Skip to main content

Electronic Instrumentation for Electrochemical Studies

  • Chapter
Comprehensive Treatise of Electrochemistry

Abstract

Electrochemistry has undergone a revolution over the past two decades that has completely transformed existing experimental techniques and has led to the introduction of a myriad of new sophisticated methods for studying charge transfer processes at electrode/solution interfaces. The reason for this revolution was the introduction of integrated circuit operational amplifiers, which now form the inexpensive “building blocks” of modern electrochemical instrumentation. Operational amplifiers having bandwidths up to the megahertz range enabled experimenters to “tailor make” control instruments for their needs, and also led to a whole range of commercial instrumentation becoming available for use by those not well-versed in basic electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

Op amp open loop gain; V/V

A0 :

open loop gain at the limit of low frequency; V/V

A0 :

signal amplitude; V

BN :

normalized bandwidth of a bandpass filter; dimensionless

BW :

bandwidth of a bandpass filter; Hz

CE :

counter electrode

CMRR :

common mode rejection ratio; db

e :

output voltage of a potential control device; V

e(jω) :

frequency domain potential; V

E(t):

time domain potential; V

e a :

potential at the noninverting input of an Op Amp; V

e b :

potential at the inverting input of an Op Amp; V

e c :

control potential at the input of a voltage comparator; V

e cm :

input common mode potential at a differential amplifier; V

:

generalized input potential in an Op Amp circuit; V

en :

a-c noise potential; V

eo :

generalized output potential in an Op Amp circuit; V

e0 o :

initial condition of an integrator circuit; V

eos :

d-c offset voltage of an Op Amp; V

er :

reference potential at the input of a voltage comparator; V

eref :

reference electrode potential in a three-terminal electrochemical cell; V

EWE :

working electrode potential in a three-terminal electrochemical cell; V

G(jω):

open loop, frequency domain transfer function; dimensionless

GCA :

open loop gain of the control amplifier in a simple potentiostat; V/V

H(jω):

Op Amp feedback characteristic; dimensionless

{HE(s)}:

potential control transfer function for a single-amplifier potentiostat; dimensionless

{HI(s){:

current control transfer function for a single-amplifier potentiostat; dimensionless

i (jω):

frequency domain current; A

If :

feedback current; A

ii :

input current; A

in :

input current; A

i+ n :

error current in the noninverting input of an Op Amp; A

i -n :

error current in the inverting input of an Op Amp; A

i ±n :

differential error current; A

io :

output current; A

IR:

product of the current and the uncompensated electrolyte resistance for a three terminal electrochemical cell; V

j :

complex operator=(-1)1/2

L(jω):

loop gain; dimensionless

n :

order of a high-pass or low-pass filter; dimensionless

T(jω):

closed-loop gain; dimensionless

TWR:

transient wave recorder

u :

voltage maintained by a potential control device; V

WE:

working electrode

Y(jω):

test transfer function; dimensionless

Zcm :

common mode input impedance; Ω

Zd :

differential mode input impedance; Ω

Zf :

feedback impedance; Ω

Zf :

input impedance; Ω

α:

resistance ratio; dimensionless

β:

Butterworth filter damping ratio; dimensionless

β:

resistance ratio; dimensionless

β:

resistance ratio; dimensionless

δ:

resistance ratio; dimensionless

φ(jω):

phase response of active filter circuit; radians

p:

the sum of all series resistance terms not associated with the interface being controlled, for a potential control device; ft

ω:

frequency; Hz

ωh :

cut-off frequency for a high-pass filter; Hz

ωl :

cut-off frequency for a low-pass filter; Hz

ω*o :

center frequency for a bandpass or band-reject filter; Hz turnover frequency for Op Amp gain rolloff; Hz

ωo :

turnover frequency for Op Amp gain rolloff; Hz

ωp :

Op Amp gain-bandwidth product; Hz

References

  1. Analog Devices Product Guide and Application Notes. Analog Devices Inc., P.O. Box 280, Norwood, Mass. (1975).

    Google Scholar 

  2. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, N.J. (1980).

    Google Scholar 

  3. D. D. Macdonald and M. C. H. McKubre, In: Modern Aspects of Electrochemistry, J. O’M. Bockris, B. E. Conway, and R. E. White, eds., Vol. 14, Plenum, New York (1983).

    Google Scholar 

  4. Hewlett Packard Application Note No. 204.1, Digital Signal Analysis, Hewlett Packard, Palo Alto, Calif. (1980).

    Google Scholar 

  5. Hewlett Packard Model 5042A Digital Signal Analyzer Users Manual, Hewlett Packard, Palo Alto, Calif. (1980).

    Google Scholar 

  6. M. C. H. McKubre, Ph.D Thesis, Victoria University, Wellington, New Zealand (1976).

    Google Scholar 

  7. Analog Devices, Data Acquisition Components and Subsystems Catalog, Analog Devices, Inc., P.O. Box 280, Norwood, Mass. (1980).

    Google Scholar 

  8. J. G. Graeme, G. E. Tobey, and L. P. Huelsman, Operational Amplifiers; Design and Application, McGraw-Hill, New York (1971).

    Google Scholar 

  9. H. W. Fox, Master Op Amp Applications Handbook, Tab Book, Blue Ridge Summit, Penn. (1978).

    Google Scholar 

  10. J. I. Smith, Modern Operational Circuit Design, Wiley-Interscience, New York (1971).

    Google Scholar 

  11. I. Epelboin, C. Gabrielli, M. Keddam, J.-C. Lestrade, and H. Takenouti, J. Electrochem. Soc. 119, 1632 (1972).

    Article  CAS  Google Scholar 

  12. D. Britz, J. Electroanal Chem. 88, 309 (1978).

    Article  CAS  Google Scholar 

  13. R. Bezman, Anal Chem. 44,1781 (1972); D. Britz and W. A. Brocke, J. Electroanal. Chem. 58, 301 (1975).

    Article  CAS  Google Scholar 

  14. R. Bezman, Anal Chem. 44,1781 (1972); D. Britz and W. A. Brocke, J. Electroanal. Chem. 58, 301 (1975).

    Article  CAS  Google Scholar 

  15. D. D. Macdonald, Transient Techniques in Electrochemistry, Plenum, New York (1977).

    Google Scholar 

  16. D. D. Macdonald, J. Electrochem. Soc. 125, 1443 (1978).

    Article  CAS  Google Scholar 

  17. D. D. Macdonald, unpublished data (1981).

    Google Scholar 

  18. S. Goldman, Transformation Calculus and Electrical Transients, Prentice-Hall, Inc., New York (1950).

    Google Scholar 

  19. G. E. Roberts and H. Kaufman, Table of Laplace Transforms, Saunders, Philadelphia (1966).

    Google Scholar 

  20. E. R. Brown, D. E. Smith, and G. L. Booman, Anal. Chem. 40, 1411 (1968).

    Article  CAS  Google Scholar 

  21. A. Bewick, M. Fleischmann, and M. Liler, Electrochim. Acta 1, 83 (1959).

    Article  CAS  Google Scholar 

  22. R. Koopmann, Ber. Bunsenges. Phys. Chem. 72, 43 (1968).

    CAS  Google Scholar 

  23. D. Deroo, J. P. Diard, J. Guitton, and B. LeGorrec, J. Electroanal. Chem. 67, 269 (1976).

    Article  CAS  Google Scholar 

  24. J. P. Diard, Thesis, Grenoble, France (1977).

    Google Scholar 

  25. C. Gabrielli, Thesis, Paris, France (1973).

    Google Scholar 

  26. J. P. Diard and B. LeGorrec, J. Electroanal. Chem. 103, 363 (1979).

    Article  CAS  Google Scholar 

  27. M. Sluyters-Rehback and J H. Sluyters, In: Electroanalytical Chemistry, A. J. Bard, ed., Vol. 4, pp. 1 - 128, Marcel Dekker, New York (1970).

    Google Scholar 

  28. D. D. Macdonald and M. C. H. McKubre, Electrochemical Impedance Techniques in Corrosion Science, ASTM Special Technical Publication No. 717, p. 110 (1981).

    Book  Google Scholar 

  29. M. C. H. McKubre, The Measurement of Corrosion Rates in Cathodically Protected Systems, Final report to the Electric Power Research Institute under contract number RP 1689–7–1 (1983).

    Google Scholar 

  30. M. C. H. McKubre, The Use of Harmonic Analysis to Determine Corrosion Rates in Cathodically Protected Systems, Paper No. 135 presented at the Denver Meeting of The Electrochemical Society, October 1981.

    Google Scholar 

  31. U. Bertocci, Corrosion 35, 211 (1979).

    CAS  Google Scholar 

  32. G. P. Rao and A. K. Mishra, J. Electroanal. Chem. 77, 121 (1977).

    Article  CAS  Google Scholar 

  33. R. D. Armstrong, W. P. Race, and H. R. Thirsk, Electrochim. Acta 13, 215 (1968).

    Article  CAS  Google Scholar 

  34. B. Hague, AC Bridge Methods, Pitman, London (1957).

    Google Scholar 

  35. R. Parsons, Trans. Faraday Soc. 56, 1340 (1960).

    Article  CAS  Google Scholar 

  36. P. Delahay and I. Trachtenburg, J. Am. Chem. Soc. 79, 2355 (1957).

    Article  CAS  Google Scholar 

  37. R. Calvert, Electron. Engin. 20, 28 (1948).

    Google Scholar 

  38. R. de Levie, Electrochim. Acta 10, 113 (1965).

    Article  Google Scholar 

  39. R. de Levie, Electrochim. Acta 8, 751 (1963).

    Article  Google Scholar 

  40. R. de Levie, Electrochim. Acta 9, 1231 (1964).

    Article  Google Scholar 

  41. R. de Levie, In: Advances in Electrochemistry and Electrochemical Engineering, P. Delahay, Ed., Vol. 6, p. 329 (1967).

    Google Scholar 

  42. T. Zeuthen, Med. Biol. Eng. Comput. 16, 483 (1978).

    Article  CAS  Google Scholar 

  43. J. G. Berberian and R. H. Cole, Rev. Sci. Instrum. 40, 811 (1969).

    Article  Google Scholar 

  44. M. C. H. McKubre and J. W. Tomlinson, A Modified Berberian-Cole Bridge for High Precision, Low Frequency Impedance Measurement, To be published.

    Google Scholar 

  45. E. R. Brown, Electrochim. Acta 13, 319 (1968).

    Article  Google Scholar 

  46. E. J. Crain, Laplace and Fourier Transforms for Electrical Engineers, Holt, Rinehart and Winston, New York (1970).

    Google Scholar 

  47. Brookdeal Electronics, Phase Sensitive Detector Model 9412, Operation Manual, Berkshire, England (1976).

    Google Scholar 

  48. Princeton Applied Research, Lock-In Amplifier, Model 129A, Operation Manual, Princeton, N.J. (1975).

    Google Scholar 

  49. R. P. Sallen and E. L. Key, IRE Trans. CT-2, 76 (1955).

    Google Scholar 

  50. K. B. Oldham, Trans. Faraday Soc. 53, 80 (1957).

    Article  CAS  Google Scholar 

  51. G. J. Hills and M. C. H. McKubre, Low Frequency Phase Sensitive Detection Employing Gated Digital Demodulation, To be published; L. E. A. Berlious, Ph.D. Thesis, The University, Southampton, England (1981).

    Google Scholar 

  52. R. D. Armstrong, M. F. Bell, and A. A. Metcalfe, J. Electroanal. Chem. 77, 287 (1977).

    Article  CAS  Google Scholar 

  53. C. Gabrielli and M. Keddam, Electrochim. Acta 19, 355 (1974).

    Article  CAS  Google Scholar 

  54. R. D. Armstrong M. F. Bell, and A. A. Metcalfe, J. Electroanal. Chem. 84, 61 (1977); K. L. Bladen, J. Appl. Electrochem. 7, 345 (1977); A. A. Metcalfe, J. Electroanal. Chem. 88, 187 (1978).

    Article  Google Scholar 

  55. R. D. Armstrong M. F. Bell, and A. A. Metcalfe, J. Electroanal. Chem. 84, 61 (1977); K. L. Bladen, J. Appl. Electrochem. 7, 345 (1977); A. A. Metcalfe, J. Electroanal. Chem. 88, 187 (1978).

    Article  Google Scholar 

  56. R. D. Armstrong M. F. Bell, and A. A. Metcalfe, J. Electroanal. Chem. 84, 61 (1977); K. L. Bladen, J. Appl. Electrochem. 7, 345 (1977); A. A. Metcalfe, J. Electroanal. Chem. 88, 187 (1978).

    Article  Google Scholar 

  57. D. Lelievre and V. Plichon, Electrochim. Acta 23, 725 (1978).

    Article  CAS  Google Scholar 

  58. P. Casson, N. A. Hampson, and M. J. Willars, J. Electroanal. Chem. 97, 21 (1979).

    Article  CAS  Google Scholar 

  59. Solartron, 1170 Series Frequency Response Analyzers, Operation Manual, Farnborough, Hampshire, England (1977).

    Google Scholar 

  60. B. Soucek, Minicomputers in Data Processing and Simulation, Wiley-Interscience, New York (1971).

    Google Scholar 

  61. California Computing Systems, Model 7490 GPIB Interface, Owners Manual, California Computing Systems, Sunnyvale, Calif. (1980).

    Google Scholar 

  62. D. E. Smith, CRC Crit. Rev. Anal. Chem. 247 (September 1971)

    Google Scholar 

  63. J. W. Cooley and J. W. Tukey, Math. Comp. 19, 297 (1965).

    Article  Google Scholar 

  64. D. E. Smith, Anal. Chem. 48, 221A (1976).

    Article  CAS  Google Scholar 

  65. S. C. Creason and D. E. Smith, J. Electroanal. Chem. 47, 9 (1973).

    Article  CAS  Google Scholar 

  66. S. C. Creason and D. E. Smith, J. Electroanal. Chem. 36, App. 1 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

McKubre, M.C.H., MacDonald, D.D. (1984). Electronic Instrumentation for Electrochemical Studies. In: White, R.E., Bockris, J.O., Conway, B.E., Yeager, E. (eds) Comprehensive Treatise of Electrochemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2679-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2679-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9667-6

  • Online ISBN: 978-1-4613-2679-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics