Skip to main content

Abstract

Many motile microorganisms can distribute themselves asymmetrically in a vertical water column by a number of orientation behaviors, among them geotaxis. A flurry of early studies (1880–1920) generated reports on the physical, chemical, and behavioral character of geotaxis, as well as several hypotheses that might explain its occurrence. These observations and hypotheses have been discussed by Davenport (1908), Dryl (1974), Kuznicki (1968), and Haupt (1962). There is widespread agreement on several features of geotaxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderhold, R., 1888, Beiträg zur kenntniss richtender krafte bie der bewegung niederer organismen, Jen. Z. Naturwiss. 22: 310 – 342.

    Google Scholar 

  • Atema, J., 1973, Microtubule theory of sensory transduction, Theor. Biol. 38: 181 – 190.

    CAS  Google Scholar 

  • Atema, J., 1975, Stimulus transmission along microtubules in sensory cells: a hypothesis, in: Microtubules and Microtubule Inhibitors( M. Borgers and M. DeBrabander, eds.), pp. 247 – 257, North-Holland, Elsevier, New York.

    Google Scholar 

  • Bean, B., 1975, Geotaxis in Chlamydomonas, J. Cell Biol. 67: 24a.

    Google Scholar 

  • Bean, B., 1976, Flagellar coordination in Chlamydomonascan be analyzed by studying geotaxis in behavioral mutants, Genetics 83: s5 – s6.

    Google Scholar 

  • Bean, B., 1977, Geotactic behavior of Chlamydomonas, J. Protozool. 24: 394 – 401.

    PubMed  CAS  Google Scholar 

  • Bean, B., and Harris, A., 1978, Selective inhibition of flagellar activity in Chlamydomonasby Ni++, J. Protozool. 26: 235 – 240.

    Google Scholar 

  • Bean, B., and Lawrence, J. J., 1981, A possible regulatory role of calmodulin in sensory transduction in Chlamydomonas, J. Cell Biol. 91: 50a.

    Google Scholar 

  • Bean, B., and Yussen, P., 1979, Photoresponses of Chlamydomonas: differential inhibitions of phototactic and photophobic responses by low concentrations of Cu2+, J. Cell Biol. 83: 351a.

    Google Scholar 

  • Bean, B., Brandt, J., and Prevelige, P., 1978, Selective effects of cupric ion on the motility and photophobic responses of Chlamydomonas, J. Cell Biol. 79: 292a.

    Google Scholar 

  • Bean, B., Savitsky, R., and Grossinger, B., 1981, Strontium ion (Sr2+) induces backward swimming of Chlamydomonas, J. Protozool. 29: 296.

    Google Scholar 

  • Bentrup, F. W., 1979, Reception and transduction of electrical and mechanical stimuli, in: Physiology of Movements, Encyclopedia of Plant Physiology, new series, Vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 42 – 70, Springer-Verlag, Berlin.

    Google Scholar 

  • Bergman, K., 1973, Mutants of Phycomyceswith abnormal phototropism, Mol. Gen. Genet. 123: 1 – 16.

    PubMed  CAS  Google Scholar 

  • Bessen, M., Fay, R. B., and Witman, G. B., 1980, Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas, J. Cell Biol. 84: 446 – 455.

    Google Scholar 

  • Brinkmann, K., 1968a, Keine Geotaxis bei Euglena, Z. Pflanzenphysiol. 59: 12 – 16.

    Google Scholar 

  • Brinkmann, K., 1968b, An phasengrenzen induzierte ein- und zweidimensionale kristallmuster in kulturen von Euglena gracilis Z. Pflanzenphysiol. 59:364–376.

    Google Scholar 

  • Byrne, B. J., and Byrne, B. C., 1978, Behavior and the excitable membrane in Paramecium, Crit. Rev. Microbiol. 6: 53 – 108.

    CAS  Google Scholar 

  • Cameron, J. N., and Carlile, M. J., 1977, Negative geotaxis of the fungus Phytophthora, J. Gen. Microbiol. 98: 599 – 602.

    Google Scholar 

  • Carlile, M. J., 1980a, Positioning mechanisms—the role of motility, taxis and tropism in the life of microorganisms, in: Contemporary Microbial Ecology( D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 55 – 74, Academic Press, New York.

    Google Scholar 

  • Carlile, M. J., 1980b, Sensory transduction in aneural organisms, in: Photoreception and Sensory Transduction in Aneural Organisms (F. Lenci and G. Colombetti, eds.), pp. 1–22, Plenum Press, New York.

    Google Scholar 

  • Childress, W. S., Levandowsky, M., and Spiegel, E. A., 1975a, Pattern formation in a suspension of swimming microorganisms: equations and stability theory, J. Fluid Mech. 63: 591 – 613.

    Google Scholar 

  • Childress, W. S., Levandowsky, M., and Spiegel, E. A., 1975b, Non-linear solutions of equations describing bioconvection, in: Swimming and Flying in Nature Vol. 1 (T. Y.-T. Wu, C. J. Brokaw, and C. Brennen, eds.), pp. 361–375, Plenum Press, New York.

    Google Scholar 

  • Claes, H., 1980, Calcium ionophore-induced stimulation of secretory activity in Chlamydomonas reinhardii, Arch. Microbiol. 124: 81 – 86.

    CAS  Google Scholar 

  • Creutz, C., and Diehn, B., 1976, Motor responses to polarized light and gravity sensing in Euglena gracilis, J. Protozool. 23: 552 – 556.

    Google Scholar 

  • Cronkite, D. L., 1979, The genetics of swimming and mating behavior in Paramecium, in: Biochemistry and Physiology of Protozoa, 2d ed., Vol. 2 ( M. Levandowsky and S. H. Hutner, eds.), pp. 221 – 273, Academic Press, New York.

    Google Scholar 

  • Davenport, C. B., 1908, Experimental Morphology, Third Edition, Macmillan, New York.

    Google Scholar 

  • Dembowski, J., 1929a, Die vertikalbewegungen von Paramecium caudatum. I. Die Lage des gleichgewichtscentrums im korper des infusors, Arch. Protistenk. 66: 104 – 132.

    Google Scholar 

  • Dembowski, J., 1929b, Die vertikalbewegungen von Paramecium caudatum. II. Einfluss einiger assenfaktoren, Arch. Protistenk. 74:153–187.

    Google Scholar 

  • Dembowski, J., 1931, Die vertikalbewegungen von Paramecium caudatum. III. Polemisches und experimentelles, Arch. Protistenk. 74: 153 – 187.

    Google Scholar 

  • de Peyer, J. E., and Machemer, H., 1978, Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia, J. Comp. Physiol. 127: 255 – 266.

    Google Scholar 

  • Dryl, S., 1974, Behavior and motor response of Paramecium, in: Paramecium: A Current Survey( W. J. VanWagtendonk, ed.), pp. 165 - 218, Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Fornshell, J. A., 1978, An experimental investigation of bioconvection in three species of microorganisms, J. Protozool. 25: 125 – 133.

    Google Scholar 

  • Fornshell, J. A., 1980, Positive geotaxis in Blepharisma persicinum, J. Protozool. 27:24A–25A.

    Google Scholar 

  • Fox, H. M., 1925, The effect of light on the vertical movement of aquatic organisms, Proc. Camb. Phil. Soc., Biol. Sci. 1: 219 – 224.

    Google Scholar 

  • Fukui, K., and Asai, H., 1980, The most probable mechanism of negative geotaxis of Paramecium caudatum, Proc. Jpn. Acad. Ser. B: 56: 172 – 177.

    Google Scholar 

  • Gitleman, S. L., and Witman, G. B., 1980, Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella, J. Cell Biol. 88: 764 – 770.

    Google Scholar 

  • Gittleson, S. M., and Jahn, T. L., 1968a, Vertical aggregations of Polytomella agilis, Exp. Cell Res. 51: 579 – 586.

    CAS  Google Scholar 

  • Gittleson, S. M., and Jahn, T. L., 1968b, Pattern swimming by Polytomella agilis, Am. Nat. 102:413–425.

    Google Scholar 

  • Goodenough, U. W., Detmers, P. A., and Hwang, C., 1982, Activation for cell fusion in Chlamydomonas: analysis of wild-type gametes and non-fusing mutants, J. Cell Biol. 92:378–386.

    PubMed  CAS  Google Scholar 

  • Grębecki, A., and Nowakowska, G., 1977, On the mechanism of orientation of Paramecium caudatumin the gravity field. I. Influence of ciliary reversal and of external Ca deficiency on the geotactic behavior, Acta Protozool. 16: 351 – 358.

    Google Scholar 

  • Harper, E. H., 1911, The geotropism of Paramoecium, J. Morphol. 22: 993 – 1000.

    Google Scholar 

  • Harper, E. H., 1912, Magnetic control of geotropism in Paramoecium, J. Anim. Behav. 2: 181 – 189.

    Google Scholar 

  • Haupt, W., 1962, Geotaxis, in Encyclopedia of Plant Physiology: Vol. XVII. Physiology of Movements( W. Ruhland, ed.), pp. 390 – 395, Springer-Verlag, Berlin.

    Google Scholar 

  • Jahn, T. L., and Votta, J. J., 1972, Locomotion of protozoa, Annu. Rev. Fluid Mech. 4: 93 – 116.

    Google Scholar 

  • Jahn, T. L., and Winet, H., 1973, Mechanism of negative geotaxis, Prog. Protozool, Fourth International Congress on Protozoology., Clermont-Ferrand, 197.

    Google Scholar 

  • Jamieson, G. A., Jr., Vanaman, T. C., and Blum, J. J., 1979, Presence of calmodulin in Tetrahymena, Proc. Natl. Acad. Sci. USA, 76: 6471 – 6475.

    PubMed  CAS  Google Scholar 

  • Jamieson, G. A., Jr., Vanaman, T. C., Hayes, A., and Blum, J. J., 1980, Affinity chromatographic isolation of highly purified Ca-CaM sensitive dynein ATPases from Tetrahymenacilia, Ann. NY Acad. Sci. 356: 391 – 392.

    PubMed  Google Scholar 

  • Jennings, H. S., 1904, The behavior of Paramecium. Additional features and general relations, J. Comp. Neurol. Psychol. XIV: 441 – 510.

    Google Scholar 

  • Jennings, H. S., 1906, Behavior of the Lower Organisms, Columbia University Press, New York.

    Google Scholar 

  • Jensen, P., 1893, Ueber den geotropismus niederer organismen, Pfluegers Arch. Physiol. 53: 428 – 480.

    Google Scholar 

  • Juniper, B. E., 1977, The perception of gravity by a plant, Proc. R. Soc. Lond. B 199: 537 – 550.

    PubMed  CAS  Google Scholar 

  • Kanda, S., 1918, Further studies on the geotropism of Paramecium caudatum, Biol. Bull. 34: 108 – 119.

    CAS  Google Scholar 

  • Katz, D. F., and Pedrotti, L., 1977, Geotaxis by motile spermatozoa: hydrodynamic reorientation, Theor. Biol. 67: 723 – 732.

    CAS  Google Scholar 

  • Knight, W. L., and Bean, B., 1980, Reactivation of motility in detergent-extracted cell models of Chlamydomonas, Abst. Ann. Meet. Am. Soc. Microbiol. 1980: 81.

    Google Scholar 

  • Koehler, O., 1921, Uber die geotaxis von Paramecium, Verh. Dtsch. Zool. Ges. 26: 69 – 71.

    Google Scholar 

  • Koehler, O., 1922, Uber die geotaxis von Paramecium, Arch. Protistenk. 45: 1 – 94.

    Google Scholar 

  • Koehler, O., 1930, Uber die geotaxis von ParameciumII, Arch. Protistenk. 70: 297 - 306.

    Google Scholar 

  • Koehler, O., 1939, Ein filmprotokoll zum reizverhalten querzertrennter Paramecien, Zool. Anz. Suppl. 12: 132 - 142.

    Google Scholar 

  • Kung, C., 1971a, Genie mutants with altered system of excitation in Paramecium aurelia, I. Phenotypes of the behavioral mutants, Z. Vergl. Physiol. 71: 142 – 164.

    Google Scholar 

  • Kung, C., 1971b, Genie mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants, Genetics 69:29–45.

    CAS  Google Scholar 

  • Kung, C., 1976, Membrane control of ciliary motions and its genetic modification, in: Cell Motility: Book C, Microtubules and Related Proteins( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 941 – 948, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Kung, C., and Naitoh, Y., 1973, Calcium-induced ciliary reversal in the extracted models of “Pawn,” a behavioral mutant of Paramecium, Science 179: 195 – 196.

    PubMed  CAS  Google Scholar 

  • Kuźnicki, L., 1968, Behavior of Parameciumin gravity fields. I. Sinking of immobilized specimens, Acta Protozool. 31: 109 – 117.

    Google Scholar 

  • Levandowsky, M., Childress, W. S., Spiegel, E. A., and Hutner, S. H., 1975, A mathematical model of pattern formation by swimming microorganisms, J. Protozool. 22: 296 – 306.

    PubMed  CAS  Google Scholar 

  • Loeb, J., 1897, Zur theorie der physiologidchen licht und schwerkraftwirkungen, Pfluegers Arch. Ges. Physiol. 66: 439 – 466.

    Google Scholar 

  • Lyon, E. P., 1905, On the theory of geotropism in Paramecium, Am. J. Physiol. 14: 421 – 432.

    Google Scholar 

  • Lyon, E. P., 1918, Note on the geotropism of Paramecium, Biol Bull. 34: 120.

    Google Scholar 

  • Machemer, H., and Eckert, R., 1975, Ciliary frequency and orientational responses to clamped voltage steps in Paramecium, J. Comp. Physiol. 104: 247 – 260.

    Google Scholar 

  • Machemer, H., and de Peyer, J., 1977, Swimming sensory cells: Electrical membrane parameters, receptor properties and motor control in ciliated Protozoa, Vehr. Dtsch. Zool. Ges. 1977: 86 – 110.

    Google Scholar 

  • Maihle, N. J., and Satir, B. H., 1979, Calmodulin in the ciliates Paramecium tetraureliaand Tetrahymena thermophila, Ann. NY Acad. Sci. 356: 408 – 409.

    Google Scholar 

  • Majima, T., and Oosawa, F., 1975, Response of Chlamydomonasto temperature change, J. Protozool. 22: 499 – 501.

    Google Scholar 

  • Massart, J., 1891, Recherches sur les organisms inferieurs, Acad. R. Sci. Lett. Beaux-Arts Belg. 22: 148 – 167.

    Google Scholar 

  • Medina, J. R., and Cerda-Olmedo, E., 1977, Allelic interaction in the photogeotropism of Phycomyces, Exp. My col. 1: 286 – 292.

    Google Scholar 

  • Merton, H., 1935, Versche zur Geotaxis von Paramecium, Arch. Protistenk. 85: 33 – 60.

    Google Scholar 

  • Moore, A., 1903, Some facts concerning geotropic gatherings of paramecia, Am. J. Physiol. 9: 238 – 244.

    Google Scholar 

  • Naitoh, Y., 1974, Bioelectric basis of behavior in protozoa, Am. Zool. 14: 883 – 893.

    CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1973, Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential, J. Exp. Biol. 59: 53 – 65.

    CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1974, The control of ciliary activity in protozoa, in: Cilia and Flagella( M. A. Sleigh, ed.), pp. 305 – 352, Academic Press, New York.

    Google Scholar 

  • Naitoh, Y., and Kaneko, H., 1972, Reactivated triton-extracted models of Paramecium: modification of ciliary movement by Ca ions, Science 176: 523 – 524.

    CAS  Google Scholar 

  • Naitoh, Y., and Kaneko, H., 1973, Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum, J. Exp. Biol. 58: 657 – 676.

    CAS  Google Scholar 

  • Nakaoka, Y., and Oosawa, F., 1977, Temperature-sensitive behavior of Paramecium caudatum, J. Protozool. 24: 575 – 580.

    Google Scholar 

  • Nowakowska, G., and Grgbecki, A., 1977, On the mechanism of orientation of Paramecium caudatumin the gravity field. II. Contributions to a hydrodynamic model of geotaxis, Acta Protozool. 16: 359 – 376.

    Google Scholar 

  • Plesset, M. S., Whipple, C. G., and Winet, H., 1975, Analysis of the steady state of the bioconvection in swarms of swimming microorganisms, in: Swimming and Flying in Nature, Vol. 1 ( T. Y-T. Wu, C. J. Brokaw, and C. Brennan, eds.), pp. 339 – 360, Plenum Press, New York.

    Google Scholar 

  • Roberts, A. M., 1970, Geotaxis in motile microorganisms, J. Exp. Biol. 53: 687 – 699.

    PubMed  CAS  Google Scholar 

  • Roberts, A. M., 1972, Gravitational separation of X and Y spermatozoa, Nature (Lond.) 238: 223 – 225.

    CAS  Google Scholar 

  • Roberts, A. M., 1975, The biassed random walk and the analysis of microorganism movement, in: Swimming and Flying in Nature, Vol. 1, ( T. Y.-T. Wu, C. J. Brokaw, and C. Brennan, eds.), pp. 377 – 393, Plenum Press, New York.

    Google Scholar 

  • Roberts, A. M., 1981, Hydrodynamics of protozoan swimming, in Biochemistry and Physiology of Protozoa, 2nd ed., Vol. 4 ( M. Levandowsky and S. H. Hutner, eds.), pp. 5 – 66, Academic Press, New York.

    Google Scholar 

  • Satir, P., and Ojakian, G. K., 1979, Plant cilia, in: Physiology of Movements, Encyclopedia of Plant Physiology, new ser., Vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 224 – 249, Springer-Verlag, Berlin.

    Google Scholar 

  • Satir, B. H., Garofalo, R. S., Gilligan, D. M., Maihle, N. J., 1980, Possible functions of calmodulin in protozoa, Ann. NY Acad. Sci. 356: 83 – 91.

    PubMed  CAS  Google Scholar 

  • Schwarz, F., 1884, Der einfluss der schwerkraft auf die Bewegunsrichtung von Chlamidomonasund Euglena, Dtsch. Bot. Ges. Ber. 2: 57 – 72.

    Google Scholar 

  • Sievers, A., and Volkmann, D., 1979, Gravitropism in single cells, in: Physiology of Movements, Encyclopedia of Plant Physiology, new ser., Vol. 7 ( W. Haupt and M. E. Feinleib, eds.) pp. 567 – 572, Springer-Verlag, Berlin.

    Google Scholar 

  • Solter, K. M., and Gibor, A., 1977, Evidence for role of flagella as sensory transducers in mating of Chlamydomonas reinhardi, Nature (Lond.) 265: 444 – 445.

    CAS  Google Scholar 

  • Suzuki, Y., Ohnishi, K., Hirabayashi, T., and Watanabe, Y., 1981, Localization of calmodulin in Tetrahymenacells and cilia, J. Cell Biol. 91: 46a.

    Google Scholar 

  • Thiele, R., 1960, Uber lichtadaptation und musterbildung bei Euglena gracilis, Arch. Microbiol. 37: 379 – 398.

    CAS  Google Scholar 

  • Verworn, M., 1889, Psychophysiologisch Protistenstudien, G. Fischer, Jena.

    Google Scholar 

  • Verworn, M., 1899, General Physiology: An outline of the Science of Life, Macmillan, London.

    Google Scholar 

  • Vincenzi, F. F., and Hinds, T. R., 1980, Calmodulin and Plasma membrane calcium transport, in: Calcium and Cell Function, Vol. I: Calmodulin( W. Y. Cheung, ed.), pp. 127 – 165, Academic Press, New York.

    Google Scholar 

  • Volkmann, D., and Sievers, A., 1979, Graviperception in multicellular organs, in: Physiology of Movements, Encyclopedia of Plant Physiology, new ser., Vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 573 – 600, Springer-Verlag, Berlin.

    Google Scholar 

  • Wager, H., 1910, The effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms, Proc. Roy. Soc. B83: 94 – 96.

    Google Scholar 

  • Wager, H., 1911, The effect of gravity upon the movements and aggregation of Euglena viridis, Ehrb., and other micro-organisms, Phil. Trans. R. Soc. B201: 333 – 388.

    Google Scholar 

  • Walsby, A. E., 1978, The gas vesicles of aquatic prokaryotes, in: Relations Between Structure and Function in the Prokaryotic Cell, 28th Symposium of the Society for General Microbiology( R. Y. Stanier, H. J. Rogers, and J. B. Ward, eds.), pp. 327 – 358, Cambridge University Press, Cambridge.

    Google Scholar 

  • Weiss, B., and Wallace, T. L., 1980, Mechanisms and pharmacological implications of altering calmodulin activity, in: Calcium and Cell Function, Vol. I: Calmodulin( W. Y. Cheung, ed.), pp. 329 – 379, Academic Press, New York.

    Google Scholar 

  • Wilkins, M. B., 1979, Growth-control mechanisms in gravitropism, in: Physiology of Movements, Encyclopedia of Plant Physiology, new ser., Vol. 7 ( W. Haupt and M. E. Feinleib, eds.), pp. 601 – 626, Springer-Verlag, Berlin.

    Google Scholar 

  • Winet, H., and Jahn, T. L., 1974, Geotaxis in Protozoa I. A propulsion-gravity model for Tetrahymena(Ciliata), J. Theor. Biol. 46: 449 – 465.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Bean, B. (1984). Microbial Geotaxis. In: Colombetti, G., Lenci, F. (eds) Membranes and Sensory Transduction. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2675-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2675-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9665-2

  • Online ISBN: 978-1-4613-2675-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics