAS  Google Scholar 

  6. Laser Raman spectroscopy at the surface of a copper electrode, R. L. Paul, A. J. McQuillan, P. J. Hendra, and M. Fleischmann,J. Electroanal. Chem. Interfacial Electrochem. 66, 248–249 (1975).

    CAS  Google Scholar 

  7. Internal reflection resonance Raman spectroscopy for studies of adsorbed dye layers at electrode-solution interface, M. Fujihire and T. Osa,J. Am. Chem. Soc.98, 7850–7851 (1976).

    Google Scholar 

  8. Resonance Raman spectroelectrochemistry. IV. The oxygen decay chemistry of the tetracyanoquinodimethane dianion, M. R. Suchanski and R. P. Van Duyne,J. Am. Chem. Soc.98, 250–252 (1976).

    CAS  Google Scholar 

  9. Resonance Raman spectroelectrochemistry. 2. Scattering spectroscopy accompanying excitation of the lowest 2Blu excited state of the tetracyanoquinodimethane anion radical, D. L. Jeanmaire and R. P. Van Duyne,J. Am. Chem. Soc. 98, 4029–4033 (1976).

    CAS  Google Scholar 

  10. Resonance Raman spectroelectrochemistry. 3. Tunable dye laser excitation spectroscopy of the lowest 2Blu excited state of the tetracyanoquinodimethane anion radical, D. L. Jeanmaire and R. P. Van Duyne, /.Am. Chem. Soc. 98, 4034–4039 (1976).

    CAS  Google Scholar 

  11. Resonance Raman spectroscopic detection of electrochemically generated dianion of naphthacene, T. Ikeshoji, T. Mizuno, and T. Sehine,Chem. Lett.11, 1275–1278 (1976).

    Google Scholar 

  12. Light scattering at electrochemical interface, G. Blondeau and E. Yeager,Prog. Solid State Chem.11, 153 (1976).

    Google Scholar 

  13. A Raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media, E. S. Reid, R. P. Cooney, P. J. Hendra, and M. Fleischmann,J. Electroanal. Chem. Interfacial Electrochem.80, 405–408 (1977).

    CAS  Google Scholar 

  14. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode, D. L. Jeanmaire and R. P. Van Duyne, /.Electroanal. Chem. Interfacial Electrochem.84, 1–20 (1977).

    CAS  Google Scholar 

  15. The Raman spectrum of adsorbed iodine on a platinum electrode surface, R. P. Cooney, E. S. Reid, P. J. Hendra, and M. Fleischmann,J. Am. Chem. Soc. 99, 2002–2003 (1977).

    CAS  Google Scholar 

  16. Anomalously intense Raman spectra of pyridine at a silver electrode, M. G. Albrecht and J. A. Creighton,J. Am. Chem. Soc.99, 5215 (1977).

    CAS  Google Scholar 

  17. Raman spectrum of carbon monoxide on a platinum electrode surface, R. P. Cooney, M. Fleischmann, and P. J. Hendra,J. Chem. Soc. Chem. Commun. 7, 235–237 (1977).

    Google Scholar 

  18. Intense Raman spectra at a roughened silver electrode, M. G. Albrecht and J. A. Creighton,Electrochim. Acta 23, 1103–1105 (1978).

    CAS  Google Scholar 

  19. The Raman spectrum of an adsorbed species on electrode surface, G. Hagen, B. S. Glavski, and E. Yeager,J. Electroanal. Chem. Interfacial Electrochem. 88, 269–275 (1978).

    CAS  Google Scholar 

  20. Coupled resonance Raman, visible absorption and electrochemistry—applications of a novel circulating cell to multispectral and redox investigations of the haem proteins carboxyhemo- globin and cytochrome C, J. L. Anderson and J. R. Kincaid,Appl. Spectrosc.32, 356–362 (1978).

    CAS  Google Scholar 

  21. Resonance Raman spectroelectrochemistry. 6. Ultraviolet laser excitation of the tetracyanoquino dimethane dianion, R. P. Van Duyne, M. R. Suchanski, J. Mlakovits, A. R. Siedle, K. D. Parks, and T. M. Cotton,J. Am. Chem. Soc. 101, 2832–2837 (1979).

    Google Scholar 

  22. In situ resonance Raman spectroscopic investigation of the tetrathiafulavalene- tetracyanoquino-dimethane electrode surface, W. L. Wallance, C. D. Jaeger, and A. J. Bard,J. Am. Chem. Soc.101, 4840–4843 (1979).

    Google Scholar 

Internal Reflection Spectroelectrochemistry

  1. Spectrometer cells for single and multiple internal reflection studies in ultraviolet, visible, near infrared and infrared spectral regions, W. N. Hansen and J. A. Horton,Anal. Chem.36, 783–787 (1964).

    CAS  Google Scholar 

  2. Observation of electrode solution interface by means of internal reflection spectrometry, W. N. Hansen, T. Kuwana, and R. A. Osteryoung,Anal. Chem.38, 1810–1821 (1966).

    CAS  Google Scholar 

  3. Internal reflection spectroscopic observation of electrode-solution interface, W. N. Hansen, R. A. Osteryoung, and T. Kuwana,J. Am. Chem. Soc. 88, 1062–1063 (1966).

    CAS  Google Scholar 

  4. Spectroscopic observation of an electrochemical reaction by means of internal reflection, W. N. Hansen,J. Opt. Soc. Am. 56, 380 (1968).

    Google Scholar 

  5. Spectroscopic observation of an electrochemical reaction by means of internal reflection, W. N. Hansen, In:Modern Aspects of Reflectance Spectroscopy, Proc. Symp. Chicago, 1967, pp. 182–191, W. W. Wendlandt, ed., Plenum Press, New York (1968).

    Google Scholar 

  6. Electromodulation of the optical properties of metals, W. N. Hansen,Surf. Sci.16, 205–216 (1969).

    CAS  Google Scholar 

  7. Spectroscopic studies of electrochemical reactions of adsorbed dye layers, R. Memming and F. Mollen,Symp. Faraday Soc. No. 4, 145–156 (1970).

    Google Scholar 

  8. Application of internal reflection spectroscopy to the study of adsorbed layers at interfaces, H. B. Mack Jr. and E. N. Randall,Symp. Faraday Soc.4, 157–172 (1970).

    Google Scholar 

  9. Reflectance studies of the gold/electrolyte interface, B. D. Cahan, J. Horkans, and E. Yeager,Symp. Faraday Soc. 4, pp. 36–44 (1970).

    Google Scholar 

  10. Reflection spectroscopy of adsorbed layers, W. N. Hansen,Symp. Faraday Soc. No. 4, pp. 27–35 (1970).

    Google Scholar 

  11. Optically transparent electrodes, J. W. Strojek,Chem. Anal. (Warsaw) 17, 1023–1029 (1972).

    CAS  Google Scholar 

  12. Infrared IRS study of electrogenerated species, D. Laser and M. Ariel,J. Electroanal. Chem. Interfacial Electrochem.41, 381 (1973).

    CAS  Google Scholar 

  13. Modulated electro-internal reflection spectrometry with a commercial infrared spectrophotometer, D. Laser and M. Ariel,Anal. Chem.45, 2141 (1973).

    CAS  Google Scholar 

  14. Spectroelectrochemistry at optically transparent electrodes. I. Electrodes under semi-infinite diffusion conditions, T. Kuwana and N. Winograd,J. Electroanal. Chem. Interfacial Electrochem.7, 1–78 (1974).

    CAS  Google Scholar 

  15. Solid state spectroelectrochemistry of cross linked donor bound polymer films, F. B. Kaufman and E. M. Engler, /.Am. Chem. Soc. 101, 547–549 (1979).

    CAS  Google Scholar 

  16. Internal reflection spectroscopy at a Hg-Pt optically transparent electrode, Harrick rapid scan spectrometer with signal processing model, J. F. Goelz, A. M. Yacynych, H. B. Mark, and W. R. Heineman,J. Electroanal. Chem. Interfacial Electrochem. 103, 277–280 (1979).

    CAS  Google Scholar 

Specular Reflection Spectroelectrochemistry

  1. Reflectance and ellipsometry of metal/electrolyte interfaces, M. Stedman,Symp. Faraday Soc. No. 4, pp. 64–71 (1970).

    Google Scholar 

  2. Reflectance studies of adsorption on a platinum electrode, M. A. Barrett and R. Parsons,Symp. Faraday Soc. 4, pp. 72–84 (1970).

    Google Scholar 

  3. Specular reflection spectroscopy of electrode surface films, J. D. E. Mclntyre and D. M. Kolb,Symp. Faraday Soc. 4, 99–113 (1970).

    Google Scholar 

  4. Studies of the cathodic adsorption of hydrogen and the anodic formation of oxide on platinum in perchloric acid solutions using modulated specular reflectance spectroscopy, A. Bewick and A. M. Tuxford,Symp. Faraday Soc.4, 114–125 (1970).

    Google Scholar 

  5. Studies of adsorbed species at the electrode/electrolyte interface by specular reflection of light, W. J. Pleith,Symp. Faraday Soc. 4, 137–144 (1970).

    Google Scholar 

  6. Use of surface reflection in spectroelectrochemistry. Visible spectra of 9,10-diphenyl anthracene radical ions, T. Matsumoto, M. Sato, S. Hirayana, and S. Uemura,Chem. Lett. 1077–1080 (1972).

    Google Scholar 

  7. Optical methods for studying electrode processes, W. J. Pleith,Chem. Ing. Tech.44, 221 (1972).

    Google Scholar 

  8. Modulation-reflection spectroscopy for studying the kinetics of methylene blue reduction, W. J. Pleith and P. Gruschinske,Ber. Bunsenges. Phys. Chem. 76, 485–491 (1972).

    Google Scholar 

  9. Enhanced protein adsorption at the solid-solution interface: Dependence on surface charge, J. S. Mattson and C. A. Smith,Science 181, 1055 (1973).

    CAS  Google Scholar 

  10. Electrochemical modulation spectroscopy, J. D. E. Mclntyre,Surf. Sci.37, 658–682 (1973).

    Google Scholar 

  11. Optical detection of electrochemically generated unstable reduction intermediates of tris (2,2’-bipyridine) chromium(lll) by reflectivity measurements of the silver electrode in propylene carbonate, Y. Sato,Chem. Lett. 1027–1030 (1973).

    Google Scholar 

  12. Studies of the adsorbed hydrogen on platinum cathodes using modulated specular reflectance spectroscopy, A. Bewick and A. M. TuxfordJ. Electroanal. Chem. Interfacial Electrochem. 47, 255–264 (1973).

    CAS  Google Scholar 

  13. The application of reflectance spectroscopy to a study of the anodic oxidation of cuprous sulphide, D. F. A. Koch and R. I. Mclntyre,J. Electroanal. Chem. Interfacial Electrochem. 71, 285–296 (1976).

    CAS  Google Scholar 

  14. Optical studies of the electrode-electrolyte solution interface using reflectance methods. II. The electroreflectance effect at a lead electrode, A. Bewick and J. Robinson,Surf. Sci.55 (1), 349–361 (1976).

    CAS  Google Scholar 

  15. Optical studies of the electrode-electrolyte solution interface using reflectance methods. Part III. The adsorption of water at a mercury electrode, A. Bewick and J. Robinson,J. Electroanal. Chem. Interfacial Electrochem. 71, 131–141 (1976).

    CAS  Google Scholar 

  16. Bias potential effects on the anisotropic electroreflectance of single crystal silver, T. E. Furtak and D. W. Lynch,J. Electroanal. Chem. Interfacial Electrochem.79, 1–17 (1977).

    CAS  Google Scholar 

  17. On the use of hanging mercury drop and the dropping mercury electrode, situated in a broad homogeneous beam of light as the object in reflectometry and ellipsometry, M. M. J. Pieterse, M. Sluyters-Rehbach, and J. H. Sluyters,J. Electroanal. Chem. Interfacial Electrochem.91, 55–62 (1978).

    Google Scholar 

  18. Observation of electrochemical concentration profiles by absorption spectroelectrochemistry, R. Pruiksma and R. L. McCreery,Anal. Chem.51, 2253–2257 (1979).

    CAS  Google Scholar 

  19. Optical monitoring of electrogenerated species via specular reflection at glancing incidence, R. L. McCreery, R. Pruiksma, and R. Fagan,Anal. Chem. 51, 749–752 (1979).

    Google Scholar 

  20. Optical and electrochemical study of electrocatalysis by foreign metal adatoms. Oxidation of formic acid on rhodium, R. R. Adzic and A. V. Tripkovic,J. Electroanal. Chem. Interfacial Electrochem. 99, 43–53 (1979).

    CAS  Google Scholar 

  21. Adsorption of adenine derivative on a gold electrode studied by specular reflectivity measurement, K. Takamura, A. Mori, and F. Watanabe,J. Electroanal. Chem. Interfacial Electrochem.102, 109–116 (1979).

    CAS  Google Scholar 

  22. Reflectance study of cation adsorption on oxide layers of gold and platinum electrodes, R. R. Adzic and N. M. Markovic,J. Electroanal. Chem. Interfacial Electrochem.102, 263–273 (1979).

    CAS  Google Scholar 

Ellipsometry

  1. An ellipsometric determination of the mechanism of passivity of nickel, J. O’M. Bockris, A.K. N. Reddy, and B. Rao,J. Electrochem. Soc.113, 1133–1140 (1966).

    CAS  Google Scholar 

  2. Ellipsometric studies of oxygen containing film on platinum anodes, A. K. N. Reddy, M. A. Genshaw, and J. O’M. Bockris,Chem. Phys.48, 671–675 (1968).

    CAS  Google Scholar 

  3. Electrochemical ellipsometric study of gold, R. S. Sirohi and M. A. Genshaw,J. Electrochem. Soc.116, 910–914 (1969).

    CAS  Google Scholar 

  4. Mechanism of film growth and passivation of iron as indicated by transient ellipsometry, J. O’M. Bockris, M. A. Genshaw, and V. Brusic,Symp. Faraday Soc. 4, 177–191 (1970).

    Google Scholar 

  5. Ellipsometric techniques and their application to polymer adsorption, R. R. Stromberg, L. E. Smith, and F. L. McCrackin,Symp. Faraday Soc.4, 192–200 (1970).

    Google Scholar 

  6. An ellipsometric investigation of adsorbed layers on platinum electrodes at high anodic potentials, R. Parsons and W. H. M. Visscher,J. Electroanal. Chem. Interfacial Electrochem.36, 329–336 (1972).

    CAS  Google Scholar 

  7. Ellipsometric and electrochemical investigation of the Au electrode, Yu. Ya. Vannikov, V. A. Shepelin, and V. I. Veselovskii,Sov. Electrochem. 8, 1201–1204 (1972).

    Google Scholar 

  8. Ellipsometric and electrochemical study of the Au electrode. II. Assessment of the thickness and the optical parameters of coatings, Yu. Ya. Vannikov,Sov. Electrochem. 8, 1352–1354 (1972).

    Google Scholar 

  9. Ellipsometric and electrochemical investigation of the Pt electrode. I. Formation of a monolayer of oxygen containing species, Yu. Ya. Vannikov, V. A. Shepelin, and V. I. Veselovskii,Sov. Electrochem. 9, 534–536 (1973).

    Google Scholar 

  10. An ellipsometric and electrochemical investigation of the Pt electrode. II. Formation and properties of oxide films in the oxygen evolution region, Yu. Ya. Vannikov, V. A. Shepelin, and V. I. Veselovskii,Sov. Electrochem. 9, 624 - 626 (1973).

    Google Scholar 

  11. Ellipsometric optics with special reference to electrochemical systems, W.-K. Park, In:Electrochemistry, Physical Chemistry Series One, Vol. 6, Consultant (ed.) A. D. Buckingham, Vol. ed. J. O’M. Bockris, pp. 239 - 285, Butterworths (London), University Park Press, Baltimore (1973).

    Google Scholar 

  12. Combined ellipsometric and reflectometric measurements of surface processes on noble metal electrodes, S. Qottesfeld, M. Babai, and B. Reichman,Surf. Sci.56 (1), 373–393 (1976).

    Google Scholar 

  13. The analysis of surface processes on solid electrodes by combined modulated ellipsometric and reflectometric experiments, S. Gottesfeld, M. Babai, and B. Reichman,Surf. Sci.57 (1), 251–265 (1976).

    CAS  Google Scholar 

  14. Ellipsometry of DNA adsorbed at mercury electrodes—A preliminary study, M. W. Humphreys andR. Parsons,J. Electroanal. Chem. Interfacial Electrochem.75, 427–436 (1977).

    CAS  Google Scholar 

  15. Ellipsometric studies of the adsorption of quinolines at the mercury electrode, M. W. Humphreys and R. Parsons,J. Electroanal. Chem. Interfacial Electrochem. 82, 369–390 (1977).

    CAS  Google Scholar 

  16. An ellipsometric study of the anodic oxidation of nickel in neutral electrolyte, J. L. Ord, J. C. Clayton, and D. J. DeSmet,J. Electrochem. Soc.124, 1714–1719 (1977).

    CAS  Google Scholar 

  17. Barbiturates at the mercury/solution interface. An ellipsometric study, K. Kunimatsu and R. Parsons,J. Electroanal. Chem. Interfacial Electrochem. 100, 335–363 (1979).

    CAS  Google Scholar 

Transmission Spectroelectrochemistry

  1. On the spectroelectrochemical characterization of the electrocatalytic oxidation of Cu(II) ethylene diamine, D. Meyerstein, F. M. Hawkridge, and T. Kuwana,J. Electroanal. Chem. Interfacial Electrochem.40, 377 (1972).

    CAS  Google Scholar 

  2. Electrochemical spectroscopy using the oxide coated optically transparent electrodes, J. W. Strojek and T. Kuwana,J. Electroanal. Chem. Interfacial Electrochem.16, 471–483 (1968).

    CAS  Google Scholar 

  3. Theory of potential step transmission chronoabsorptometry, C. Y. Li and G. S. Wilson,Anal. Chem.45, 2370–2380 (1973).

    CAS  Google Scholar 

  4. Comparative spectroelectrochemical stopped-flow kinetic and polarographic study of titanium(III) hydroxylamine reaction, M. Petek, T. E. Neal, R. L. McNeely, and R. W. Murray,Anal. Chem.45, 32 (1973).

    CAS  Google Scholar 

  5. Automated rapid scan instrument for spectroelectrochemistry in the visible region, E. E. Wells,Anal. Chem.45, 2022 (1973).

    CAS  Google Scholar 

  6. Anodic pyridination of 9,10-diphenylanthracene in acetonitrile spectroelectrochemical view, H. N. Blunt,J. Electronal. Chem. Interfacial Electrochem. 42, 271–274 (1973).

    Google Scholar 

  7. Application of IR spectroscopy to the study of the platinum electrode at various potentials, Z. A. Markova, A. A. Mikkailova, N. V. Osetrova, and V. S. Bagotski,Electrokhimiya 10, 1794 (1974);Sov. Electrochem.10, 1701 (1974).

    Google Scholar 

  8. Optically transparent carbon film electrodes for infrared spectroelectrochemistry, J. S. Mattson and C. A. Smith,Anal. Chem.47, 1122 (1975).

    CAS  Google Scholar 

  9. Some considerations in spectroelectrochemical evaluation of homogeneous electron transfer involving biological molecules, M. D. Rayan and G. S. Wilson,Anal. Chem.47, 885 (1975).

    Google Scholar 

  10. Measurement of enzyme E0’ values by optically transparent thin layer electrochemical cells, W. R. Heineman, B. J. Norris, and J. F. Goelz,Anal. Chem.47, 79 (1975).

    CAS  Google Scholar 

  11. Mercury film nickel minigrid optically transparent thin layer electrochemical cell, W. R. Heineman, T. P. DeAngelis, and J. F. Goelz,Anal. Chem. 47, 1364 (1975).

    CAS  Google Scholar 

  12. Use of optically transparent thin layer cells for determination of composition and stability constants of metal ion complexes with electrode reaction products, I. Piijac, M. Tkalcce, and B. Grabaric,Anal. Chem. 47, 1369 (1975).

    Google Scholar 

  13. Infrared studies of quinone radical anions and dianions generated by flow cell electrolysis, B. R. Clark and D. H. Evans,J. Electroanal. Chem. Interfacial Electrochem.69, 181–194 (1976).

    CAS  Google Scholar 

  14. The spectroelectrochemical response for first order E.C. processes with electrode product and reactant adsorption following double potential step excitation, R. P. Van Duyne, T. H. Ridgway, and C. N. Reilley,J. Electroanal. Chem. Interfacial Electrochem.69, 165–180 (1976).

    Google Scholar 

  15. A theoretical investigation of double potential step techniques as applied to the first order, one-half regeneration mechanism at planar electrodes: Chronoamperometry, chronocoulometry and chronoabsorptometry, T. H. Ridgway, R. P. Van Duyne, and C. N. Reilley,J. Electroanal. Chem. Interfacial Electrochem. 67, 1–10 (1976).

    CAS  Google Scholar 

  16. Spectroelectrochemical kinetic studies of cytochrome-c and cytochrome c oxidase, L. N. Mackey and T. Kuwana,Biolectrochem. Bioenerget.,3, 596–613 (1976).

    CAS  Google Scholar 

  17. Reactions of cation radicals of E.E. systems. IV. The kinetics and mechanism of the homogeneous and electrocatalyzed reaction of the cation radical of 9,10–diphenylanthracene with hydrogen sulfide, J. F. Evans and H. N. Blount,J. Phys. Chem.80, 1011–1017 (1976).

    CAS  Google Scholar 

  18. The electrochemistry of nitrobenzene and /?-nitrobenzaldehyde studied by transmission spectroelectrochemical methods in sulfolane, N. R. Armstrong, N. E. Vanderborgh, and R. K. Quinn,J.Phys. Chem.80, 2740–2745 (1976).

    CAS  Google Scholar 

  19. The spectroelectrochemical study of the oxidation of 1,2-diaminobenzene: alone and in the presence of Ni(II), A. M. Yacynych and H. B. Mark, Jr.,J. Electrochem. Soc.123,1346–1351 (1976).

    CAS  Google Scholar 

  20. A thin layer spectroelectrochemical study of Cob® alamin to Cob(III) alamin oxidation process, T. M. Kenyharcz and H. B. Mark, Jr.,J. Electrochem. Soc. 23, 1656–1662 (1976).

    Google Scholar 

  21. Protonation kinetics and mechanism for 1,8,-dihydroxyanthraquinone and anthraquinone anion radicals in dimethyl formamide solvent, R. M. Wightman, J. R. Cockrell, R. W. Murray, J. N. Burnett, and S. B. Jones,J. Am. Chem. Soc.98, 2562–2570 (1976).

    CAS  Google Scholar 

  22. Thin layer spectroelectrochemical study of vitamin B-12 and related cobalamin compounds in aqueous media, T. M. Kenyhercz, T. P. DeAngelis, B. J. Norris, W. R. Heineman, and H. R. Mark, Jr.,J. Am. Chem. Soc.98, 2469–2477 (1976).

    CAS  Google Scholar 

  23. Optically transparent thin layer electrode for anaerobic measurements on redox enzymes, B. J. Norris, M. L. Meckstroth, and W. R. Heineman,Anal. Chem.48 (3), 630–632 (1976).

    CAS  Google Scholar 

  24. Infrared spectrophotometric observations of the adsorption of fibrinogen from solution at optically transparent carbon film electrode surfaces, J. S. Mattson and T. T. Jones,Anal. Chem.48 (14), 2164–2167 (1976).

    CAS  Google Scholar 

  25. Optical pathlength considerations in transmission spectroelectrochemical measurements, F. R. Shu and G. S. Wilson,Anal. Chem. 48 (12), 1676–1679 (1976).

    CAS  Google Scholar 

  26. Spectroelectrochemical investigations of stoichiometry and oxidation reduction potentials of cytochrome c oxidase components in the presence of carbon monoxide: the invisible copper, J. L. Anderson, T. Kuwana, and C. R. Hartzell,Biochemistry 15,3847–3855 (1976).

    CAS  Google Scholar 

  27. Redox titration of fluorescence yield of photo system II. B. Ke, F. M. Hawkridge, and S. Sahu,Proc. Natl. Acad. Sci. USA 73 (7), 2211–2215 (1976).

    CAS  Google Scholar 

  28. Electrochemical oxidation of 5,6-diaminouracil. An”investigation by thin layer spectroelectrochemistry, J. L. Owens and G. Dryhurst,J. Electroanal. Chem. Interfacial Electrochem. 80, 171–180 (1977).

    CAS  Google Scholar 

  29. Electrochemistry of vitamin B12. 2. Redox and acid base equilibria in the B12a/B12r system, D. Lexa, J. M. Saveant, and J. Zickler,J. Am. Chem. Soc. 99, 2786–2790 (1977).

    CAS  Google Scholar 

  30. Thin layer electrochemical technique for monitoring electrogenerated reactive intermediates, R. L. McCreery,Anal. Chem. 49 (2), 206 - 209 (1977).

    CAS  Google Scholar 

  31. Small volume, high performance cell for non-aqueous spectroelectrochemistry, F. M. Hawkridge, J. E. Pemberton, and H. L. Blount,Anal. Chem. 49 (11), 1646–1647 (1977).

    CAS  Google Scholar 

  32. Mercury-gold minigrid optically transparent thin layer electrode, M. L. Meyer, T. P. De Angelis, and W. R. Heineman,Anal. Chem. 49 (4), 602–606 (1977).

    CAS  Google Scholar 

  33. Carbon and mercury-carbon optically transparent electrodes, T. P. De Angelis, R. W. Hurst, A. M. Yacynych, H. B. Mark, Jr., W. R. Heineman, and J. S. Mattson,Anal. Chem. 49, 1395–1398 (1977).

    Google Scholar 

  34. An electrochemical thin layer cell for spectroscopic studies of photosynthetic electron transport components, F. M. Hawkridge and B. Kp,Anal. Biochem. 78, 76–85 (1977).

    CAS  Google Scholar 

  35. Thin layer spectroelectrochemical study of tetrakis (4-N-methyl pyridyl) porphinecobalt III), D. F. Rohrbach, E. Deutsch, W. R. Heineman, and R. F. Pasternack,Inorg. Chem.16, 2650–2652 (1977).

    CAS  Google Scholar 

  36. Circulation cell for electrochemical and simultaneous spectrophotometric measurements, M. Soulard, F. Bloc, and A. Hatter,Anal. Chim. Acta 91, 157 (1977).

    CAS  Google Scholar 

  37. Spectroelectrochemical studies of olefins. II. A technique for acquisition of the ultraviolet visible spectra of electrogenerated reactive intermediates, E. Steckhan and D. A. Yates,Ber. Bunsenges. Phys. Chem 81 (4), 369–374 (1977).

    CAS  Google Scholar 

  38. Spectroelectrochemical investigation of vitamin B12 and related cobalamins, H. B. Mark, Jr., T. M. Kenyhercz, and P. T. Kissinger, In: Electrochemical Studies of Biological systems, D. T. Sawyer, ed., American Chemical Society, Washington, pp. 1–25 (1977).

    Google Scholar 

  39. Analysis of electrochemical mechanisms by finite differences simulation and simplex fitting of double potential step current, charge and absorbance responses, M. K. Hanafey, R. L. Scott, T. H. Ridgeway, and C. N. Reilley,Anal. Chem. 50, 116–137 (1978).

    CAS  Google Scholar 

  40. Reactions of cation radicals of E.E. systems 7. Mechanistic considerations and relative reactivities of nucleophiles in reaction with the cation radical of 9,10-diphenylanthracene, J. F. Evan and H. N. Blunt,J. Am. Chem. Soc. 100, 4191–4196 (1978).

    Google Scholar 

  41. Spectroelectrochemical studies of olefins. 3. The dimerization mechanism of the 4,4’- dimethoxystilbene cation radical in the absence and presence of methanol, E. Steckhan,J. Am. Chem. Soc. 100, 3526–3533 (1978).

    CAS  Google Scholar 

  42. The specific adsorption of anions on a Hg-Pt optically transparent electrode by transmission spectroelectrochemistry, W. R. Heineman and J. F. Goelz,J. Electroanal. Chem. Interfacial Electrochem. 89, 437–441 (1978).

    CAS  Google Scholar 

  43. Electrochemical oxidation of uric acid and unanthine—An investigation by cyclic voltammetry, double potential step chronoamperometry and thin layer spectroelectrochemistry, J. L. Owens, H. A. March, Jr., and G. Dryhurst,J. Electroanal. Chem. Interfacial Electrochem. 91, 231–247 (1978).

    CAS  Google Scholar 

  44. Organo-modified metal oxide electrode. IV. Analysis of covalently bound rhodamine B photoelectrode, M. Fujihira, T. Osa, D. Hursh, and T. Kuwana,J. Electroanal. Chem. Interfacial Electrochem. 88, 285–288 (1978).

    CAS  Google Scholar 

  45. Spectroelectrochemical studies of some species in fused PbCl2 + KC1 at 440°C, A. De Guibert and V. Plichon,J. Electroanal. Chem. Interfacial Electrochem.90, 399–411 (1978).

    Google Scholar 

  46. Analytical aspects of absorption spectroelectrochemistry at a platinum electrode. I. Study of metal ions, J. F. Tyson and T. S. West,Talanta 26, 117–125 (1979).

    CAS  Google Scholar 

  47. Analysis of time dependent spectra generated from spectroelectrochemical experiments, D. L. Langhus and G. S. Wilson,Anal. Chem. 51, 1134–1139 (1979).

    CAS  Google Scholar 

  48. Spectroelectrochemistry and cyclic voltammetry of the E.E. mechanism in a porphyrin diacid reduction, D. L. Langhus and G. S. Wilson,Anal. Chem. 51, 1139–1144 (1979).

    CAS  Google Scholar 

  49. On the application of open circuit relaxation spectroelectrochemistry to the diagnosis and evaluation of the kinetics of succeeding second order chemical reactions, J. F. Evans and H. N. Blount,J. Electroanal. Chem. Interfacial Electrochem.102, 289–302 (1979).

    CAS  Google Scholar 

  50. Spectroelectrochemical determination of heterogeneous electron transfer rate constants, D. E. Albertson, H. N. Blount, and F. M. Hawkridge,Anal. Chem.51, 556–560 (1979).

    CAS  Google Scholar 

  51. Transmission spectroelectrochemical study of anion adsorption at a Hg-Pt optically transparent electrode, W. R. Heineman and J. F. Goelz,J. Electroanal. Chem. Interfacial Electrochem.103, 155–163 (1979).

    Google Scholar 

  52. Optically transparent thin layer electrode techniques for the study of biological redox systems, W. R. Heineman, M. L. Meckstroth, B. J. Norris, and C. H. Su,Bioelectrochem. Bioenerg. 6, 577–585 (1979).

    CAS  Google Scholar 

  53. Enzymatic and electrochemical oxidation of uric acid. A mechanism for the peroxidase catalyzed oxidation of uric acid, H. A. Marsh, Jr. and G. Dryhurst,J. Electroanal. Chem. Interfacial electrochem.95, 81–90 (1979).

    CAS  Google Scholar 

  54. Thin layer spectroelectrochemical studies of cobalt and copper schiff base complexes, D. F. Rohrbach, W. R. Heineman, and E. Deutsch,Inorg. Chem.18, 2536–2542 (1979).

    CAS  Google Scholar 

  55. A small volume thin layer spectroelectrochemical cell for the study of biological components, C. W. Anderson, H. B. Halsall, and W. R. Heineman,Anal. Biochem. 93, 366–372 (1979),

    CAS  Google Scholar 

  56. Circulating, long optical path, thin layer electrochemical cell for spectroelectrochemical characterization of redox enzymes, J. L. Anderson,Anal. Chem.51, 2312–2315 (1979).

    CAS  Google Scholar 

  57. Characterization of Hg-Pt optically transparent electrodes, J. F. Goelz and W. R. Heineman,J. Electroanal. Chem. Interfacial Electrochem.103, 147–154 (1979).

    CAS  Google Scholar 

  58. Oxidation of lead sulphide in molten PbCl2 + KC1; Electrolysis and visible spectrophotometry, A. de Guibert, V. Plichon, and J. Badoz-Lambling,J. Electroanal. Chem. Interfacial Electrochem.105, 143–148 (1979).

    Google Scholar 

  59. On the spectroelectrochemical characterization of the electrocatalytic oxidation of Cu(II) ethylene diamine, D. Meyerstein, F. M. Hawkridge, and T. Kuwana,J. Electroanal. Chem. Interfacial Electrochem.40, 377 (1972).

    CAS  Google Scholar 

Other Spectroelectrochemical Techniques

  1. Use of electrochemical concentration methods in spectroscopic analysis of especially pure substances, V. Z. Krasilshchik and A. F. Yakovleva,Tr. Vses Nauch-Issled Inst. Khim. Reak. Osobo Chist. Khim. Veshchestv. No. 33, 134–142 (1971).

    Google Scholar 

  2. Electrohydrodynamic ionization mass spectrometry, A. H. Jones and W. D. France, Jr.,Anal. Chem.44, 1884 (1972).

    CAS  Google Scholar 

  3. Hanging mercury drop electrodeposition technique for carbon filament flameless atomic absorption analysis. Application to the determination of copper in sea water, C. Fairless and A. J. Bard,Anal. Chem.45, 2289 (1973).

    CAS  Google Scholar 

  4. New highly sensitive preconcentrating sampling technique for flameless atomic absorption spectroscopy, M. P. Newton, J. V. Chauvin, and D. G. Davis,Anal. Lett. 6, 89–100 (1973).

    CAS  Google Scholar 

  5. An isotopic labeling investigation of the mechanism of the electrooxidation of hydrazine at platinum. An electrochemical mass spectrometric study, M. Petek and S. Bruckenstein,J. Electroanal. Chem. Interfacial Electrochem.47, 329 (1973).

    CAS  Google Scholar 

  6. X-ray microdetermination of chromium, cobalt, copper, mercury, nickel and zinc in water using electrochemical preconcentration, B. H. Vassos, R. F. Hirsch, and H. Latterman,Anal. Chem.45, 792 (1973).

    CAS  Google Scholar 

  7. Lead separation by anodic deposition and isotope ratio mass spectrometry of microgram and smaller samples, I. L. Barnes, T. J. Murphy, J. W. Granolich, and W. R. Shields,Anal. Chem.45, 1881 (1973).

    CAS  Google Scholar 

  8. Simultaneous electrochemical-electron spin resonance measurements. II. Kinetic measurements using constant current pulse, J. B. Goldberg and A. J. Bard,J. Phys. Chem. 78, 290 (1974).

    CAS  Google Scholar 

  9. Simultaneous electrochemical electron spin resonance measurements. III. Determination of rate constants for second order radical anion dimerization, J. B. Goldberg, D. Boyd, R. Hirasawa, and A. J. Bard,J. Phys. Chem. 78, 295 (1974).

    CAS  Google Scholar 

  10. Application of spin trapping to the detection of radical intermediates in electrochemical transformations, A. J. Bard, J. C. Gilbert, and R. D. Goodwin,J. Am. Chem. Soc. 96, 620 (1974).

    CAS  Google Scholar 

  11. Electrolytic extraction combined with flame atomic absorption for the determination of metal ions in aqueous solution, J. B. Dawson, D. J. Ellis, T. F. Hartley, M. E. A. Evans, and K. W. Metcalf,Analyst. (London) 99, 602 (1974).

    CAS  Google Scholar 

  12. Application of electrodeposition techniques to flameless atomic absorption spectrometry. II. Determination of cadmium in sea water, W. Lund and B. V. Larsen,Anal. Chim. Acta 72, 57 (1974).

    CAS  Google Scholar 

  13. Atomic absorption spectrometric determination of cadmium, lead and zinc in salts or salt solutions by hanging mercury drop electrodeposition and atomization in a graphite furnace, F. O. Jensen, J. Doezal, and F. J. Longmuhr,Anal. Chim. Acta 72, 245–250 (1974).

    CAS  Google Scholar 

  14. Joint application of electrochemical and ESR techniques, B. Kastening,Electroanalytical Chemistry, H. W. Nurnberg, ed., Interscience, New York, pp. 421–494 (1974).

    Google Scholar 

  15. Simultaneous electrochemical electron spin resonance measurements with a coaxial microwave cavity, R. D. Allendoerfer, G. A. Martinchek, and S. Bruckenstein,Anal. Chem. 47, 890 (1975).

    CAS  Google Scholar 

  16. Determination of iron in zirconium by electrolytic dissolution and atomic absorption spectroscopy, M. Mantel and A. Aladjem,Anal. Lett. 8, 415–420 (1975).

    CAS  Google Scholar 

  17. Flameless atomic absorption spectrometry employing a wire loop atomizer, M. F. Newton and D. G. Davis,Anal. Chem.47, 2003 (1975).

    CAS  Google Scholar 

  18. Preconcentration and separation of mercury traces by reduction on metallic copper and determination by flameless atomic absorption spectrometry, S. Dogan and W. Haerdi,Anal. Chim. Acta 76, 345–354 (1975).

    CAS  Google Scholar 

  19. The application of electrodeposition techniques to flameless atomic absorption spectrometry. Part III. The determination of cadmium in urine, W. Lund, B. V. Larsen, and N. Gundersen,Anal. Chim. Acta 81, 319–324 (1976).

    CAS  Google Scholar 

  20. The application of electrodeposition techniques to flameless atomic absorption spectrometry. Part IV. Separation and preconcentration on graphite, Y. Thomassen, B. V. Larsen, F. J. Langmuhr, and W. Lund,Anal. Chim. Acta 83, 103–110 (1976).

    CAS  Google Scholar 

  21. Spectroelectrochemical cell for anaerobic transfer of biological samples for low temperature electron paramagnetic resonance studies, J. L. Anderson,Anal. Chem.48 (6), 921–923 (1976).

    CAS  Google Scholar 

  22. In situ studies of the passivation and anodic oxidation of cobalt by emission Mossbauer spectroscopy. I. Theoretical background, experimental methods and experimental results for borate solution (pH 8.5), G. W. Simmons, E. Kellerman, and H. Leidheiser, Jr.,J. Electrochem. Soc.123, 1276–1284 (1977).

    Google Scholar 

  23. Determination of parts per billion levels of electrodeposited metals by energy dispersive X-ray fluorescence spectrometry, J. A. Boslett Jr.,, R. L. R. Towns, R. G. Megargle, K. H. Pearson, and T. C. Furnas, Jr.,Anal. Chem.49 (12), 1734–1737 (1977).

    CAS  Google Scholar 

  24. Determination of heavy metals in sea water by atomic absorption spectrometry after electrodeposition on pyrolytic graphite coated tubes, G. E. Batley and J. P. Matousek,Anal Chem.49 (13), 2031–2035 (1977).

    CAS  Google Scholar 

  25. Electron spin resonance and electrochemistry, T. M. McKinney, In:Electroanalytical Chemistry, Vol. 10, A. J. Bard, ed., Marcel Dekker Inc., New York, pp. 97–278 (1977).

    Google Scholar 

  26. Dynamic X-ray diffraction, R. R. Chianelli, J. C. Scanlon, and B. M. L. Rao,J. Electrochem. Soc.125, 1563–1566 (1978).

    CAS  Google Scholar 

  27. Derivatization of surfaces via reaction of strained silicon-carbon bonds. Characterization by photoacoustic spectroscopy, A. B. Fischer, J. B. Kinney, R. H. Staley, and M. S. Wrighton,J. Am. Chem. Soc.101, 6501–6506 (1979).

    CAS  Google Scholar 

  28. Observation of semiconductor electrode-dye solution interface by means of fluorescence and laser-induced photoacoustic spectroscopy, T. Iwasaki, T. Sawada, H. Kamada, A. Fujishima, and K. Honda,J. Phys. Chem.83, 2142–2145 (1979).

    CAS  Google Scholar 

  29. Characterization and catalytic activity of small platinum particles, R. A. Daka Betta, In:Proceedings of the Workshop on The Electrocatalysis of Fuel Cell Reactions, W. E. O’Grady, S. Srinivasan, and R. F. Dudley, eds., Proceed. Vol. 79-2, pp. 203–211, The Electrochemical Society, Inc., Princeton, New Jersey (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Venkatesan, V.K. (1984). Classified Bibliography of Electroanalytical Applications. In: White, R.E., Bockris, J.O., Conway, B.E., Yeager, E. (eds) Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2679-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2679-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9667-6

  • Online ISBN: 978-1-4613-2679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics