Skip to main content

Abstract

Not only is this the first citation we were able to find on heliotropism (renamed phototropie, or “phototropism,” by Oltmanns, 1892), but even the players in the comedy reflect a characteristic that parallels the reaction to studies of this phenomenon. Namely, Argan (le malade imaginaire) is absolutely convinced of being sick, and the entourage is equally convinced of the opposite. Similarly, as we shall see, some investigators are absolutely convinced that one hypothesis is the right one, while others are equally convinced that another one is correct. Fortunately, sometimes there is common agreement, but not always.

Et comme les naturalistes remarquent que la fleur nommée héliotrope tourne sans cesse vers astre du jour.…*

Jean Molière, “Le malade imaginaire,” 1673, act II, scene V

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbot, M. T. J., and Grove, J. F., 1959, Uptake and translocation of organic compounds by fungi. I. Microspectrophotometry in the study of translocation, Exp. Cell Res. 17: 95 – 104.

    PubMed  CAS  Google Scholar 

  • Arisz, W. H., 1915, Untersuchungen über den Phototropismus, Recl. Trav. Bot. Neerl. 12: 44 – 216.

    Google Scholar 

  • Asana, R. D., 1938, On the relation between the distribution of auxin in the tip of the Avenacoleoptile and the first negative phototropie curvature, Ann. Bot. 2: 955 – 975.

    CAS  Google Scholar 

  • Atkins, G. A., 1936, The effect of pigment on phototropie response: a comparative study of reactions to monochromatic light, Ann. Bot. 50: 197 – 218.

    CAS  Google Scholar 

  • Bachmann, F., and Bergann, F., 1930, Über die Wertigkeit von Strahlen verschiedener Wellenlänge für die phototropische Reizung von Avena sativa, Planta 10: 744 – 755.

    Google Scholar 

  • Backus, G. E., and Schrank, A. R., 1952, Electrical and curvature responses of the Avenacoleoptile to unilateral illumination, Plant Physiol. 27: 251 – 262.

    PubMed  CAS  Google Scholar 

  • Ball, N. G., 1962, The effects of externally applied 3-indolylacetic acid on phototropie induction and response in the coleoptile of Avena, J. Exp. Bot. 13: 45 – 60.

    CAS  Google Scholar 

  • Banbury, G. H., 1952a , Physiological studies in the Mucorales. Part I. The phototropism of sporangiophores of Phycomyces blakesleeanus, J. Exp. Bot. 3: 77 – 85.

    CAS  Google Scholar 

  • Banbury, G. H., 1952b, Physiological studies in the Mucorales. Part II. Some observations on growth regulation in the sporangiophore of Phycomyces, J. Exp. Bot. 3:86–94.

    Google Scholar 

  • Banbury, G. H., 1959, Phototropism of lower plants, in: Encyclopedia of Plant Physiology, Vol. 17 Part 1 ( W. Ruhland, ed.), pp. 530 – 578, Springer-Verlag, Berlin.

    Google Scholar 

  • Banbury, G. H., and Carlile, M. J., 1958, Phototropism of Phycomycessporangiophores, Nature (Lond.) 181: 358 – 359.

    Google Scholar 

  • Bandurski, R. S., and Schulze, A., 1974, Concentrations of indole-3-acetic acid and its esters in Avenaand Zea, Plant Physiol. 54: 257 – 262.

    PubMed  CAS  Google Scholar 

  • Bandurski, R. S., and Schulze, A., 1977, Concentration of indole-3-acetic acid and its derivatives in plant, Plant Physiol. 60: 211 – 213.

    PubMed  CAS  Google Scholar 

  • Bandurski, R. S., Schulze, A., and Cohen, J. D., 1977, Photoregulation of the ratio of ester to free indole-3-acetic acid, Biochem. Biophys. Res. Commun. 79: 1219 – 1223.

    PubMed  CAS  Google Scholar 

  • Bara, M., and Galston, A. W., 1968, Experimental modification of pigment content and photo- tropic sensitivity in excised Avenacoleoptiles, Physiol. Plant. 21: 109 – 118.

    CAS  Google Scholar 

  • Bartnicki-Garcia, S., 1973, Fundamental aspects of hyphal morphogenesis, in: Microbial Differentiation,, Twenty-Third Symposium of the Society for General Microbiology, ( J. M. Ashworth and J. E. Smith, eds.), pp. 245 – 267, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bartnicki-Garcia, S., Bracker, C. E., Reyes, E., and Ruiz-Herrera, J., 1978, Isolation of chito- somes from taxonomically diverse fungi and synthesis of chitin microfibrils in vitro, Exp. Mycol. 2: 173 – 192.

    CAS  Google Scholar 

  • Bates, G. W., and Cleland, R. E., 1979, Protein synthesis and auxin-induced growth: inhibitor studies, Planta 145: 437 – 442.

    CAS  Google Scholar 

  • Bates, G. W., and Cleland, R. E., 1980, Protein patterns in the oat coleoptile as influenced by auxin and by protein turnover, Planta 148: 429 – 436.

    CAS  Google Scholar 

  • Batt, S., and Venis, M. A., 1976, Separation and localization of two classes of auxin binding sites in corn coleoptile membranes, Planta 130: 15 – 21.

    CAS  Google Scholar 

  • Batt, S., Wilkins, M. B., and Venis, M. A., 1976, Auxin binding to corn coleoptile membranes: kinetics and specificity, Planta 130: 7 – 13.

    CAS  Google Scholar 

  • Bearder, J. R., 1980, Plant hormones and other growth substances—Their background, structures and occurrence, in: Encyclopedia of Plant Physiology, new ser., Vol. 9: Hormonal Regulation of Development, I ( J. MacMillan, ed.), pp. 11 – 112, Springer-Verlag, Berlin.

    Google Scholar 

  • Bentley, J. A., 1958, The naturally-occurring auxins and inhibitors, Annu. Rev. Plant Physiol. 9: 47 – 80.

    CAS  Google Scholar 

  • Bentrup, F. W. (Meyer zu), 1963, Vergleichende Untersuchungen zur Polaritatsinduktion durch das Licht an der Equisetum-Sporcund der Fucus-Zygote, Planta 59: 472 – 491.

    Google Scholar 

  • Bentrup, F. W., 1968, Die Morphogenese pflanzlicher Zellen im elektrischen Feld, Z. Pflanzenphysiol. 59: 309 – 339.

    Google Scholar 

  • Bergman, K., 1972, Blue-light control of sporangiophore initiation in Phycomyces, Planta 107: 53 – 67.

    Google Scholar 

  • Bergman, K., Burke, P. V., Cerdá-Olmedo, E., David, C. N., Delbrück, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, W., Jr., 1969, Phycomyces, Bacteriol. Rev. 33: 99 – 157.

    CAS  Google Scholar 

  • Bergman, K., Eslava, A. P., and Cerdá-Olmedo, E., 1973, Mutants of Phycomyceswith abnormal phototropism, Mol. Gen. Genet. 123: 1 – 16.

    PubMed  CAS  Google Scholar 

  • Berns, D. S., and Vaughn, J. R., 1970, Studies on the photopigment system in Phycomyces, Biochem. Biophys. Res. Commun. 39: 1094 – 1103.

    PubMed  CAS  Google Scholar 

  • Blaauw, A. H., 1908, Die Perzeption des Lichtes, Reel. Trav. Bot. Neerl. 5: 209 – 372.

    Google Scholar 

  • Blaauw, A. H., 1914a, The primary photo-growth reaction and the cause of positive phototropism in Phycomyces nitens, Proc. Kon. Akad. Wet. Amst. 16: 774 – 786.

    Google Scholar 

  • Blaauw, A. H., 1914b, Licht und Wachstum. I, Z. Bot. 6:641–703.

    Google Scholar 

  • Blaauw, A. H., 1915, Licht und Wachstum. II, Z. Bot. 7: 465 – 532.

    Google Scholar 

  • Blaauw, A. H., 1919, Licht und Wachstum. Ill, (Die Erklarung des Phototropismus), Meded. Landbouwhogesch. Wageningen 15: 89 – 204.

    Google Scholar 

  • Blaauw, O. H., and Blaauw-Jansen, G., 1964, The influence of red light on the phototropism of Avenacoleoptile, Acta Bot. Neerl. 13: 541 – 552.

    Google Scholar 

  • Blaauw, O. H., and Blaauw-Jansen, G., 1970a, Third positive (C-type) phototropism in the Avenacoleoptile, Acta Bot. Neerl. 19: 764 – 776.

    Google Scholar 

  • Blaauw, O. H., and Blaauw-Jansen, G., 1970b, The phototropic responses of Avena coleoptiles, Acta Bot. Neerl. 19:755–763.

    Google Scholar 

  • Blaauw-Jansen, G., 1958, The influence of red and far red light on growth and phototropism of the Avenaseedling, Acta Bot. Neerl. 8: 1 – 39.

    CAS  Google Scholar 

  • Blatt, M. R., and Weisenseel, M., 1980, Blue light stimulates a local electrical current efflux in the alga Vaucheria sessilis, Carnegie Inst. Wash. Year Book 1979: 123 – 125.

    Google Scholar 

  • Bonner, J., 1934, The relation of hydrogen ions to the growth rate of the Avenacoleoptile, Protoplasma 21: 406 – 423.

    CAS  Google Scholar 

  • Bottelier, H. P., 1934, Über den Einfluss äusserer Faktoren auf die Protoplasmaströmung in der Avena-Koleoptile, Reel. Trav. Bot. Neerl. 31: 474 – 582.

    Google Scholar 

  • Boysen Jensen, P., 1910, Über die Leitung des phototropischen Reizes in AvenaKeimpflanzen, Ber. Dtsch. Bot. Ges. 28: 118 – 120.

    Google Scholar 

  • Boysen Jensen, P., 1928, Die phototropische Induktion in der Spitze der Avenacoleotile, Planta 5: 464 – 477.

    Google Scholar 

  • Boysen Jensen, P., and Nielsen, N., 1926, Studien uber die hormonalen Beziehungen zwischen Spitze und Basis der Avenacoleoptile, Planta 1: 321 – 331.

    Google Scholar 

  • Brain, R. D., Freeberg, J. A., Weiss, C. V., and Briggs, W. R., 1977, Blue light-induced absor- bance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59: 948 – 952.

    PubMed  CAS  Google Scholar 

  • Brauner, L., 1922, Lichtkrummung und Wachstumsreaktion, Z. Bot. 14: 497 – 547.

    Google Scholar 

  • Brauner, L., 1927, Untersuchungen Uber das geoelektrische Phanomen, Jahrb. Wiss. Bot. 66: 381 – 428.

    Google Scholar 

  • Brauner, L., and Bünning, E., 1930, Geoelektrischer Effekt und Elektrotropismus, Ber. Dtsch. Bot. Ges. 48: 470 – 476.

    Google Scholar 

  • Bridges, I. G., and Wilkins, M. B., 1971, Effects of electrolyte and nonelectrolyte solutions on the tropic responses of Avenacoleoptiles, J. Exp. Bot. 22: 208 – 212.

    CAS  Google Scholar 

  • Briggs, W. R., 1960, Light dosage and phototropie responses of corn and oat coleoptiles, Plant Physiol. 35: 951 – 962.

    PubMed  CAS  Google Scholar 

  • Briggs, W. R., 1963a, Red light, auxin relationships, and the phototropie responses of corn and oat coleoptiles, Am. J. Bot. 50: 196 – 207.

    CAS  Google Scholar 

  • Briggs, W. R., 19636, Mediation of phototropie responses of corn coleoptiles by lateral transport of auxin, Plant Physiol. 38:237–247.

    Google Scholar 

  • Briggs, W. R., 1964, Phototropism in higher plants, in: Photophysiology, Vol. 1 ( A. C. Giese, ed.), pp. 223 – 271, Academic Press, New York.

    Google Scholar 

  • Briggs, W. R., and Blatt, M. R., 1980, Blue light responses in the siphonaceous alga Vaucheria, in: The Blue Light Syndrome( H. Senger, ed.), pp. 261 – 268, Springer-Verlag, Berlin.

    Google Scholar 

  • Briggs, W. R., and Rice, H. V., 1972, Phytochrome: Chemical and physical properties and mechanism of action, Annu. Rev. Plant Physiol. 23: 293 – 334.

    CAS  Google Scholar 

  • Briggs, W. R., Tocher, R. D., and Wilson, J. F., 1957, Phototropie auxin redistribution in corn coleoptiles, Science 126: 210 – 212.

    PubMed  CAS  Google Scholar 

  • Britz, S. J., Schrott, E., Widell, S., and Briggs, W. R., 1979, Red-light-induced reduction of a particle-associated b-type cytochrome from corn in the presence of methylene blue, Photochem. Photobiol. 29: 359 – 365.

    CAS  Google Scholar 

  • Bruinsma, J., Karssen, C. M., Benschop, M., and Van Dort, J. B., 1975, Hormonal regulation of phototropism in the light-grown sunflower seedling, Helianthus annuusL.: Immobility of endogenous indoleacetic acid and inhibition of hypocotyl growth by illuminated cotyledons, J. Exp. Bot. 26: 411 – 418.

    CAS  Google Scholar 

  • Bruinsma, J., Franssen, J. M., and Knegt, E., 1980, Phototropism as a phenomenon of inhibition, in: Plant Growth Substances1979, ( F. Skoog, ed), pp. 444 – 450, Springer-Verlag, New York.

    Google Scholar 

  • Buder, J., 1918, Die Inversion des Phototropismus bei Phycomyces, Ber. Dtsch. Bot. Ges. 36: 104 – 105.

    Google Scholar 

  • Buder, J., 1920, Neue phototropische Fundamentalversuche, Ber. Dtsch. Bot. Ges. 38: 10 – 19.

    Google Scholar 

  • Buder, J., 1932, Über die phototropische Empfindlichkeit von Phycomycesfü verschiedene Spektralgebiete, Beitr. Biol. Pflanz. 19: 420 – 435.

    Google Scholar 

  • Bünning, E., 1937, Phototropismus und Carotinoide. I. Phototropische Wirksamkeit von Strahlen verschiedener Wellenlange und Strahlungsabsorption im Pigment bei Pilobolus, Planta 26: 719 – 736.

    Google Scholar 

  • Bünning, E., 1938a, Phototropismus und Carotinoide. II. Das Carotin der Reizaufnahmezone von Pilobolus, Phycomyces und Avena, Planta 27:148–158.

    Google Scholar 

  • Bünning, E., 1938b, Phototropismus und Carotinoide. III. Weitere Untersuchungen an Pilzen und höheren Pflanzen, Planta 27:583–610.

    Google Scholar 

  • Bünning, E., 1956, Bewegungen, Fortschr. Bot. 18: 347 – 364.

    Google Scholar 

  • Bünning, E., and Etzold, H., 1958, Über die Wirkung von polarisiertem Licht auf keimende Sporen von Pilzen, Moosen und Farnen, Ber. Dtsch. Bot. Ges. 71: 304 – 306.

    Google Scholar 

  • Bünning, E., Reisener, H. J., Weygand, F., Simon, H., and Klebe, J. F., 1956, Versuche mit radioaktiver Indolylessigsäure zur Prüfung der sogenannten Ablenkung des Wuchshormonstromes durch Licht, Z. Naturforsch. llb: 363 – 364.

    Google Scholar 

  • Carlile, M. J., 1957, Phototropism ofPhycomycessporangiophores, Nature (Lond.) 180: 202.

    Google Scholar 

  • Carlile, M. J., 1962, Evidence for a flavoprotein photoreceptor in Phycomyces, J. Gen. Microbiol. 28: 161 – 167.

    CAS  Google Scholar 

  • Carlile, M. J., 1965, The photobiology of fungi, Annu. Rev. Plant Physiol. 16: 175 – 202.

    CAS  Google Scholar 

  • Carlile, M. J., 1970, The photoresponses of fungi, in: Photobiology of Microorganisms( P. Halldal, ed), pp. 309 – 344, Wiley-Interscience, New York.

    Google Scholar 

  • Castle, E. S., 1929, Dark adaptation and the light-growth responses of Phycomyces, J. Gen. Physiol. 12: 391 – 400.

    PubMed  CAS  Google Scholar 

  • Castle, E. S., 1930a, The light-sensitive system as the basis of the photic responses of Phycomyces, Proc. Natl. Acad. Sci. USA 16: 1 – 6.

    CAS  Google Scholar 

  • Castle, E. S., 1930b, Phototropism and the light-sensitive system of Phycomyces, J. Gen. Physiol. 13:421–435.

    Google Scholar 

  • Castle, E. S., 1931a, Phototropic “indifference” and the light-sensitive system of Phycomyces, Bot. Gaz. 91: 206 – 212.

    Google Scholar 

  • Castle, E. S., 1931b, The phototropic sensitivity of Phycomyces as related to wave-length, J. Gen. Physiol. 14:701–711.

    CAS  Google Scholar 

  • Castle, E. S., 1932a, On “reversal” of phototropism in Phycomyces, J. Gen. Physiol. 15: 487 – 489.

    CAS  Google Scholar 

  • Castle, E. S., 1932b, Dark Adaptation and the dark growth response of Phycomyces, J. Gen. Physiol. 16:75–88.

    CAS  Google Scholar 

  • Castle, E. S., 1933a, The refractive indices of whole cells, J. Gen. Physiol. 17:41–47.

    CAS  Google Scholar 

  • Castle, E. S., 1933b, The physical basis of the positive phototropism of Phycomyces, J. Gen. Physiol. 17:49–62.

    CAS  Google Scholar 

  • Castle, E. S., 1934a, The phototropic effect of polarized light, J. Gen. Physiol. 17:751–762.

    CAS  Google Scholar 

  • Castle, E. S., 1934b, The spiral growth of single cells, Science 80:362–363.

    CAS  Google Scholar 

  • Castle, E. S., 1935, Photic excitation and phototropism in single plant cells, Cold Spring Harbor Symp. Quant. Biol. 3: 224 – 229.

    CAS  Google Scholar 

  • Castle, E. S., 1936a, A model imitating the origin of spiral wall structure in certain plant cells, Proc. Natl. Acad. Sci. USA 22:336–340.

    CAS  Google Scholar 

  • Castle, E. S., 1936b, the origin of spiral growth in Phycomyces, J. Cell. Comp. Physiol. 8:493–502.

    Google Scholar 

  • Castle, E. S., 1937a, The distribution of velocities of elongation and of twist in the growth zone of Phycomycesin relation to spiral growth, J. Cell. Comp. Physiol. 9: 477 – 489.

    Google Scholar 

  • Castle, E. S., 1937b, Membrane tension and orientation of structure in the plant cell wall, J. Cell. Comp. Physiol. 10:113–121.

    Google Scholar 

  • Castle, E. S., 1938, Orientation of structure in the cell wall of Phycomyces, Protoplasma 31: 331 – 345.

    CAS  Google Scholar 

  • Castle, E. S., 1942, Spiral growth and reversal of spiraling in Phycomyces, and their bearing on primary wall structure, Ann. J. Bot. 29: 664 – 672.

    Google Scholar 

  • Castle, E. S., 1953, Problems of oriented growth and structure in Phycomyces, Q. Rev. Biol. 28: 364 – 372.

    PubMed  CAS  Google Scholar 

  • Castle, E. S., 1958, The topography of tip growth in a plant cell, J. Gen. Physiol. 41:913-926.

    PubMed  CAS  Google Scholar 

  • Castle, E. S., 1959, Growth distribution in the light-growth responses of Phycomyces, J. Gen. Physiol. 42: 697 – 702.

    PubMed  CAS  Google Scholar 

  • Castle, E. S., 1961a, Phototropism, adaptation, and the light-growth response of Phycomyces, J. Gen. Physiol. 45: 39 – 46.

    CAS  Google Scholar 

  • Castle, E. S., 1961b, Phototropic inversion in Phycomyces, Science 133:1424–1425.

    CAS  Google Scholar 

  • Castle, E. S., 1965, Differential growth and phototropic bending in Phycomyces, J. Gen. Physiol. 48: 409 – 423.

    PubMed  CAS  Google Scholar 

  • Castle, E. S., 1966a, Light responses of Phycomyces, Science 154: 1416 – 1420.

    CAS  Google Scholar 

  • Castle, E. S., 1966b, A kinetic model for adaptation and the light responses of Phycomyces, J. Gen. Physiol. 49:925–935.

    Google Scholar 

  • Castle, E. S., and Honeyman, A. H. M., 1934, The light growth response and the growth system of Phycomyces, J. Gen. Physiol. 18: 385 – 397.

    Google Scholar 

  • Cerda-Olmedo, E., 1977, Behavioral genetics of Phycomyces, Annu. Rev. Microbiol. 31: 535 – 547.

    PubMed  CAS  Google Scholar 

  • Cholodny, N., 1927, Wuchshormone und Tropismen bei den Pflanzen, Biol. Zentralbl. 47: 604 – 626.

    CAS  Google Scholar 

  • Cholodny, N., 1933, Beitrage zur Kritik der Blaauwschen Theorie des Phototropismus, Planta 20: 543 – 576.

    Google Scholar 

  • Chon, H. P., and Briggs, W. R., 1966, Effect of red light on the phototropie sensitivity of corn coleoptiles, Plant Physiol. 41: 1715 – 1724.

    PubMed  CAS  Google Scholar 

  • Clark, W. G., 1935, Note on the effect of light on the bioelectric potentials in the Avenacoleoptile, Proc. Natl. Acad. Sci. USA 21: 681 – 684.

    PubMed  CAS  Google Scholar 

  • Clark, W. G., 1937, Polar transport of auxin and electrical polarity in coleoptile of Avena, Plant Physiol. 12: 737 – 754.

    PubMed  CAS  Google Scholar 

  • Cleland, R., 1971, Cell wall extension, Annu. Rev. Plant Physiol. 22: 197 – 222.

    CAS  Google Scholar 

  • Cleland, R., 1973, Auxin-induced hydrogen ion excretion from Avenacoleoptile, Proc. Natl. Acad. Sci. USA 70: 3092 – 3093.

    PubMed  CAS  Google Scholar 

  • Cleland, R. E., 1975, Auxin-induced hydrogen ion excretion: correlation with growth, and control by external pH and water stress, Planta 127: 233 – 242.

    CAS  Google Scholar 

  • Cleland, R. E., Prins, H. B. A., Harper, J. R., and Higinbotham, N., 1977, Rapid hormone- induced hyperpolarization of the oat coleoptile transmembrane potential, Plant Physiol. 59: 395 – 397.

    PubMed  CAS  Google Scholar 

  • Cohen, R., and Delbruck, M., 1958, Distribution of stretch and twist along the growing zone of the sporangiophore of Phycomycesand the distribution of response to a periodic illumination program, J. Cell. Comp. Physiol. 52: 361 – 388.

    CAS  Google Scholar 

  • Cohen, R., and Delbruck, M., 1959, Photoreactions in Phycomyces: growth and tropic responses to the stimulation of narrow test areas, J. Gen. Physiol. 42: 677 – 695.

    PubMed  CAS  Google Scholar 

  • Cohen, R. J., 1974a, Cyclic AMP levels in Phycomycesduring a response to light, Nature (Lond.) 251: 144 – 146.

    CAS  Google Scholar 

  • Cohen, R. J., 1974b, Some properties of chitinase from Phycomyces blakesleeanus, Life Sci. 15:289–300.

    CAS  Google Scholar 

  • Cohen, R. J., 1978, Aberrant cyclic nucleotide regulation in a behavioral mutant of Phycomyces blakesleeanus, Plant Sci. Lett. 13: 315 – 319.

    CAS  Google Scholar 

  • Cohen, R. J., 1979, Adenosine 3′,5′-cyclic monophosphate phosphodiesterase from Phycomyces blakesleeanus, Phytochemistry 18: 943 – 948.

    CAS  Google Scholar 

  • Cohen, R. J., and Atkinson, M. M., 1978, Activation of Phycomycesadenosine 3′,5′ monophosphate phosphodiesterase by blue light, Biochem. Biophys. Res. Commun. 83: 616 – 621.

    PubMed  CAS  Google Scholar 

  • Cohen, R. J., Ness, J. L., and Whiddon, S. M., 1980, Adenylate cyclase from Phycomycessporangiophore, Phytochemistry 19: 1913 – 1918.

    CAS  Google Scholar 

  • Cross, J. W., and Briggs, W. R., 1978, Properties of a solubilized microsomal auxin-binding protein from coleoptiles and primary leaves of Zea mays, Plant Physiol. 62: 152 – 157.

    PubMed  CAS  Google Scholar 

  • Cross, J. W., and Briggs, W. R., 1979, Solubilized auxin-binding protein, Planta 146: 263 – 270.

    CAS  Google Scholar 

  • Cross, J. W., Briggs, W. R., Dohrmann, U. C., and Ray, P. M., 1978, Auxin receptor of maize coleoptile membranes do not have ATPase activity, Plant Physiol. 61: 581 – 584.

    PubMed  CAS  Google Scholar 

  • Curry, G. M., 1969, Phototropism, in: The Physiology of Plant Growth and Development( M. B. Wilkins, ed.), pp. 243 – 273, McGraw-Hill, London.

    Google Scholar 

  • Curry, G. M., and Gruen, H. E., 1957, Negative phototropism of Phycomycesin the ultra-violet, Nature (Lond.) 179: 1028 – 1029.

    CAS  Google Scholar 

  • Curry, G. M., and Gruen, H. E., 1959, Action spectra for the positive and negative phototropism of Phycomycessporangiophores, Proc. Natl. Acad. Sci. USA 45: 797 – 804.

    PubMed  CAS  Google Scholar 

  • Curry, G. M., and Gruen, H. E., 1961, Dose response relationships at different wave lengths in phototropism of Avena, in: Progress in Photobiology( B. C. Christensen and B. Buchmann, eds.), pp. 155 – 157, Elsevier, Amsterdam.

    Google Scholar 

  • Curry, G. M., Thimann, K. V., and Ray, P. M., 1956, The base curvature response of Avenaseedlings to the ultraviolet, Physiol. Plant. 9: 429 – 440.

    CAS  Google Scholar 

  • Darwin, C., and Darwin, F., 1880, The Power of Movement in Plants, John Murray, London.

    Google Scholar 

  • Dassek, M., 1939, Der Phototropismus der Lebermoosrhizoide, Beitr. Biol. Pflanz. 26: 125 – 200.

    Google Scholar 

  • Davis, B. D., 1975, Bending growth in fern gametrophyte protonema, Plant Cell Physiol. 16: 537 – 541.

    Google Scholar 

  • de Fabo, E., 1980, On the nature of the blue light photoreceptor: still an open question, in: The Blue Light Syndrome( H. Senger, ed.), pp. 187 – 197, Springer-Verlag, Berlin.

    Google Scholar 

  • de Fabo, E. C., Harding, R. W., and Shropshire, W., Jr., 1976, Action spectrum between 260 and 800 nanometers for the photoinduction of carotenoid biosynthesis in Neurospora crassa, Plant Physiol. 57: 440 – 445.

    PubMed  Google Scholar 

  • Delbrück, M., and Reichardt, W., 1956, System analysis for the light growth reactions of Phycomyces, in: Cellular Mechanisms in Differentiation and Growth(D. Rudnick, ed.), pp. 73–44, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Delbrück, M., and Shropshire, W., Jr., 1960, Action and transmission spectra of Phycomyces, Plant Physiol. 35: 194 – 204.

    PubMed  Google Scholar 

  • Delbrück, M., and Varju, D., 1961, Photoreactions in Phycomyces: responses to the stimulation of narrow test areas with ultra-violet light, J. Gen. Physiol. 44: 1177 – 1188.

    Google Scholar 

  • Delbrück, M., Katzir, A., and Presti, D., 1976, Responses of Phycomycesindicating optical excitation of the lowest triplet state of riboflavin, Proc. Natl. Acad. Sci. USA 73: 1969 – 1973.

    PubMed  Google Scholar 

  • Dennison, D. S., 1959a, Gallic acid in Phycomycessporangiophores, Nature (Lond.) 184: 2036.

    Google Scholar 

  • Dennison, D. S., 1959b, Phototropic equilibrium in Phycomyces, Science 129:775–777.

    Google Scholar 

  • Dennison, D. S., 1965, Steady-state phototropism in Phycomyces, J. Gen. Physiol. 48: 393 – 408.

    PubMed  CAS  Google Scholar 

  • Dennison, D. S., 1979, Phototropism, in: Encyclopedia of Plant Physiology, new ser., vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 506 – 566, Springer-Verlag, Berlin.

    Google Scholar 

  • Dennison, D. S., and Bozof, R. P., 1973, Phototropism and local adaptation in Phycomycessporangiophores, J. Gen. Physiol. 62: 157 – 168.

    PubMed  CAS  Google Scholar 

  • Dennison, D. S., and Foster, K. W., 1977, Intracellular rotation and the phototropic response of Phycomyces, Biophys. J. 18: 103 – 123.

    PubMed  CAS  Google Scholar 

  • Dohrmann, U., Hertel, R., and Kowalik, H., 1978, Properties of auxin binding sites in different subcellular fractions from maize coleoptiles, Planta 140: 97 – 106.

    CAS  Google Scholar 

  • du Buy, H. G., and Nuernbergk, E., 1929, Weitere Untersuchungen uber den Einfluss des Lichtes auf das Wachstum von Koleoptile und Mesokotyl bei Avena sativaII, Proc. Kon. Akad. Wet. Amst. 32: 808 – 817.

    Google Scholar 

  • du Buy, H. G., and Nuernbergk, E., 1932, Phototropismus und Wachstum der Pflanzen, Ergeb. Biol. 9:358–544.

    Google Scholar 

  • du Buy, H. G., and Nuernbergk, E., 1934, Phototropismus und Wachstum der Pflanzen. Zweiter Teil, Ergeb. Biol. 10: 207 – 322.

    Google Scholar 

  • du Buy, H. G., and Nuernbergk, E. L., 1935, Phototropismus und Wachstum der Pflanzen. Dritter Teil, Ergeb. Biol. 12: 325 – 543.

    Google Scholar 

  • Durand, H., and Rayle, D. L., 1973, Physiological evidence for auxin-induced hydrogen-ion secretion and the epidermal paradox, Planta 114: 185 – 193.

    CAS  Google Scholar 

  • Elliot, W. M., and Shen-Miller, J., 1976, Similarity in dose responses, action spectra and red light responses between phototropism and photoinhibition of growth, Photochem. Photobiol. 23: 195 – 199.

    Google Scholar 

  • Ellis, R. J., and MacDonald, I. R., 1970, Specificity of cycloheximide in higher plant systems, Plant Physiol. 46: 227 – 232.

    PubMed  CAS  Google Scholar 

  • Errera, L., 1884, Die grosse Wachsthumsperiode bei den Fruchttragern von Phycomyces, Bot. Zeitung. 42:497–503, 513–522, 529–537, 545–552, 561 – 566.

    Google Scholar 

  • Eslava, A. P., Alvarez, M. I., Lipson, E. D., Presti, D., and Kong, K., 1976, Recombination between mutants of Phycomyceswith abnormal phototropism, Mol. Gen. Genet. 147: 235 – 241.

    PubMed  CAS  Google Scholar 

  • Etzold, H., 1961, Die Wirkungen des linear polarisierten Lichtes auf Pilze und ihre Beziehungen zu den tropistischen Wirkungen des einsteitigen Lichtes, Exp. Cell Res. 25: 229 – 245.

    PubMed  CAS  Google Scholar 

  • Etzold, H., 1965, Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix mas(L.) Schott, Planta 64: 254 – 280.

    CAS  Google Scholar 

  • Evans, M. L., and Ray, R. M., 1969, Timing of the auxin response in coleoptiles and its implications regarding auxin action, J. Gen. Physiol. 53: 1 – 20.

    PubMed  CAS  Google Scholar 

  • Everett, M., and Thimann, K. V., 1968, Second positive phototropism in the Avenacoleoptile, Plant Physiol. 43: 1786 – 1792.

    PubMed  CAS  Google Scholar 

  • Falk, H., and Steiner, A. M., 1968, Phytochrome-mediated polarotropism: an electron microscopical study, Naturwissenschaften 55: 500.

    PubMed  CAS  Google Scholar 

  • Fischer, E.-P., and Thomson, K. S., 1979, Serine proteinase and their inhibitors in Phycomyces blakesleeanus, J. Biol. Chem. 254: 50 – 56.

    PubMed  CAS  Google Scholar 

  • Fischer-Arnold, G., 1963, Untersuchungen über die Protoplastenbewegung bei Vaucheria sessilis, Protoplasma 56: 495 – 520.

    CAS  Google Scholar 

  • Flint, L. H., 1942, Note on phototropism in Pilobolus, Am. J. Bot. 29: 672 – 674.

    Google Scholar 

  • Fondeville, J. C., Schneider, M. J., Barthwick, H. A., and Hendricks, S. B., 1967. Photocontrol of Mimosa pudicaL. leaf movement, Planta 75: 228 – 238.

    Google Scholar 

  • Foster, K. W., 1977, Phototropism of coprophilous Zygomycetes, Annu. Rev. Biophys. Bioeng. 6: 419 – 443.

    PubMed  CAS  Google Scholar 

  • Foster, K. W., and Lipson, E. D., 1973, The light growth response of Phycomyces, J. Gen. Physiol. 62: 590 – 617.

    PubMed  CAS  Google Scholar 

  • Galland, P., and Russo, V. E. A., 1979, Photoinhibition of sporangiophores in Phycomycesmutants deficient in phototropism and in mutants lacking ß-carotene, Photochem. Photobiol. 29: 1009 – 1014.

    CAS  Google Scholar 

  • Galston, A. W., 1949, Riboflavin-sensitized photooxidation of indoleacetic acid and related compounds, Proc. Natl. Acad. Sci. USA 35: 10 – 17.

    CAS  Google Scholar 

  • Galston, A. W., 1950, Riboflavin, light, and the growth of plants, Science 111: 619 – 624.

    PubMed  CAS  Google Scholar 

  • Galston, A. W., 1974, Plant photobiology in the last half-century, Plant Physiol. 54: 427 – 436.

    PubMed  CAS  Google Scholar 

  • Gamow, R. I., and Böttger, B., 1979, Phycomyces: Modification of spiral growth after mechanical conditioning of the cell wall, Science 203: 268 – 270.

    PubMed  CAS  Google Scholar 

  • Gamow, R. I., and Böttger, B., 1980, Phycomyces. Modification of light-induced spiral growth after mechanical conditioning of the cell wall, Plant Physiol. 66: 525 – 527.

    PubMed  CAS  Google Scholar 

  • Gardner, G., Shaw, S., and Wilkins, M. B., 1974, IAA transport during the phototropie responses of intact Zeaand Avenacoleoptiles, Planta 121: 237 – 251.

    CAS  Google Scholar 

  • Gettkandt, G., 1954, Zur Kenntnis des Phototropismus der Keimmyzelien einiger parasitischer Pilze, Wiss. Z. Martin Luther Univ. Halle-Wittenberg Math-Naturwiss. Reihe 3: 691 – 709.

    Google Scholar 

  • Goldsmith, M. H. M., 1966, Movement of indoleacetic acid in coleoptiles of Avena sativaL. II. Suspension of polarity by total inhibition of the basipetal transport, Plant Physiol. 41: 15 – 27.

    PubMed  CAS  Google Scholar 

  • Goldsmith, M. H. M., 1967, Movement of pulses of labeled auxin in corn coleoptiles, Plant Physiol. 42: 258 – 263.

    PubMed  CAS  Google Scholar 

  • Goldsmith, M. H. M., 1977, The polar transport of auxin, Annu. Rev. Plant Physiol. 28: 439 – 478.

    CAS  Google Scholar 

  • Goldsmith, M. H. M., and Thimann, K. V., 1962, Some characteristics of movement of indoleacetic acid in coleoptiles of Avena—I. Uptake, destruction, immobilization, and distribution of IAA during basipetal translocation, Plant Physiol. 37: 492 – 505.

    PubMed  CAS  Google Scholar 

  • Goldsmith, M. H. M., Caubergs, R. J., and Briggs, W. R., 1980, Light-inducible cytochrome reduction in membrane preparations from corn coleoptiles, I. Stabilization and spectral characterization of the reaction, Plant Physiol. 66: 1067 – 1073.

    PubMed  CAS  Google Scholar 

  • Goodell, E. W., 1971, “Apical dominance” in the sporangiophore of the fungus Phycomyces, Planta 98:63–75.

    Google Scholar 

  • Goodwin, T. W., 1952, Studies in carotenogenesis. 3. Identification of the minor polyene components of the fungus Phycomyces blakesleeanusand a study of their synthesis under various cultural conditions, Biochem. J. 50: 550 – 558.

    PubMed  CAS  Google Scholar 

  • Gordon, S. A., 1954, Occurrence, formation, and inactivation of auxins, Annu. Rev. Plant Physiol. 5: 341 – 378.

    CAS  Google Scholar 

  • Gordon, S. A., and Dobra, W. A., 1972, Elongation responses of the oat shoot to blue light, as measured by capacitance auxanometry, Plant Physiol. 50: 738 – 742.

    PubMed  CAS  Google Scholar 

  • Gordon, S. A., and Eib, M., 1964, Hormonal relation in the phototropic responses, II. translocation of C14-labeled indoleacetic acid in irradiated Avenacoleoptile segments, Argonne Natl. Lab. Annu. Rep. 6971: 176 – 181.

    Google Scholar 

  • Gordon, S. A., and Shen-Miller, J., 1968, Auxin relations in phototropism of the coleoptile: a reexamination, in: Biochemistry and Physiology of Plant Growth Substances, Proceedings of the Sixth International Conference on Plant Growth Substances, July 24–29, 1976( F. Wightman and G. Setterfield, eds.), pp. 1097 – 1108, Runge, Ottawa.

    Google Scholar 

  • Grahm, L., 1964, Measurements of geoelectric and auxin-induced potentials in coleoptiles with a refined vibrating electrode technique, Physiol. Plant. 17: 231 – 261.

    Google Scholar 

  • Green, P. B., Erickson, R. O., and Richmond, P. A., 1970, On the physical basis of wall morphogenesis, Ann. NY Acad. Sci. 175: 712 – 731.

    Google Scholar 

  • Greenwood, M. S., Shaw, S., Hillman, J. R., Ritchie, A., and Wilkins, M. B., 1972, Identification of auxin from Zeacoleoptile tips by mass spectrometry, Planta 108: 179 – 183.

    CAS  Google Scholar 

  • Gressel, J., 1979, Blue light photoreception, Photochem. Photobiol. 30: 749 – 754.

    CAS  Google Scholar 

  • Haberlandt, G., 1889, Über das Langenwachsthum und den Geotropismus der Rhizoiden von Marchantiaund Lunularia, Oesterr. Bot. Z. 39: 93 – 98.

    Google Scholar 

  • Hager, A., and Schmidt, R., 1968a, Auxintransport und Phototropismus, I. Die lichtbedingte Bildung eines Hemmstoffes für den Transport von Wuchsstoffen in Koleoptilen, Planta 83: 347 – 371.

    CAS  Google Scholar 

  • Hager, A., and Schmidt, R., 1968b, Auxintransport und Phototropismus. II. Der Hemmechanismus des aus IES gebildeten Photooxidationsproduktes 3-Methylen-oxindol beim Transport von Wuchsstoffen, Planta 83:372–386.

    Google Scholar 

  • Hager, A., Menzel, H., and Krauss, A., 1971, Versuch und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum, Planta 100: 47 – 75.

    CAS  Google Scholar 

  • Haig, C., 1934, The spectral sensibility of Avena, Proc. Natl. Acad. Sci. USA 20: 476 – 479.

    PubMed  CAS  Google Scholar 

  • Hartmann, K. M., 1977, Aktionsspektrometrie, in: Biophysik( W. Hoppe, W. Lohmann, H. Markl, and H. Ziegler, eds.), pp. 197 – 222, Springer-Verlag, Berlin.

    Google Scholar 

  • Hartmann, K. M., and Haupt, W., 1977, Photomorphogenese, in: Biophysik( W. Hoppe, W. Lohmann, H. Markl, and H. Ziegler, eds.), pp. 449 – 468, Springer-Verlag, Berlin.

    Google Scholar 

  • Hartmann, K. M., Menzel, H., and Mohr, H., 1965, Ein Beitrag zur Theorie der polarotropischen und phototropischen Krümmung, Planta 64: 363 – 375.

    Google Scholar 

  • Haupt, W., 1957, Die Induktion der Polarität bei der Spore von Equisetum, Planta 49: 61 – 90.

    CAS  Google Scholar 

  • Haupt, W., 1958, Über den Primärvorgang bei der polarisierenden Wirkung des Lichtes auf keimende Equisetum-Sporen, Planta 51: 74 – 83.

    Google Scholar 

  • Haupt, W., 1965, Perception of environmental stimuli orienting growth and movement in lower plants, Annu. Rev. Plant Physiol. 16: 267 – 290.

    CAS  Google Scholar 

  • Haupt, W., 1968, Die Orientierung der Phytochrom-Moleküle in der MougeotiazeWc: Ein neues Modell zur Deutung der experimentellen Befunde, Z. Pflanzenphysiol. 58: 331 – 346.

    CAS  Google Scholar 

  • Haupt, W., 1972, Localization of phytochrome within the cell, in: Phytochrome( K. Mitrakos and W. Shropshire, Jr., eds.), pp. 553 – 569, Academic Press, New York.

    Google Scholar 

  • Haupt, W., 1977, Bewegungsphysiologie der Pflanzen, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Haupt, W., 1980, Localization and orientation of photoreceptor pigments, in: Photoreception and Sensory Transduction in Aneural Organisms(F. Lenci and G. Colombetti, eds.), pp. 155172, Plenum Press, New York.

    Google Scholar 

  • Haupt, W., and Bentrup, F.-W., (Meyer zu), 1961, Versuch zur Poläritatsinduktion durch Licht bei Equisetumsporenund Fucus-Zygoten, Naturwissenschaften 48: 723.

    Google Scholar 

  • Haupt, W., and Buchwald, M., 1967, Die Orientierung der Photorezeptor-MolekÜle im Sporangienträger von Phycomyces, Z. Pflanzenphysiol. 56: 20 – 26.

    CAS  Google Scholar 

  • Haupt, W., Mörtel, G., and Winkelnkemper, I., 1969, Demonstration of different dichroic orientation of phytochrome PR and PFR, Planta 88: 183 – 186.

    CAS  Google Scholar 

  • Hejnowicz, Z., and Sievers, A., 1971, Mathematical model of geotropically bending Chara rhizoids, Z. Pflanzenphysiol. 66: 34 – 48.

    Google Scholar 

  • Hemmerich, P., 1976, The present status of flavin and flavocoenzyme chemistry, in: Fortschritte der Chemie organischer Naturstoffe, Vol. 33 ( W. Herz, H. Grisebach, and G. W. Kirby, eds.), pp. 451 – 527, Springer-Verlag, Vienna.

    Google Scholar 

  • Hertel, R., 1979, Auxin binding sites: subcellular fractionation and specific binding assays, in: Plant Organelles, methodological Surveys (B) Biochemistry, Vol. 9 ( E. Reid, ed.), pp. 173 – 183, Ellis Horwood Ltd. Chichester, West Sussex, England.

    Google Scholar 

  • Hertel, R., 1980, Phototropism of lower plants, in: Photoreception and Transduction in Aneural Organisms( F. Lenci and G. Colombetti, eds.), pp. 89 - 105, Plenum Press, New York.

    Google Scholar 

  • Hertel, R., 1981, Zur Auxinproblematik: Primäre Wirkung, Transport und in-vitro-Bindung, Biochem. Physiol. Pflanz. 176: 495 – 506.

    CAS  Google Scholar 

  • Hertel, R., and Leopold, A. C., 1962, Auxintransport und Schwerkraft, Naturwissenschaften 49: 377 – 378.

    Google Scholar 

  • Hertel, R., and Leopold, A. C., 1963, Versuche zur Analyse des Auxintransportes in der Koleoptile von Zea maysL., Planta 59: 535 – 562.

    CAS  Google Scholar 

  • Hertel, R., Evans, M. L., Leopold, A. C., and Sell, H. M., 1969, The specificity of the auxin transport system, Planta 85: 238 – 249.

    CAS  Google Scholar 

  • Hertel, R., Thomson, K. S., and Russo, V. E. A., 1972, In-vitroauxin binding to particulate cell fractions from corn coleoptiles, Planta 107: 325 – 340.

    CAS  Google Scholar 

  • Hertel, R., Jesaitis, A. J., Dohrmann, U., and Briggs, W. R., 1980, In vitro binding of riboflavin to subcellular particles from maize coleoptiles and Cucurbita hypocotyls, Planta 147:312–319.

    CAS  Google Scholar 

  • Humphry, V. R., 1966, The effects of paraffin oil on phototropie and geotropic responses in Avenacoleoptiles, Ann. Bot. 30: 39 – 45.

    CAS  Google Scholar 

  • Hurd, A. M., 1920, Effect of unilateral monochromatic light and group orientation on the polarity of germinating Fucusspores, Bot. Gaz. 70: 25 – 50.

    Google Scholar 

  • Ishizawa, K., and Wada, S., 1979a, Growth and phototropie bending in Boergesenia rhizoid, Plant Cell Physiol. 20:973–982.

    Google Scholar 

  • Ishizawa, K., and Wada, S., 1979b, Action spectrum of negative phototropism in Boergesenia forbesii, Plant Cell Physiol. 20:983–987.

    Google Scholar 

  • Ishizawa, K., Enomoto, S., and Wada, S., 1979, Germination and photoinduction of polarity in the spherical cells regenerated from protoplasma fragments of Boergesenia forbesii, Bot. Mag. Tokyo 92: 173 – 186.

    CAS  Google Scholar 

  • Jacob, F., 1959, Vergleichende Studien über die phototropische Empfindlichkeit junger Sporangienträger der Gattung Pilobolus, Arch. Protistenkd. 103: 531 – 572.

    Google Scholar 

  • Jacob, F., 1964, Über die Funktion eines Karotin-Lichtschirmes bei dem Phototropismus von Sporangienträgern chromosporer Pilobolus-Axten, Flora (Jena)155: 209 – 222.

    Google Scholar 

  • Jacobs, M., and Hertel, R., 1978, Auxin binding to subcellular fractions from Cucurbitahypocotyls: in vitroevidence for an auxin transport carrier, Planta 142: 1 – 10.

    CAS  Google Scholar 

  • Jacobs, M., and Ray, P. M., 1976, Rapid auxin-induced decrease in free space pH and its relationship to auxin-induced growth in maize and pea, Plant Physiol. 58: 203 – 209.

    PubMed  CAS  Google Scholar 

  • Jaffe, L. F., 1958, Tropistic responses of zygotes of the Fucaceae to polarized light, Exp. Cell Res. 15: 282 – 299.

    PubMed  CAS  Google Scholar 

  • Jaffe, L. F., 1960, The effect of polarized light on the growth of a transparent cell. A theoretical analysis, J. Gen. Physiol. 43: 897 – 911.

    PubMed  CAS  Google Scholar 

  • Jaffe, L., and Etzold, H., 1965, Tropic responses of Funariaspores to red light, Biophys. J.5: 715 – 742.

    PubMed  CAS  Google Scholar 

  • Jan, Y. N., 1974, Properties and cellular localization of chitin synthetase in Phycomyces blakesleeanus, J. Biol. Chem. 249: 1973 – 1979.

    CAS  Google Scholar 

  • Jayaram, M., Presti, D., and Delbrück, M., 1979, Light-induced carotene synthesis in Phycomyces, Exp. Mycol. 3: 42 – 52.

    CAS  Google Scholar 

  • Jayaram, M., Leutwiler, L., and Delbrück, M., 1980, Light-induced carotene synthesis in mutants of Phycomyceswith abnormal phototropism, Photochem. Photobiol. 32: 241 – 245.

    CAS  Google Scholar 

  • Jeffreys, D. B., and Greulach, V. A., 1956, The nature of tropism of Coprinus sterquilinus, J. Elisha Mitchell Sci. Soc. 72: 153 – 158.

    Google Scholar 

  • Jesaitis, A. J., 1974, Linear dichroism and orientation of the Phycomycesphotopigment, J. Gen. Physiol. 63: 1 – 21.

    PubMed  CAS  Google Scholar 

  • Jesaitis, A. J., Heners, P. R., Hertel, R., and Briggs, W. R., 1977, Characterization of a membrane fraction containing a b-type cytochrome, Plant Physiol. 59: 941 – 947.

    PubMed  CAS  Google Scholar 

  • Johnson, D. L., and Gamow, R. I., 1972, Phycomyces: growth responses of the sporangium, Plant Physiol. 49: 898 – 903.

    PubMed  CAS  Google Scholar 

  • Johnsson, A., 1965, Photoinduced lateral potentials in Zea mays, Physiol. Plant. 18: 574 – 576.

    CAS  Google Scholar 

  • Johnston, E. S., 1934, Phototropic sensitivity in relation to wave length, Smithsonian Misc. Collect.92: 1 – 17.

    Google Scholar 

  • Jolivette, H. D. M., 1914, Studies on the reactions of Pilobolusto light stimuli, Bot. Gaz. 57: 89 – 121.

    Google Scholar 

  • Jönsson, A., 1961, Chemical structure and growth activity of auxins and antiauxins, Encycl. Plant Physiol. 14: 959 – 1006.

    Google Scholar 

  • Kasai, S., Miura, R., and Matsui, K., 1975, Chemical structure and some properties of roseoflavin, Bull. Chem. Soc. Jpn. 48: 2877 – 2880.

    CAS  Google Scholar 

  • Kataoka, H., 1975a, Phototropism in Vaucheria geminata. I. The action spectrum, Plant Cell Physiol. 16:427–437.

    Google Scholar 

  • Kataoka, H., 1975b, Phototropism in Vaucheria geminata. II. The mechanism of bending and branching, Plant Cell Physiol. 16:439–448.

    Google Scholar 

  • Kataoka, H., 1977a, Second positive and negative phototropism in Vaucheria geminata, Plant Cell Physiol. 18:473–476.

    CAS  Google Scholar 

  • Kataoka, H., 1977b, Phototropic sensitivity in Vaucheria geminata regulated by 3′,5′-cyclic AMP, Plant Cell Physiol. 18:431–440.

    CAS  Google Scholar 

  • Kataoka, H., 1979, Phototropic responses of Vaucheria geminatato intermittent blue light stimuli, Plant Physiol. 63: 1107 – 1110.

    PubMed  CAS  Google Scholar 

  • Kataoka, H., 1980, Phototropism: determination of an action spectrum in a tip-growing cell, in: Handbook of Phycological Methods, Vol. 3, pp. 205–218, ( E. Gautt, ed.) Cambridge University Press, Cambridge.

    Google Scholar 

  • Key, J. L., 1969, Hormones and nucleic acid metabolism, Annu. Rev. Plant Physiol. 20: 449 – 474.

    CAS  Google Scholar 

  • Koch, K., 1934, Untersuchungen über den Quer- und Längstransport des Wuchsstoffes in Pflanzenorganen, Planta 22: 190 – 220.

    CAS  Google Scholar 

  • Kögl, F., 1937, Wirkstoffprinzip und Pflanzenwachstum, Naturwissenschaften 29: 456 – 470.

    Google Scholar 

  • Kögl, F., and Haagen-Smit, A. J., 1931, Über die Chemie des Wuchsstoffs, Proc. Kon. Akad. Wet. Amst. 34: 1411 – 1416.

    Google Scholar 

  • Koske, R. E., 1977, Spiral growth of Phycomyces: some new observations in the northern and southern hemispheres, Mycologia 69: 189 – 193.

    Google Scholar 

  • Lange, S., 1927, Die Verteilung der Lichtempfindlichkeit in der Spitze der Haferkoleoptile, Jahrb. Wiss. Bot. 67: 1 – 51.

    Google Scholar 

  • Lembi, C. A., Morré, D. J., Thomson, K. S., and Hertel, R., 1971, N-l-Naphthylphthalamic-acid-binding activity of a plasma membrane-rich fraction from maize coleoptiles, Planta 99: 37 – 45.

    CAS  Google Scholar 

  • Leong, T.-Y., and Briggs, W. R., 1981, Partial purification and characterization of a blue light- sensitive cytochrome-flavin complex from corn membranes, Plant Physiol. 67: 1042 – 1046.

    PubMed  CAS  Google Scholar 

  • Lewis, S. C., Schiff, J. A., and Epstein, H. T., 1961, Photooxidation of cytochromes by a flavoprotein from Euglena, Biochem. Biophys. Res. Commun. 5: 221 – 225.

    PubMed  CAS  Google Scholar 

  • Lipson, E. D., 1975a, White noise analysis of Phycomyceslight growth response system. I. Normal intensity range, Biophys. J. 15:989 – 1011.

    CAS  Google Scholar 

  • Lipson, E. D., 1975b, White noise analysis of Phycomyces light growth response system. II. Extended intensity ranges, Biophys. J. 15:1013–1031.

    CAS  Google Scholar 

  • Lipson, E. D., 1975c, White noise analysis of Phycomyces light growth response system. III. Photomutants, Biophys. J. 15:1033–1045.

    CAS  Google Scholar 

  • Lipson, E. D., 1980, Sensory transduction in Phycomycesphotoresponses, in: The Blue Light Syndrome( H. Senger, ed.), pp. 110 – 118, Springer-Verlag, New York.

    Google Scholar 

  • Lipson, E. D., and Presti, D., 1977, Light-induced absorbance changes in Phycomycesphotomutants, Photochem. Photobiol. 25: 203 – 208.

    Google Scholar 

  • Lipson, E. D., and Presti, D., 1980, Graphical estimation of cross sections from fluence-response data, Photochem. Photobiol. 32: 383 – 391.

    CAS  Google Scholar 

  • Lipson, E. D., and Terasaka, D. T., 1981, Photogeotropism in Phycomycesdouble mutants, Exp. Mycol. 5: 101 – 111.

    Google Scholar 

  • Lipson, E. D., Terasaka, D. T., and Silverstein, P. S., 1980, Double mutants of Phycomyceswith abnormal phototropism, Mol. Gen. Genet. 179: 155 – 162.

    Google Scholar 

  • Löser, G., and Schafer, E., 1980, Phototropism in Phycomyces: a photochromic sensor pigment?, in: The Blue Light Syndrome( H. Senger, ed.), pp. 244 – 250, Springer-Verlag, New York.

    Google Scholar 

  • MacDonald, I. R., and Ellis, R. J., 1969, Does cycloheximide inhibit protein synthesis specifically in plant tissues?, Nature (Lond.) 222: 791 – 792.

    CAS  Google Scholar 

  • MacMillan, J. (ed.), 1980, Encyclopedia of Plant Physiology, new ser., Vol. 9, Springer-Verlag, New York.

    Google Scholar 

  • MacRobbie, E. A. C., and Dainty, J., 1958, Sodium and potassium distribution and transport in the seaweed Rhodymenia palmata(L.). Grev., Physiol. Plant. 11: 782 – 801.

    CAS  Google Scholar 

  • Massart, J., 1888, Recherches sur les organismes inférieurs.—1. La loi de Weber vérifiée pour l’héliotropisme du champignon, Bull. Acad. R. Sci. Belg. 16: 590 – 601.

    Google Scholar 

  • Medina, J. R., and Cerdá-Olmedo, E., 1977a, A quantitative model of Phycomycesphototropism, J. Theor. Biol. 69: 709 – 719.

    CAS  Google Scholar 

  • Medina, J. R., and Cerdá-Olmedo, E., 1977b, Allelic interaction in the photogeotropism of Phycomyces, Exp. Mycol. 1:286–292.

    Google Scholar 

  • Meissner, G., and Delbrück, M., 1968, Carotenes and retinal in Phycomycesmutants, Plant Physiol. 43: 1279 – 1283.

    PubMed  CAS  Google Scholar 

  • Meistrich, M. L., Fork, R. L., and Matricon, J., 1970, Phototropism in Phycomycesas investigated by focused laser radiation, Science 169: 370 – 371.

    PubMed  CAS  Google Scholar 

  • Menschick, R., Hild, V., and Hager, A., 1977, Decarboxylierung von Indolylessigsaure im Zusammenhang mit dem Phototropismus in, Avena-Koleoptilen, Planta 133: 223 – 228.

    CAS  Google Scholar 

  • Meyer, A. N., 1969a, Versuche zur 1. positiven und zur negativen phototropischen Krümmung der Avena-Koleoptile: I. Lichtperception und Absorptionsgradient, Z. Pflanzenphysiol. 60:418–433.

    Google Scholar 

  • Meyer, A. M., 1969b, Versuche zur 1. positiven und zur negativen phototropischen Krümmung der, Avena-Koleoptile: II. Die Inversion durch Paraffinöl, Z. Pflanzenphysiol 61:129–134.

    Google Scholar 

  • Miller, J. H., 1968, Fern gametophytes as experimental material, Bot. Rev. 34: 361 – 440.

    CAS  Google Scholar 

  • Mohr, H., 1956a, Die Beeinflussung der Keimung von Farnsporen durch Licht und andere Faktoren, Planta 46: 534 – 551.

    CAS  Google Scholar 

  • Mohr, H., 1956b, Die Abhängigkeit des Protonemawachstums und der Protonemapolarität bei Farnen vom Licht, Planta 47:127–158.

    CAS  Google Scholar 

  • Moor, H., 1967, Endoplasmic reticulum as the initiator of bud formation in yeast (S. cerevisiae), Arch. Mikrobiol. 57: 135 – 146.

    PubMed  CAS  Google Scholar 

  • Morath, M., and Hertel, R., 1978, Lateral electrical potential following asymmetric auxin application to maize coleoptiles, Planta 140:31–35.

    CAS  Google Scholar 

  • Müller, F., 1983, The flavin redox system and its biological function, in: Topics in Current Chemistry, Vol. 108, pp. 71 – 107, Springer-Verlag, New York.

    Google Scholar 

  • Murphy, G. J. P., 1980, Napthaleneacetic acid binding by membrane-free preparations of cytosol from the maize coleoptile, Plant Sci. Lett. 19: 157 – 168.

    CAS  Google Scholar 

  • Naqvi, S. M., and Gordon, S. A., 1967, Auxin transport in Zea mayscoleoptiles. II. Influence of light on the transport of indoleacetic acid-2-C14, Plant Physiol. 42: 138 – 143.

    PubMed  CAS  Google Scholar 

  • Nathansohn, A., and Pringsheim, E., 1908, Über die Summation intermittierender Lichtreize, Jahrb. Wiss. Bot. 45: 137 – 190.

    Google Scholar 

  • Nebel, B. J., 1968, Action spectra for photogrowth and phototropism in protonemata of the moss Physcomitrium turbinatum, Planta 81: 287 – 302.

    Google Scholar 

  • Nebel, B. J., 1969, Responses of mossprotomenata to red and far red polarized light: evidence for discshaped phytochrome photoreceptors, Planta 87: 170 – 179.

    Google Scholar 

  • Neuscheler-Wirth, H., 1970, Photomorphogenese und Phototropismus bei Mougeotia, Z. Pflanzenphysiol. 63: 238 – 260.

    Google Scholar 

  • Noll, F., 1887, Uber Membranwachsthum und einige physiologische Erscheinungen bei Siphoneen, Bot. Z. 45: 473 – 482.

    Google Scholar 

  • Oehlkers, F., 1927, Phototropische Untersuchungen an Phycomyces nitens, Z. Bot. 19: 1 – 44.

    Google Scholar 

  • Oltmanns, F., 1892, Über die photometrischen Bewegungen der Pflanzen, Flora (Jena) 75:183–266.

    Google Scholar 

  • Oltmanns, F., 1897, Über positiven und negativen Heliotropismus, Flora (Jena) 83: 1 – 32.

    Google Scholar 

  • Oort, A. J. P., 1931, The spiral growth of Phycomyces, Proc. Kon. Akad. Wet. Amst. 34: 564 – 575.

    Google Scholar 

  • Oort, A. J. P., and Roelofsen, P. A., 1932, Spiralwachstum, Wandbau und Plasmaströmung bei Phycomyces, Proc. Akad. Wet. Amst. 35: 898 – 908.

    Google Scholar 

  • Ootaki, T., and Wolken, J. J., 1973, Octahedral crystals in Phycomyces. II, J. Cell Biol. 57: 278 – 288.

    PubMed  CAS  Google Scholar 

  • Ootaki, T., Fischer, E. P., and Lockhart, P., 1974, Complementation between mutants of Phycomyceswith abnormal phototropism, Mol Gen. Genet. 131: 233 – 246.

    Google Scholar 

  • Ootaki, T., Kinno, T., Yoshida, K., and Eslava, A. P., 1977, Complementation between Phycomycesmutants of mating type (+) with abnormal phototropism, Mol Gen. Genet. 152: 245 – 251.

    Google Scholar 

  • Oppenoorth, W. F. F., 1939, Photo-inactivation of auxin in the coleoptile of Avenaand its bearing on phototropism, Proc. Kon. Akad, Wet. Amst. 42: 902 - 915.

    Google Scholar 

  • Oppenoorth, W. F. F., Jr., 1942, On the role of auxin in phototropism and light growth reaction of Avenacoleoptiles, Reel. Trav. Bot. Neerl. 38: 287 – 372.

    CAS  Google Scholar 

  • Ortega, J. K. E., and Gamow, R. I., 1970, Phycomyces: habituation of the light growth response, Science 168: 1374 – 1375.

    PubMed  CAS  Google Scholar 

  • Ortega, J. K. E., and Gamow, R. I., 1974, The problem of handedness reversal during the spiral growth of Phycomyces, J. Theor. Biol. 47: 317 – 332.

    PubMed  CAS  Google Scholar 

  • Ortega, J. K. E., and Gamow, R. I., 1976, An increase in mechanical extensibility during the period of light-stimulated growth, Plant Physiol. 57: 456 – 457.

    PubMed  CAS  Google Scholar 

  • Ortega, J. K. E., Harris, J. F., and Gamow, R. I., 1974, The analysis of spiral growth in Phycomycesusing a novel optical method, Plant Physiol. 53: 485 – 490.

    PubMed  CAS  Google Scholar 

  • Ortega, J. K. E., Gamow, R. I., and Ahlquist, C. N., 1975, Phycomyces: a change in mechanical properties after a light stimulus, Plant Physiol. 55: 333 – 337.

    PubMed  CAS  Google Scholar 

  • Otto, M. K., Jayaram, M., Hamilton, R. M., and Delbrück, M., 1981, Replacement of riboflavin by an analogue in the blue-light photoreceptor of Phycomyces, Proc. Natl. Acad. Sci. USA 78: 266 – 269.

    PubMed  CAS  Google Scholar 

  • Paál, A., 1914, Über phototropische Reizleitungen, Ber. Dtsch. Bot. Ges. 32: 499 – 502.

    Google Scholar 

  • Paál, A., 1919, Über phototropische Reizleitung, Jahrb. Wiss. Bot. 58: 406 – 458.

    Google Scholar 

  • Page, R. M., 1956, Studies on the development of asexual reproductive structures in Pilobolus, Mycologia 48: 206 – 224.

    Google Scholar 

  • Page, R. M., 1962, Light and the asexual reproduction of Pilobolus, Science 138: 1238 - 1245.

    PubMed  CAS  Google Scholar 

  • Page, R. M., 1964, Sporangium discharge in Pilobolus: a photographic study, Science 146: 925 – 927.

    PubMed  CAS  Google Scholar 

  • Page, R. M., 1965, The physical environment for fungal growth, in: The Fungi, Vol. 1 ( G. C. Ainsworth and A. S. Sussman, eds.), pp. 559 – 574, Academic Press, London.

    Google Scholar 

  • Page, R. M., 1968, Phototropism in fungi, in: Photophysiology, Vol. 3 ( A. C. Giese, ed.), pp. 65 – 90, Academic Press, New York.

    Google Scholar 

  • Page, R. M., and Brungard, J., 1961, Phototropism in Conidiobolus, some preliminary observations, Science 134: 733 – 734.

    PubMed  CAS  Google Scholar 

  • Page, R. M., and Curry, G. M., 1966, Studies on the phototropism of young sporangiophores of Pilobolus kleinii, Photochem. Photobiol. 5: 31 – 40.

    CAS  Google Scholar 

  • Paietta, J., and Sargent, M. L., 1981, Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency, Proc. Natl. Acad. Sci, USA 78: 5573 – 5577.

    PubMed  CAS  Google Scholar 

  • Parr, R., 1918, The response of Pilobolusto light, Ann. Bot. 32: 177 – 205.

    Google Scholar 

  • Philipson, J. J., Hillmann, J. R., and Wilkins, M. B., 1973a, Studies on the actions of abscisic acid on IAA-induced rapid growth of Avena coleoptile segments, Planta 114:87–93.

    CAS  Google Scholar 

  • Philipson, J. J., Hillmann, J. R., and Wilkins, M. B., 1973b, The effects of temperature and IAA concentration on the latent period for IAA-induced rapid growth of Avena coleoptile segments, Planta 114:323–329.

    CAS  Google Scholar 

  • Phillips, I. D. J., 1972, Diffusible gibberellins and phototropism in Helianthus annuus, Planta 106: 363 – 367.

    CAS  Google Scholar 

  • Pickard, B. G., and Thimann, K. V., 1964, Transport and distribution of auxin during tropistic responses. II. The lateral migration of auxin in phototropism of coleoptiles, Plant Physiol. 39: 341 – 350.

    PubMed  CAS  Google Scholar 

  • Pickard, B. G., Dutson, K., Harrison, W., and Donegan, E., 1969, Second positive phototropic response patterns of the oat coleoptile, Planta 88: 1 – 33.

    Google Scholar 

  • Poff, K. L., and Butler, W. L., 1974a, Spectral characteristics of the photoreceptor pigment of phototaxis in Dictyostelium discoideum, Photochem. Photobiol. 20: 241 – 244.

    CAS  Google Scholar 

  • Poff, K. L., and Butler, W. L., 1974b, Absorbance changes induced by blue light in Phycomyces blakesleeanus and Dictyostelium discoideum, Nature (Lond.) 248:799–801.

    CAS  Google Scholar 

  • Poggioli, S., 1817, Delia influenza che ha il raggio magnetico sulla Vegetazione delle piante, Opusc. Scient. Fasc. 1: 9 – 23.

    Google Scholar 

  • Pohl, R., 1960, BeitrSge zum Phototropismus der Avena-Koleoptile I, Phyton. Rev. Int. Bot. Ext. 15: 145 – 157.

    Google Scholar 

  • Presti, D., and Delbrück, M., 1978, Photoreceptors for biosynthesis, energy storage and vision, Plant Cell Environ. 1: 81 – 100.

    Google Scholar 

  • Presti, D., Hsu, W.-J., and Delbrück, M., 1977, Phototropism in Phycomycesmutants lacking β-carotene, Photochem. Photobiol. 26: 403 – 405.

    CAS  Google Scholar 

  • Preston, R. D., 1948, Spiral growth and spiral structure. I. Spiral growth in sporangiophores of Phycomyces, Biochem. Biophys. Acta 2: 155 – 166.

    PubMed  CAS  Google Scholar 

  • Pringsheim, E. G., and Czurda, V., 1927, Phototropische und ballistische Probleme bei Pilobolus, Jahrb. Wiss. Bot. 66: 863 – 901.

    Google Scholar 

  • Racusen, R. H., and Galston, A. W., 1980, Phytochrome modifies blue-light-induced electrical changes in corn coleoptiles, Plant Physiol. 66: 534 – 535.

    PubMed  CAS  Google Scholar 

  • Ramaer, H., 1926, Phototropical curvature of seedlings of Avenawhich appear when reaction of the distal side is excluded, Proc. Kon. Akad. Wet. Amst. 29: 1118 – 1121.

    Google Scholar 

  • Ray, P. M., 1977, Auxin-binding sites of maize coleoptiles are localized on membranes of the endoplasmic reticulum, Plant Physiol. 59: 594 – 599.

    PubMed  CAS  Google Scholar 

  • Ray, P. M., and Ruesink, A. W., 1962, Kinetic experiments on the nature of the growth mechanism in oat coleoptile cells, Dev. Biol. 4: 377 – 397.

    CAS  Google Scholar 

  • Ray, P. M., Dohrmann, U., and Hertel, R., 1977a, Characterization of naphthaleneacetic acid binding to receptor sites on cellular membranes of maize coleoptile tissue, Plant Physiol. 59:357-364.

    CAS  Google Scholar 

  • Ray, P. M., Dohrmann, U., and Hertel, R., 1977b, Specificity of auxin-binding sites on maize coleoptile membranes as possible receptor sites for auxin action, Plant Physiol. 60:585–591.

    Google Scholar 

  • Rayle, D. L., 1973, Auxin-induced hydrogen-ion secretion in Avenacoleoptiles and its implications, Planta 114: 63 – 73.

    CAS  Google Scholar 

  • Rayle, D. L., and Cleland, R., 1970, Enhancement of wall loosening and elongation by acid solutions, Plant Physiol. 46: 250 – 253.

    PubMed  CAS  Google Scholar 

  • Rayle, D. L., and Cleland, R., 1972, The in-vitroacid-growth responses: relation to in-vivo-growth responses and auxin action, Planta 104: 282 – 296.

    CAS  Google Scholar 

  • Rayle, D. L., Evans, M. L., and Hertel, R., 1970a, Action of auxin on cell elongation, Proc. Natl. Acad. Sci. USA 65:184–191.

    CAS  Google Scholar 

  • Rayle, D. L., Haughton, P. M., and Cleland, R., 1970b, An in-vitro system that simulates plant cell extension growth, Proc. Natl. Acad. Sci. USA 67:1814–1817.

    CAS  Google Scholar 

  • Reichardt, W., 1961, Die Lichtreaktionen von Phycomyces, Kybernetik 1: 6 – 21.

    PubMed  CAS  Google Scholar 

  • Reichardt, W., and Varjú, D., 1958, Eine Inversionsphase der phototropischen Reaktion (Experimente an dem Pilz Phycomyces blakesleeanus), Z. Physik. Chem. 15: 297 – 320.

    CAS  Google Scholar 

  • Reinders, D. E., 1934, The sensibility for light of the base of normal and decapitated coleoptiles of Avena, Proc. Kon. Akad. Wet. Amst. 37: 308 – 314.

    Google Scholar 

  • Reinert, J., 1952, Über die Bedeutung von Carotin und Riboflavin für die Lichtreizaufnahme bei Pflanzen, Naturwissenschaften 39: 47 – 48.

    CAS  Google Scholar 

  • Reinhardt, M. O., 1892, Das Wachsthum der Pilzhyphen. Ein Beitrag zur Kenntnis des Flächenwachstums vegetabilischer Zellmembranen, Jahrb. Wiss. Bot. 23: 479 – 566.

    Google Scholar 

  • Russo, V. E. A., 1980, Sensory transduction in phototropism: genetic and physiological analysis in Phycomyces, in: Photoreception and Sensory Transduction in Aneural Organisms( F. Lenci and G. Colombetti, eds.), pp. 373 – 395, Plenum Press, New York.

    Google Scholar 

  • Russo, V. E. A., and Galland, P., 1980, Sensory physiology of Phycomyces blakesleeanus, in: Structure and Bonding, Vol. 41 ( P. Hemmerich, ed.), pp. 71 – 110, Springer-Verlag, New York.

    Google Scholar 

  • Russo, V. E. A., Galland, P., Toselli, M., and Volpi, L., 1980, Blue light induced differentiation in Phycomyces blakesleeanus, in The Blue Light Syndrome( H. Senger, ed.), pp. 563 – 569, Springer-Verlag, New York.

    Google Scholar 

  • Schmidt, W., 1980, Physiological blue-light reception, in: Structure and Bonding, Vol. 41 ( P. Hemmerich, ed.), pp. 1 – 44, Springer-Verlag, New York.

    Google Scholar 

  • Schmidt, W., and Butler, W. L., 1976, Flavin-mediated photoreactions in artificial systems: a possible model for the blue-light photoreceptor pigment in living systems, Photochem. Photobiol. 24: 71 – 75.

    PubMed  CAS  Google Scholar 

  • Schmidt, W., Hart, J., Filner, P., and Poff, K. L., 1977, Specific inhibition of phototropism in corn seedlings, Plant Physiol. 60: 736 – 738.

    PubMed  CAS  Google Scholar 

  • Schneider, H. A. W., and Bogorad, L., 1978, Light-induced, dark-reversible absorbance changes in roots, other organs, and cell-free preparations, Plant Physiol. 62: 577 – 581.

    PubMed  CAS  Google Scholar 

  • Schopfer, W.-H., 1935, Etude et identification d’un carotinoide de champignon, C. R. Soc. Biol. (Paris) 118: 3 – 5.

    CAS  Google Scholar 

  • Schrank, A. R., 1946, Note on the effect of unilateral illumination on the transverse electrical polarity in the Avenacoleoptile, Plant Physiol. 21: 362 – 365.

    PubMed  CAS  Google Scholar 

  • Schrank, A. R., 1948, Electrical and curvature responses of the Avenacoleoptile to transversely applied direct current, Plant Physiol. 23: 188 – 200.

    PubMed  CAS  Google Scholar 

  • Schrank, A. R., 1950, Inhibition of curvature responses by shunting the inherent electrical field, Plant Physiol. 25: 583 – 593.

    PubMed  CAS  Google Scholar 

  • Schrank, A. R., 1953, Effect of inorganic ions and their conductances on geotropic curvature of the Avenacoleoptile, Plant Physiol. 28: 99 – 104.

    PubMed  CAS  Google Scholar 

  • Senger, H., and Briggs, W. R., 1981, The blue light receptor(s): primary reactions and subsequent metabolic changes, in: Photochemical and Photobiological Reviews, Vol. 6 ( K. C. Smith, ed.), pp. 1 – 38, Plenum Press, New York.

    Google Scholar 

  • Shen-Miller, J., and Gordon, S. A., 1966, Hormonal relations in the phototropic response: III. The Movement of C14-labeled and endogenous indoleacetic acid in phototropically stimulated Zeacoleoptiles, Plant Physiol. 41: 59 – 65.

    PubMed  CAS  Google Scholar 

  • Shen-Miller, J., Cooper, P., and Gordon, S. A., 1969, Phototropism and photoinhibition of bas- ipolar transport of auxin in oat coleoptiles, Plant Physiol. 44: 491 – 496.

    PubMed  CAS  Google Scholar 

  • Shibaoka, H., and Yamaki, T., 1959, A sensitized Avenacurvature test and identification of the diffusible auxin in Avenacoleoptile, Bot. Mag. Tokyo 72: 152 – 158.

    CAS  Google Scholar 

  • Shropshire, W., Jr., 1959, Growth responses of Phycomycesto polarized light stimuli, Science 130: 336.

    PubMed  Google Scholar 

  • Shropshire, W., Jr., 1962, The lens effect and phototropism of Phycomyces, J. Gen. Physiol. 45: 949 – 958.

    PubMed  CAS  Google Scholar 

  • Shropshire, W., Jr., 1971, Phototropic bending rate in Phycomycesas a function of average growth rate and cell radius, in: First European Biophysics Congress, Sept. 14–17, 1971 ( E. Broda, A. Locker, and H. Springer-Lederer, eds.), pp. 111 – 114, Verlag der Wiener Medi- zinischen Akademie, Vienna.

    Google Scholar 

  • Shropshire, W., Jr., 1972, Action spectroscopy, in Phytochrome( K. Mitrakos and W. Shropshire, Jr., eds.), pp. 161 – 181, Academic Press, New York.

    Google Scholar 

  • Shropshire, W., Jr., 1975, Phototropism, in: Progress in Photobiology, Proceedings of the Sixth International Congress on Photobiology, Deutsch Gesellschaft für Lichtforschung e.V., Frankfurt, 1974( G. O. Schenk, ed.), pp. 1 – 6, Springer-Verlag, Berlin.

    Google Scholar 

  • Shropshire, W., Jr., 1979, Stimulus perception, in: Encyclopedia of Plant Physiology, new ser., Vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 10 – 41, Springer-Verlag, New York.

    Google Scholar 

  • Shropshire, W., Jr., 1980, Carotenoids as primary photoreceptors in blue-light responses, in: The Blue Light Syndrome( H. Senger, ed.), pp. 172 – 186, Springer-Verlag, New York.

    Google Scholar 

  • Shropshire, W., Jr., and Withrow, R. B., 1958, Action spectrum of phototropic tip-curvature of Avena, Plant Physiol. 33: 360 – 365.

    PubMed  CAS  Google Scholar 

  • Sierp, H., and Seybold, A., 1926, Untersuchungen über die Lichtempfindlichkeit der Spitze und des Stumpfes in der Koleoptile von Avena sativa, Jahrb. Wiss. Bot. 65: 592 – 610.

    Google Scholar 

  • Smith, J. E., 1975, The structure and development of filamentous fungi, in: The Filamentous Fungi, Vol. 1 ( J. E. Smith and D. R. Berry, eds.), pp. 1 – 15, Edward Arnold, London.

    Google Scholar 

  • Söding, H., 1923, Werden von der Spitze der Haferkoleoptile Wuchshormone gebildet?, Ber. Dtsch. Bot. Ges. 41: 396 – 400.

    Google Scholar 

  • Söding, H., 1925, Zur Kenntnis der Wuchshormone in der Haferkoleoptile, Jahrb. Wiss. Bot. 64: 587 – 603.

    Google Scholar 

  • Song, P. S., 1980a, Spectroscopic and photochemical characterization of flavoproteins and carotenoproteins as blue light photoreceptors, in: The Blue Light Syndrome (H. Senger, ed.), pp. 157–171, Springer-Verlag, New York.

    Google Scholar 

  • Song, P. S., 1980b, Primary photophysical and photochemical reactions: theoretical background and general introduction, in: Photoreception and Sensory Transduction in Aneural Organisms (F. Lenci and G. Colombetti, eds.), pp. 189–210, Plenum Press, New York.

    Google Scholar 

  • Song, P. S., Fugate, R. D., and Briggs, W. R., 1980a, Flavin as a photoreceptor for phototropie transduction: fluorescence studies of model and corn coleoptile systems, in: Flavins and Flavoproteins (K. Yagi and T. Yamano, eds.), pp. 443–453, University Park Press, Baltimore.

    Google Scholar 

  • Song, P. S., Walker, E. B., Vierstra, R. D., and Poff, K. L., 1980b, Roseoflavin as a blue light receptor analog: spectroscopic characterization, Photochem. Photobiol. 32:393–398.

    CAS  Google Scholar 

  • Specht, J., 1960, Die phototropische Inversion dikotyler Keimlinge in olartigen Medien, Flora (Jena) 149: 106 – 161.

    Google Scholar 

  • Stadler, D. R., 1952, Chemotropism in Rhizopus nigricans: the staling reaction, J. Cell Comp. Physiol. 39: 449 – 474.

    CAS  Google Scholar 

  • Stameroff, K., 1897, Zur Frage Uber den Einfluss des Lichtes auf das Wachstum der Pflanzen, Flora (Jena) 83: 135 – 150.

    Google Scholar 

  • Steiner, A. M., 1967a, Dose-response curves for polarotropism in germlings of a fern and a liverwort, Naturwissenschaften 54: 497.

    Google Scholar 

  • Steiner, A. M., 1967b, Action spectra for polarotropism in germlings of a fern and a liverwort, Naturwissenschaften 54:497–498.

    Google Scholar 

  • Steiner, A. M., 1969a, Dose response behaviour for polarotropism of the chloronema of the fern Dryopteris filixmas (L.) Schott, Photochem. Photobiol. 9:493–506.

    CAS  Google Scholar 

  • Steiner, A. M., 1969b, Action spectrum for polarotropism in the chloronema of the fern Dryopteris filix-mas (L.) Schott, Photochem. Photobiol. 9:507–513.

    CAS  Google Scholar 

  • Steiner, A. M., 1969c, Dose response behaviour for polarotropism of the germ tube of the liverwort Sphaerocarpos donnellii Aust., Planta 86:334–342.

    Google Scholar 

  • Steiner, A. M., 1969d, Action spectrum for polarotropism of the germ tube of the liverwort Sphaerocarpos donnelliiAust., Planta 86: 343 – 352.

    Google Scholar 

  • Steiner, A. M., 1970, Red light interaction with blue and ultraviolet light in polarotropism of germlings of a fern and a liverwort, Photochem. Photobiol. 12: 169 – 174.

    PubMed  CAS  Google Scholar 

  • Steyer, B., 1965, Der Phototropismus dicotyler Keimpflanzen, Wiss. Z. Univ. Rostock Math- Naturwiss, Reihe 14: 493 – 502.

    Google Scholar 

  • Steyer, B., 1967, Die Dosiswirkungsrelationen bei geotroper und phototroper Reizung: Vergleich von Mono- mit Dicotyledonen, Planta 77: 277 – 286.

    Google Scholar 

  • Stifler, R. D., 1961, Growth of sporangiophores of Phycomycesimmersed in water, Science 133: 1022.

    PubMed  CAS  Google Scholar 

  • Stoddart, J. L., and Venis, M. A., 1980, Molecular and subcellular aspects of hormone action, in: Encyclopedia of Plant Physiology, new ser., Volume 9 ( J. MacMillan, ed.), pp. 445 – 510, Springer-Verlag, New York.

    Google Scholar 

  • Strugger, S., 1932, Die Beeinflussung des Wachstums und des Geotropismus durch Wasserstoffionen, Ber. Dtsch. Bot. Ges. 50: 77 – 92.

    CAS  Google Scholar 

  • Sweeney, B. M., and Thimann, K. V., 1938, The effect of auxins on protoplasmic streaming II, J. Gen. Physiol. 22: 439 – 461.

    Google Scholar 

  • Takahashi, C., 1961, The growth of protonema cells and rhizoids in bracken, Cytologia (Tokyo) 26: 62 – 66.

    Google Scholar 

  • Thimann, K. V., and Curry, G. M., 1960, Phototropism and Phototaxis, in: Comparative Biochemistry, Vol. 1 ( M. Florkin, and H. S. Mason, eds.), pp. 243 – 309, Academic Press, New York.

    Google Scholar 

  • Thimann, K. V., and Curry, G. M., 1961, Phototropism, in: Light and Life( W. D. McElroy and B. Glass, eds.), pp. 646 – 672, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Thimann, K. V., and Sweeney, B. M., 1938, The effect of auxins upon protoplasmic streaming, J. Gen. Physiol. 21: 123 – 135.

    Google Scholar 

  • Thomas, J. B. (ed.), 1968, Einführung in die Photobiologie, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Thomson, K.-S., Hertel, R., Mttller, S., and Tavares, J. E., 1973, 1-N-Naphthylphthalamic acid and 2,3,5-triiodobenzoic acid. In vitro binding to particulate cell fractions and action on auxin transport in corn coleoptiles, Planta 109:337–352.

    CAS  Google Scholar 

  • Thornton, R. M., 1973, New photoresponses of Phycomyces, Plant Physiol. 51: 570 – 576.

    PubMed  CAS  Google Scholar 

  • Thornton, R. M., and Thimann, K. V., 1967, Transient effects of light on auxin transport in the Avenacoleoptile, Plant Physiol. 42: 247 – 257.

    PubMed  CAS  Google Scholar 

  • Tietze-Haß, E., and Dorffling, K., 1977, Initial phases of indoleacetic acid induced growth in coleoptile segments of Avena sativaL., Planta 135: 149 – 154.

    Google Scholar 

  • Timberlake, W. E., and Griffin, D. H., 1974, Differential effects of analogs of cycloheximide on protein and RNA synthesis in Achlya, Biochim. Biophys. Acta 349: 39 – 46.

    PubMed  CAS  Google Scholar 

  • Timberlake, W. E., McDowell, L., and Griffin, D. H., 1972, Cycloheximide inhibition of the DNA-dependent RNA-polymerase I of Achlya bisexualis, Biochim. Biophys. Res. Commun. 46: 942 – 947.

    CAS  Google Scholar 

  • Tollenaar, D., 1923, Dark growth-responses, Proc. Kon. Akad. Wet. Amst. 26: 378 – 389.

    Google Scholar 

  • Trewavas, A., 1968, Relationship between plant growth hormones and nucleic acid metabolism, Prog. Phytochem. 1: 113 – 160.

    CAS  Google Scholar 

  • Trinci, A. P. J., and Banbury, G. H., 1969, Phototropism and light-growth responses of the tall conidiophores of Aspergillus giganteus, J. Gen. Microbiol. 54: 427 – 438.

    Google Scholar 

  • Trinci, A. P. J., and Halford, E. A., 1975, The extension zone of stage I sporangiophores of Phycomyces blakesleeanus, New Phytol. 74: 81 – 83.

    Google Scholar 

  • Ullrich, C.-H., 1978, Continuous measurement of initial curvature of maize coleoptiles induced by lateral auxin application, Planta 140: 201 – 211.

    CAS  Google Scholar 

  • van der Wey, H. G., 1929, Uber die phototropische Reaktion von Pilobolus, Proc. Kon. Akad. Wet. Amst. 32: 65 – 77.

    Google Scholar 

  • van Dillewijn, C., 1927, Die Lichtwachstumsreaktionen von Avena, Reel. Trav. Bot. Neerl. 24: 307 – 581.

    Google Scholar 

  • van Laere, A. J., and Carlier, A. R., 1977, Chitin synthetase in Phycomyces blakesleeanusBurgeff., Arch. Int. Physiol. Biochim. 85: 1025 – 1026.

    PubMed  Google Scholar 

  • Varjú, D., Edgar, L., and Delbrück, M., 1961, Interplay between the reactions to light and to gravity in Phycomyces, J. Gen. Physiol. 45: 47 – 58.

    PubMed  Google Scholar 

  • Veen, H., 1974, Specificity of phospholipid binding to indoleacetic acid and other auxins, Z. Naturforsch. 29c: 39 – 41.

    Google Scholar 

  • Venis, M. A., 1977, Solubilisation and partial purification of auxin binding sites of corn membranes, Nature (London) 266: 268 – 269.

    CAS  Google Scholar 

  • Venis, M. A., and Watson, P. J., 1978, Naturally occurring modifiers of auxin-receptor interaction in corn: identification as benzoxazolinones, Planta 142: 103 – 107.

    CAS  Google Scholar 

  • Vierstra, R. D., and Poff, K. L., 1981a, Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedlings, Plant Physiol. 67: 1011 – 1015.

    CAS  Google Scholar 

  • Vierstra, R. D., and Poff, K. L., 1981b, Role of carotenoids in the phototropie response of corn seedlings, Plant Physiol. 68:798–801.

    Google Scholar 

  • Vierstra, R. D., Poff, K. L., Walker, E. B., and Song, P. S., 1981, Effect of xenon on the excited states of phototropie receptor flavin in corn seedlings, Plant Physiol. 67: 996 – 998.

    PubMed  CAS  Google Scholar 

  • Vogt, E., 1915, Uber den Einfluss des Lichtes auf das Wachstum der Koleoptile von Avena sativa, Z. Bot. 7: 193 – 270.

    Google Scholar 

  • von Guttenberg, H., 1959, Perzeption des phototropen Reizes, Planta 53: 412 – 433.

    Google Scholar 

  • Wada, M., Kadota, A., and Furuya, M., 1978, Apical growth of protonemata in Adiantum capillus-veneris. II. Action spectra for the induction of apical swelling and the intracellular photoreceptive site, Bot. Mag. Tokyo 91: 113 – 120.

    Google Scholar 

  • Wald, G., and du Buy, H. G., 1936, Pigments of the oat coleoptile, Science 84: 247.

    PubMed  CAS  Google Scholar 

  • Weber, W., 1958, Zur Polarität von Vaucheria, Z. Bot. 46: 161 – 198.

    Google Scholar 

  • Webster, W. W., Jr., and Schrank, A. R., 1953, Electrical induction of lateral transport of 3- indoleacetic acid in the Avenacoleoptile, Arch. Biochem. Biophys. 47: 107 – 118.

    PubMed  CAS  Google Scholar 

  • Weigl, J., 1969a, Einbau von Auxin in gequollene Lecithin-Lamellen, Z. Naturforsch. 24b: 365 – 366.

    Google Scholar 

  • Weigl, J., 1969b, Spezifität der Wechselwirkung swischen Wuchsstoffen und Lecithin, Z. Naturforsch. 24b:367–368.

    Google Scholar 

  • Went, F. W., 1928, Wuchsstoff und Wachstum, Reel. Trav. Bot. Neerl. 25: 1 – 116.

    Google Scholar 

  • Went, F. W., 1932, Eine botanische Polaritatstheorie, Jahrb. Wiss. Bot. 76: 528 – 557.

    Google Scholar 

  • Went, F. W., 1942, Growth, auxin, and tropisms in decapitated Avenacoleoptiles, Plant Physiol. 17: 236 – 249.

    PubMed  CAS  Google Scholar 

  • Whitaker, B. D., and Shropshire, W., Jr., 1981, Spectral Sensitivity in the blue and near ultraviolet for light-induction of carotene synthesis in Phycomycesmycelia, Exp. My col. 5: 243 – 252.

    CAS  Google Scholar 

  • Widell, S., 1980, The effect of detergent treatment on methylene blue sensitized cytochrome b photoreduction in fractions from corn coleoptiles, Physiol. Plant. 48: 353 – 360.

    CAS  Google Scholar 

  • Widell, S., and Björn, L. O., 1976, Light-induced absorption changes in etiolated coleoptiles, Physiol. Plant. 36: 305 – 309.

    Google Scholar 

  • Widell, S., Britz, S. J., and Briggs, W. R., 1980, Characterization of the red light induced reduction of a particle associated b-type cytochrome from corn in the presence of methylene blue, Photochem. Photobiol. 32: 669 – 677.

    CAS  Google Scholar 

  • Wiechulla, O., 1932, Beiträge zur Kenntnis der Lichtwachstumsreaktion von Phycomyces, Beitr. Biol. Pflanz. 19: 371 – 419.

    Google Scholar 

  • Wilden, M., 1939, Zur Analyse der positiven und negativen phototropischen Krümmungen, Planta 30: 286 – 288.

    CAS  Google Scholar 

  • Wildman, S. G., and Bonner, J., 1948, Observation on the chemical nature and formation of auxin in the Avenacoleoptile, Am. J. Bot. 35: 740 – 746.

    CAS  Google Scholar 

  • Wilkins, M. B., 1971, Hormone movements in geotropism, in: Gravity and the Organism( S. A. Gordon and M. J. Cohen, eds.), pp. 107 – 124, University of Chicago Press, Chicago.

    Google Scholar 

  • Wilks, S. S., and Lund, E. J., 1947, The electric correlation field and its variation in the coleoptile of Avena sativa, in: Bioelectric Fields and Growth(E. J. Lund et al, eds.), pp. 24 – 74, University of Texas Press, Austin.

    Google Scholar 

  • Wolken, J. J., 1969, Microspectrophotometry and the photoreceptor of PhycomycesI, J. Cell Biol. 43: 354 – 360.

    PubMed  CAS  Google Scholar 

  • Wun, K. L., Gih, A., and Sutherland, J. C., 1977, Photoreactivating enzyme from E. coli: appearance of new absorption on binding to ultraviolet irradiated DNA, Biochemistry 16: 921 – 924.

    PubMed  CAS  Google Scholar 

  • Zalokar, M., 1969, Intracellular centrifugal separation of organelles in Phycomyces, J. Cell Biol. 41: 494 – 509.

    PubMed  CAS  Google Scholar 

  • Zankel, K. L., Burke, P. V., and Delbruck, M., 1967, Absorption and screening in Phycomyces, J. Gen. Physiol. 50: 1893 – 1906.

    PubMed  CAS  Google Scholar 

  • Zenk, M. H., 1967, Untersuchungen zum Phototropismus der,4ve«a-Koleoptile: II. Pigmente, Z. Pflanzenphysiol. 56: 122 – 140.

    CAS  Google Scholar 

  • Zenk, M. H., 1968, The action of light on the metabolism of auxin in relation to phototropism, in: Biochemistry and Physiology of Plant Growth Substances, Proceedings of the Sixth International Conference on Plant Growth Substances, July 24–29, 1967 ( F. Wight and G. Setterfield, eds.), pp. 1109 – 1128, Runge, Ottawa.

    Google Scholar 

  • Ziegler, H., 1950, Inversion phototropischer Reaktionen, Planta 38: 474 – 498.

    CAS  Google Scholar 

  • Zimmerman, B. K., and Briggs, W. R., 1963, Phototropic dosage-response curves for oat coleoptiles, Plant Physiol. 38: 248 – 253.

    PubMed  CAS  Google Scholar 

  • Zopf, W., 1892, Zur Kenntnis der Farbungsursachen niederer Organismen (Zweite Mitthei- lung), Beitr. Physiol Morphol. Nied. Organ. 2: 3 – 12.

    Google Scholar 

  • Zurfluh, L. L., and Guilfoyle, T. J., 1980, Auxin-induced changes in the patterns of protein synthesis in soybean hypocotyl, Proc. Natl Acad. Sci. USA 77: 357 – 361.

    PubMed  CAS  Google Scholar 

References

  • Briggs, W. R., 1963, The phototropic responses of higher plants, Annu. Rev. Plant Physiol. 14: 311 – 352.

    CAS  Google Scholar 

  • Briggs, W. R., 1976, The nature of the blue light photoreceptor in higher plants and fungi, in: Light and Development( H. Smith, ed.), pp. 7 – 18, Butterworths, London.

    Google Scholar 

  • Briggs, W. R., 1980, A blue light photoreceptor system in higher plants and fungi, in: Photoreceptors and Plant Development( J. DeGreef, ed.), pp. 17 – 28, Antwerp University Press, Antwerp.

    Google Scholar 

  • Carlile, M. J., 1975, Taxes and tropisms: diversity, biological significance and evolution, in: Primitive Sensory and Communication Systems: The Taxes and Tropisms of Microorganisms and Cells( M. J. Carlile, ed.), pp. 1 – 28, Academic Press, New York.

    Google Scholar 

  • Carlile, M. J., 1980, Sensory transduction in aneural organisms, in: Photoreception and Sensory Transduction in Aneural Organisms( F. Lenci and G. Colombetti, eds.), pp. 1 – 22, Plenum Press, New York.

    Google Scholar 

  • Crane, F. L., Goldenberg, H., Morre, J. D., and Löw, H., 1979, Dehydrogenases of the plasma membrane, Subcell. Biochem. 6: 345 – 399.

    PubMed  CAS  Google Scholar 

  • Curry, G. M., and Thimann, K. V., 1961, Phototropism: the nature of the photoreceptor in higher and lower plants, in: Progress in Photobiology( B. C. Christensen and B. Buchmann, eds.), pp. 127 – 134, Elsevier, New York.

    Google Scholar 

  • Delbrück, M., 1962, Der Lichtsinn von Phycomyces, Ber. Dtsch. Bot. Ges. 75: 411 – 430.

    Google Scholar 

  • Galston, A. W., 1950, Phototropism. II., Bot. Rev. 16: 361 – 378.

    CAS  Google Scholar 

  • Galston, A. W., 1959, Phototropism of stems, roots and coleoptiles, in: Encyclopedia of Plant Physiology, Vol. 17, Part 1 ( W. Ruhland, ed.), pp. 492 – 529, Springer-Verlag, New York.

    Google Scholar 

  • Goldsmith, M. H. M., 1969, Transport of plant growth regulators, in: The Physiology of Plant Growth and Development( M. B. Wilkins, ed.), pp. 125 – 162, McGraw-Hill, New York.

    Google Scholar 

  • Green, P. B., 1969, Cell morphogenesis, Annu. Rev. Plant Physiol. 20: 365 – 394.

    Google Scholar 

  • Hager, A., 1971, Das differentielle Wachstum bei photo- und geotropischen Krümmungen, Ber. Dtsch. Bot. Ges. 84: 331 – 350.

    CAS  Google Scholar 

  • Hemmerich, P., and Schmidt, W., 1980, Blue light reception and flavin photochemistry, in: Photoreception and Sensory Transduction in Aneural Organisms( F. Lenci and G. Colombetti, eds.), pp. 271 – 283, Plenum Press, New York.

    Google Scholar 

  • Jaffe, L. F., 1958, Morphogenesis in lower plants, Annu. Rev. Plant Physiol. 9: 359 – 384.

    CAS  Google Scholar 

  • Löw, H., and Crane, F. L., 1978, Redox function in plasma membranes, Biochim. Biophys. Acta 515: 141 – 161.

    PubMed  Google Scholar 

  • Malhotra, S. K., 1978, Molecular structure of biological membranes: functional characterization, Subcell. Biochem. 5: 221 – 259.

    PubMed  CAS  Google Scholar 

  • Marmé, D., and Schafer, E., 1972, On the localization and orientation of phytochrome molecules in corn coleoptiles (Zea maysL.), Z. Planzenphysiol. 67: 192 – 194.

    Google Scholar 

  • Massey, V., 1980, Possible photoregulation by flavoproteins, in: Photoreception and Sensory Transduction in Aneural Organisms( F. Lenci and G. Colombetti, eds.), pp. 253 – 268, Plenum Press, New York.

    Google Scholar 

  • Quail, P. H., 1979, Plant cell fractionation, Annu. Rev. Plant Physiol. 30: 425 – 484.

    CAS  Google Scholar 

  • Reinert, J., 1959, Phototropism and phototaxis, Annu. Rev. Plant Physiol. 10: 441 – 458.

    CAS  Google Scholar 

  • Russo, V. E. A., and Pohl, U., 1980, Phycomyces blakesleeanus. Ein Modell für die Sinnesphysiologie aneuraler Organismen, Naturwissenschaften 67: 296 – 300.

    CAS  Google Scholar 

  • Schneider, H. A. W., 1980, Visible and spectrophotometrically detectable blue light responses of maize roots, in: The Blue Light Syndrome( H. Senger, ed.), pp. 614 – 621, Springer-Verlag, New York.

    Google Scholar 

  • Shropshire, W., Jr., 1963, Photoresponses of the fungus, Phycomyces, Physiol. Rev. 43: 38 – 67.

    Google Scholar 

  • Shropshire, W., Jr., 1975, Unicellular-plant transducers, in: Interdisciplinary Aspects of General Systems Theory, Proceedings of the Third Annual Meeting of the Middle Atlantic Regional Division, Sept. 21, 1974, The Society for General Systems Research, pp. 50–57.

    Google Scholar 

  • Song, P.-S., Moore, T. A., and Sun, M., 1972, Excited states of some plant pigments, in: The Chemistry of Plant Pigments( C. O. Chichester, ed.), pp. 33 – 74, Academic Press, London.

    Google Scholar 

  • Tan, K. K., 1978, Light-induced fungal development, in: The Filamentous Fungi, Vol. 3 ( J. E. Smith and D. R. Berry, eds.), pp. 334 – 357, Edward Arnold, London.

    Google Scholar 

  • van Overbeek, J., 1966, Plant hormones and regulators, Science 152: 721 – 731.

    PubMed  CAS  Google Scholar 

  • Virgin, H. I., 1964, Some effects of light on chloroplasts and plant protoplasm, in: Photophysiology, Vol. 1 ( A. C. Giese, ed.), pp. 273 – 303, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Pohl, U., Russo, V.E.A. (1984). Phototropism. In: Colombetti, G., Lenci, F. (eds) Membranes and Sensory Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2675-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2675-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9665-2

  • Online ISBN: 978-1-4613-2675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics