Advertisement

Biochemistry of Chemosensory Behavior in Prokaryotes and Unicellular Eukaryotes

  • Barry L. Taylor
  • Sharon M. Panasenko

Abstract

Chemotaxis, a migratory response to a chemical gradient, serves a variety of purposes among microorganisms by means of a corresponding diversity of chemotactic mechanisms. Even when chemotaxis serves the same end, such as migration toward sources of food, the mechanism and stimulus specificity reflect a given organism’s unique needs. Bacteria such as Escherichia coli and Salmonella typhimurium have a refined chemotactic response to a variety of compounds signaling the presence of sources of carbon and nitrogen (Adler, 1975; Koshland, 1980a; Taylor and Laszlo, 1981). Representative amino acids and sugars are strong attractants for these bacteria (Mesibov and Adler, 1972; Adler et al, 1973). Likewise, Paramecium, which feeds on bacteria, is attracted to various excretion products of bacterial metabolism, such as lactose, acetate, folate, and ammonium ion (for a review of chemotaxis in protozoa, see Van Houten et al, 1981).

Keywords

Dictyostelium Discoideum Chemotactic Response Bacterial Chemotaxis Chemotactic Peptide Cellular Slime Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44: 341 – 356.PubMedCrossRefGoogle Scholar
  2. Adler, J., and Dahl, M. M., 1967, A method for measuring the motility of bacteria and for comparing random and nonrandom motility, J. Gen. Microbiol. 46: 161 – 173.PubMedGoogle Scholar
  3. Adler, J., and Epstein, W., 1974, Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia colichemotaxis, Proc. Natl. Acad. Sci. USA 71: 2895 – 2899.PubMedCrossRefGoogle Scholar
  4. Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115: 824 – 847.Google Scholar
  5. Aksamit, R. R., and Koshland, D. E., Jr., 1972, A ribose binding protein of Salmonella typhimurium, Biochem. Biophys. Res. Commun. 48: 1348 – 1353.CrossRefGoogle Scholar
  6. Aksamit, R. R., and Koshland, D. E., Jr., 1974, Identification of the ribose binding protein as the receptor for ribose chemotaxis in Salmonella typhimurium, Biochemistry 13: 4473 – 4478.CrossRefGoogle Scholar
  7. Alber, T., Fahnestock, M., Mowbray, S. L., and Petsko, G. A., 1981, Preliminary X-ray data for the galactose binding protein from Salmonella typhimurium, J. Mol. Biol. 147: 471 – 474.Google Scholar
  8. Alcantara, F., and Monk, M., 1974, Signal propagation during aggregation in the slime mould Dictyostelium discoideum, J. Gen. Microbiol. 85: 321 – 334.Google Scholar
  9. Alemany, S., Gil, M. G., and Mato, J. M., 1980, Regulation by guanosine 3′:5′-cyclic monophosphate of phospholipid methylation during chemotaxis in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 77: 6996 – 6999.CrossRefGoogle Scholar
  10. Almagor, M., Ron, A., and Bar-Tana, J., 1981, Chemotaxis in Tetrahymena thermophila, Cell Motil. 1: 261 – 268.CrossRefGoogle Scholar
  11. Anraku, Y., 1968, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose- and leucine-binding proteins, J. Biol. Chem. 243: 3116 – 3122.PubMedGoogle Scholar
  12. Armstrong, J. B., 1972, An S-adenosylmethionine requirement for chemotaxis in Escherichia coli, Can. J. Microbiol. 18: 1695 – 1701.Google Scholar
  13. Aswad, D., and Koshland, D. E., Jr., 1974, Role of methionine in bacterial chemotaxis, J. Bac- teriol. 118: 640 – 645.Google Scholar
  14. Aswad, D. W., and Koshland, D. E., Jr., 1975, Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium, J. Mol. Biol. 97: 207 – 223.Google Scholar
  15. Aswanikumar, S., Corcoran, B. A., Schiffman, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochem. Biophys. Res. Commun. 74: 810 – 817.PubMedCrossRefGoogle Scholar
  16. Becker, E. L., and Stossel, T. P., 1980, Chemotaxis, Fed. Proc. 39: 2949 – 2952.Google Scholar
  17. Beidler, L. M., 1954, A theory of taste stimulation, J. Gen. Physiol. 38: 133 – 139.PubMedCrossRefGoogle Scholar
  18. Beidler, L. M., 1971, Taste receptor stimulation with salts and acids, in: Handbook of Sensory Physiology, Vol. 4, Pt. 2, ( L. M. Beidler, ed.), pp. 200 – 220, Springer-Verlag, New York.Google Scholar
  19. Berg, H. C., and Anderson, R. A., 1973, Bacteria swim by rotating their flagellar filaments, Nature (Lond.) 239: 380 – 382.CrossRefGoogle Scholar
  20. Berg, H. C., and Brown, A. D., 1972, Chemotaxis in E. colianalyzed by three-dimensional tracking, Nature (Lond.) 239: 500 – 504.CrossRefGoogle Scholar
  21. Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20: 193 – 219.PubMedCrossRefGoogle Scholar
  22. Berg, H. C., and Tedesco, P. M., 1975, Transient response to chemotactic stimuli in Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3235 – 3239.CrossRefGoogle Scholar
  23. Blum, J. J., and Hines, M., 1979, Biophysics of flagellar motility, Q. Rev. Biophys. 12: 103 – 180.PubMedCrossRefGoogle Scholar
  24. Boucek, M. M., and Snyderman, R., 1976, Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride, Science 193: 905 – 907.PubMedCrossRefGoogle Scholar
  25. Boyd, A., and Simon, M. I., 1980, Multiple electrophoretic forms of methyl-accepting chemotaxis proteins generated by stimulus-elicited methylation in Escherichia coli, J. Bacteriol. 143: 809 – 815.Google Scholar
  26. Boyd, A., and Simon, M., 1982, Bacterial chemotaxis, Annu. Rev. Physiol. 44: 501 – 517.PubMedCrossRefGoogle Scholar
  27. Boyd, A., Krikos, A., and Simon, M., 1981, Sensory transducers of E. coliare encoded by homologous genes, Cell 26: 333 – 343.PubMedCrossRefGoogle Scholar
  28. Brenner, M., and Thorns, S., 1984, Caffeine blocks activation of cyclic AMP synthesis in Dictyostelium discoideum, Dev. Biol. 101: 136 – 146.CrossRefGoogle Scholar
  29. Burchard, R. P., 1980, Gliding motility of bacteria, Bioscience 30: 157 – 162.CrossRefGoogle Scholar
  30. Chelsky, D., and Dahlquist, F. W., 1980, Structural studies of methyl-accepting chemotaxis proteins of Escherichia coli: evidence for 5 multiple methylation sites, Proc. Natl Acad. Sci. USA 77: 2434 – 2438.PubMedCrossRefGoogle Scholar
  31. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl Acad. Sci. USA 75: 3943 – 3947.PubMedCrossRefGoogle Scholar
  32. Clancy, M., Madill, K. A., and Wood, J. M., 1981, Genetic and biochemical requirements for chemotaxis to L-proline in Escherichia coli, J. Bacteriol 146: 902 – 906.Google Scholar
  33. Clarke, M., and Spudich, J. A., 1977, Nonmuscle contractile proteins: The role of actin and myosin in cell motility and shape determination, Annu. Rev. Biochem. 46: 797 – 822.PubMedCrossRefGoogle Scholar
  34. Clarke, M., Bazari, W. L., and Kayman, S. C., 1980, Isolation and properties of calmodulin from Dictyostelium discoideum, J. Bacteriol. 141: 397 – 400.Google Scholar
  35. Clarke, S., and Koshland, D. E., Jr., 1979, Membrane receptors for aspartate and serine in bacterial chemotaxis, J. Biol. Chem. 254: 9695 – 9702.PubMedGoogle Scholar
  36. Clarke, S., Sparrow, K., Panasenko, S., and Koshland, D. E., Jr., 1980, In vitromethylation of bacterial chemotaxis proteins: characterization of protein methyltransferase activity in crude extracts of Salmonella typhimurium, J. Supramol. Struct. 13: 315 – 328.Google Scholar
  37. Dahlquist, F. W., Lovely, P., and Koshland, D. E., Jr., 1972, Quantitative analysis of bacterial migration in chemotaxis, Nature New Biol. 236: 120 – 123.PubMedCrossRefGoogle Scholar
  38. DeFranco, A. L., and Koshland, D. E., Jr., 1980, Multiple methylation in the processing of sensory signals during bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 77: 2429 - 2433.PubMedCrossRefGoogle Scholar
  39. DeFranco, A. L., and Koshland, D. E., Jr., 1982, Construction and behavior of strains with mutations in two chemotaxis genes, J. Bacteriol. 150: 1297 – 1301.PubMedGoogle Scholar
  40. Delbrück, M., and Reichardt, W., 1956, System analysis for the light growth reactions of Phycomyces, in: Cellular Mechanisms in Differentiation and Growth(D. Rudnick, ed.), pp. 3- 44, Princeton University Press, Princeton, N.J.Google Scholar
  41. DePamphilis, M. L., and Adler, J., 1971, Fine structure and isolation of the hook-basal body complex of flagella from E. coliand B. subtilis, J. Bacteriol. 105: 396 – 407.Google Scholar
  42. Diehn, B., Feinleib, M., Haupt, W., Hildebrand, E., Lenci, F., and Nultsch, W., 1977, Terminology of behavioral responses in motile microorganisms, Photochem. Photobiol. 26: 559 – 560.CrossRefGoogle Scholar
  43. Dinauer, M. C., MacKay, S. A., and Devreotes, P. N., 1980a, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. III. The relationship of cAMP synthesis and secretion during the cAMP signalling response, J. Cell Biol. 86: 537 – 544.CrossRefGoogle Scholar
  44. Dinauer, M. C., Steck, T. L., and Devreotes, P. N., 1980b, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. IV. Recovery of the cAMP signalling response after adaptation to cAMP, J. Cell Biol. 86:545–553.CrossRefGoogle Scholar
  45. Dinauer, M. C., Steck, T. L., and Devreotes, P. N., 1980c, Cyclic 3′,5′-AMP relay in Dictyostelium discoideum. V. Adaptation of the cAMP signalling response during cAMP stimulation, J. Cell Biol. 86: 554 – 561.CrossRefGoogle Scholar
  46. Donabedian, H., and Gallin, J. I., 1981, Deactivation of human neutrophil chemotaxis by chemoattractants: effect on receptors for the chemotactic factors fMet-Leu-Phe, J. Immunol. 127: 839 – 844.PubMedGoogle Scholar
  47. Doughty, M. J., and Dryl, S., 1981, Control of ciliary activity in Paramecium: an analysis of chemosensory transduction in a eukaryotic unicellular organism, Prog. Neurobiol. 16: 1 – 115.PubMedCrossRefGoogle Scholar
  48. Dryl, S., 1973, Chemotaxis in ciliate protozoa, in: Behavior of Microorganisms( A. Perez-Miravete, ed.), pp. 16 – 30, Plenum Press, New York.Google Scholar
  49. Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol (Lond.) 271: 119 – 134.Google Scholar
  50. Durston, A. J., and Vork, F., 1979, A cinematographical study of the development of vitally stained Dictyostelium discoideum, J. Cell Sci. 36: 261 – 279.Google Scholar
  51. Dworkin, M., and Eide, D., 1983, Myxococcus xanthusdoes not respond chemotactically to moderate concentration gradients, J. Bacteriol. 154: 437 – 442.PubMedGoogle Scholar
  52. Eckert, R., 1972, Bioelectric control of ciliary activity, Science 176: 473 – 481.PubMedCrossRefGoogle Scholar
  53. Eisenbach, M., and Adler, J., 1981, Bacterial cell envelopes with functional flagella, J. Biol Chem. 256: 8807 – 8814.PubMedGoogle Scholar
  54. Engström, P., and Hazelbauer, G. L., 1980, Multiple methylation of methyl-accepting chemotaxis proteins during adaptation of E. colito chemical stimuli, Cell 20: 165 – 171.PubMedCrossRefGoogle Scholar
  55. Engström, P., and Hazelbauer, G. L., 1982, Methyl-accepting chemotaxis proteins are distributed in the membrane independently from basal ends of bacterial flagella, Biochim. Biophys. Acta 686: 19 – 26.PubMedCrossRefGoogle Scholar
  56. Fahnestock, M., and Koshland, D. E., Jr., 1979, Control of the receptor for galactose taxis in Salmonella typhimurium, J. Bacteriol. 137: 758 – 763.Google Scholar
  57. Fandrich, B., and Laszlo, D. J., 1981, Cytochrome oas the receptor for aerotaxis in Salmonella typhimurium, Fed. Proc. 40: 1637.Google Scholar
  58. Fernandez, H. N., and Hugli, T. E., 1978, Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin, J. Biol. Chem. 253: 6955 – 6964.PubMedGoogle Scholar
  59. Fisher, P. R., Smith, E., and Williams, K. L., 1981, An extracellular chemical signal controlling phototactic behavior by D. discoideumslugs, Cell 23: 799 – 807.PubMedCrossRefGoogle Scholar
  60. Freer, R. J., Day, A. R., Radding, J. A., Schiffman, E., Aswanikumar, S., Showell, H. J., and Becker, E. L., 1980, Further studies on the structural requirements for synthetic peptide chemoattractants, Biochemistry 19: 2404 – 2410.PubMedCrossRefGoogle Scholar
  61. Gallin, J. I., Gallin, E. K., Malech, H. L., and Cramer, E. B., 1978, Structural and ionic events during leukocyte chemotaxis, in: Leukocyte Chemotaxis( J. I. Gallin and P. G. Quie, eds.), pp. 123 – 141, Raven Press, New York.Google Scholar
  62. Gerisch, G., 1982, Chemotaxis in Dictyostelium, Annu. Rev. Physiol. 44: 535 – 552.CrossRefGoogle Scholar
  63. Gerisch, G., Fromm, H., Huesgen, A., and Wick, U., 1975, Control of cell-contact sites by cyclic AMP pulses in differentiating Dictyosteliumcells, Nature (Lond.) 255: 547 – 549.CrossRefGoogle Scholar
  64. Goetzl, E. J., and Pickett, W. C., 1980, Human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs), J. Immunol. 125: 1789 – 1791.PubMedGoogle Scholar
  65. Goetzl, E. J., Foster, D. W., and Goldman, D. W., 1981, Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formyl- methionyl peptides, Biochemistry 20: 5712 – 5722.CrossRefGoogle Scholar
  66. Goldman, D. J., Worobec, S. W., Siegel, R. B., Hecker, R. V., and Ordal, G. W., 1982, Chemotaxis in Bacillus subtilis: effects of attractants on the level of methylation of methyl-accepting chemotaxis proteins and the role of demethylation in the adaptation process, Biochemistry 21: 915 – 920.PubMedCrossRefGoogle Scholar
  67. Goy, M. F., Springer, M. S., and Adler, J., 1977, Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation, Proc. Natl. Acad. Sci. USA 74: 4964 – 4968.PubMedCrossRefGoogle Scholar
  68. Goy, M. F., Springer, M. S., and Adler, J., 1978, Failure of sensory adaptation in bacterial mutants that are defective in a protein methylation reaction, Cell 15: 1231 – 1240.PubMedCrossRefGoogle Scholar
  69. Green, A. A., and Newell, P. C., 1975, Evidence for the existence of two types of cAMP binding sites in aggregating cells of Dictyostelium discoideum, Cell 6: 129 – 136.Google Scholar
  70. Hagen, D. C., Bretcher, A. P., and Kaiser, D., 1978, Synergism between morphogenic mutants of Myxococcus xanthus, Dev. Biol. 64: 284 – 296.CrossRefGoogle Scholar
  71. Hayashi, H., Koiwai, O., and Kozuka, M., 1979, Studies on bacterial chemotaxis. II. Effect of cheBand cheZmutations on the methylation of methyl-accepting chemotaxis protein of Escherichia coli, J. Biochem. 85: 1213 – 1223.Google Scholar
  72. Hazelbauer, G. L., 1975, The maltose chemoreceptor of Escherichia coli, J. Bacteriol. 122:206– 214.Google Scholar
  73. Hazelbauer, G. L., and Adler, J., 1971, Role of the galactose binding protein in chemotaxis of Escherichia colitoward galactose, Nature (Lond.) 230: 101 – 104.Google Scholar
  74. Hazelbauer, G. L., and EngstrOm, P., 1980, Parallel pathways for transduction of chemotactic signals in Escherichia coli, Nature (Lond.) 283: 98 – 100.CrossRefGoogle Scholar
  75. Hazelbauer, G. L., and Harayama, S., 1979, Mutants in transmission of chemotactic signals from two independent receptors of Escherichia coli, Cell 16: 617 – 625.Google Scholar
  76. Hazelbauer, G. L., and Parkinson, J. S., 1977, Bacterial chemotaxis, in: Microbial Interaction (Receptors and Recognition)( J. Reissig, ed.), pp. 59 – 98, Chapman and Hall, London.Google Scholar
  77. Hedblom, M. L., and Adler, J., 1980, Genetic and biochemical properties of Escherichia colimutants with defect in serine chemotaxis, J. Bacteriol. 144: 1048 – 1060.PubMedGoogle Scholar
  78. Henderson, E. J., 1975, The cyclic adenosine 3′,5′-monophosphate receptor of Dictyostelium discoideum, J. Biol. Chem. 250: 4730 – 4736.Google Scholar
  79. Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and active transport, J. Gen. Physiol. 54:95s–109s.CrossRefGoogle Scholar
  80. Hill, A. V., 1936, Excitation and accommodation in nerve, Proc. R. Soc. (Lond.) [Biol.] B119: 305 – 354.CrossRefGoogle Scholar
  81. Ho, J., and McCurdy, H. D., 1979, Demonstration of positive chemotaxis to cyclic GMP and 5′-AMP in Myxococcus xanthusby means of a simple apparatus for generating stable concentration gradients, Can. J. Microbiol. 25: 1214 – 1218.PubMedCrossRefGoogle Scholar
  82. Hodgkin, J., and Kaiser, D., 1979a, Genetics of gliding motility in Myxococcus xanthus(Myxobacteriales): Two gene systems control movement, Mol. Gen. Genet. 171: 177 – 191.CrossRefGoogle Scholar
  83. Hodgkin, J., and Kaiser, D., 1979b, Genetics of gliding in Myococcus xanthus (Myxobacteriales): Genes controlling movement of single cells, Mol. Gen. Genet. 171:167–176.CrossRefGoogle Scholar
  84. Inouye, M., Inouye, S., and Zusman, D., 1979, Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus, Proc. Natl. Acad. Sci. USA76: 209 – 213.CrossRefGoogle Scholar
  85. Jennings, H. S., 1906, Behavior of Lower Animals, Indiana University Press, Bloomington, Indiana.CrossRefGoogle Scholar
  86. Kaiser, D., Manoil, C., and Dworkin, M., 1979, Myxobacteria: cell interactions, genetics and development, Annu. Rev. Microbiol. 33: 595 – 639.PubMedCrossRefGoogle Scholar
  87. Keller, H. U., and Sorkin, E., 1966, Studies on chemotaxis. IV. The influence of serum factors on granulocyte locomotion, Immunology 10: 409 – 416.Google Scholar
  88. Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coliK12. Involvement of a “periplasmic” maltose binding protein, Eur. J. Biochem. 47: 139 – 149.CrossRefGoogle Scholar
  89. Khan, S., and Macnab, R. M., 1980a, The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by protonmotive force, J. Mol. Biol. 138: 563 – 597.CrossRefGoogle Scholar
  90. Khan, S., and Macnab, R. M., 1980b, Proton chemical potential, proton electrical potential, and bacterial motility, J. Mol. Biol. 138:599–614.CrossRefGoogle Scholar
  91. Kihara, M., and Macnab, R. M., 1981, Cytoplasmic pH, pH taxis, and weak-acid repellent taxis in bacteria, J. Bacteriol. 148: 1209 – 1221.Google Scholar
  92. Kleene, S. J., Toews, M. L., and Adler, J., 1977, Isolation of glutamic acid methyl ester from an Escherichia colimembrane protein involved in chemotaxis, J. Biol Chem. 252: 3214 – 3218.PubMedGoogle Scholar
  93. Kleene, S. J., Hobson, A. C., and Adler, J., 1979, Attractants and repellents influence methylation and demethylation of methyl-accepting chemotaxis proteins in an extract of Escherichia coli, Proc. Natl Acad. Sci. USA 76: 6309 – 6313.CrossRefGoogle Scholar
  94. Klein, C., and Juliani, M. H., 1977, cAMP-induced changes in cAMP-binding sites on D. discoideum amoebae, Cell 10:329–335.Google Scholar
  95. Koiwai, O., and Hayashi, H., 1979, Studies on bacterial chemotaxis. IV. Interaction of maltose receptor with a membrane-bound chemosensing component, J. Biochem. 86: 27 – 34.PubMedGoogle Scholar
  96. Koiwai, O., Minoshima, S., and Hayashi, H., 1980, Studies on bacterial chemotaxis. V. Possible involvement of four species of the methyl-accepting chemotaxis protein in chemotaxis of Escherichia coli, J. Biochem. 87: 1365 – 1370.Google Scholar
  97. Komano, T., Inouye, S., and Inouye, M., 1980, Patterns of protein production in Myxococcus xanthusduring spore formation induced by glycerol, dimethyl sulfoxide and phenethyl alcohol, J. Bacteriol. 144: 1076 – 1082.PubMedGoogle Scholar
  98. Komano, T., Brown, N., Inouye, S., and Inouye, M., 1982, Phosphorylation and methylation of protein during Myxococcus xanthusspore formation, J. Bacteriol. 151: 114 – 118.PubMedGoogle Scholar
  99. Kondoh, H., 1980, Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation, J. Bacteriol. 142: 527 – 534.PubMedGoogle Scholar
  100. Kondoh, H., Ball, C. B., and Adler, J., 1979, Identification of a methyl-accepting chemotaxis protein for the ribose and galactose chemoreceptors of Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 260 – 264.CrossRefGoogle Scholar
  101. Konijn, T. M., van der Meene, J. G. C., Bonner, J. T., and Barkley, D. S., 1967, The acrasin activity of adenosine-3′,5′-cyclic phosphate, Proc. Natl. Acad. Sci. USA 58: 1152 – 1154.PubMedCrossRefGoogle Scholar
  102. Kort, E. N., Goy, M. F., Larsen, S. H., and Adler, J., 1975, Methylation of a membrane protein involved in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 72: 3939 – 3943.PubMedCrossRefGoogle Scholar
  103. Koshland, D. E., Jr., 1977, A response regulator model in a simple sensory system, Science 196: 1055 – 1063.PubMedCrossRefGoogle Scholar
  104. Koshland, D. E., Jr., 1980 a, Bacterial Chemotaxis as a Model Behavioral System. Distinguished Lecture Series of the Society of General Physiologists, Vol. 2, Raven Press, New York.Google Scholar
  105. Koshland, D. E., Jr., 1980b, Bacterial chemotaxis in relation to neurobiology, Annu. Rev. Neuroscience 3:43–76.CrossRefGoogle Scholar
  106. Koshland, D. E., Jr., 1981, Biochemistry of sensing and adaptation in a simple bacterial system, Annu. Rev. Biochem. 50: 765 – 782.PubMedCrossRefGoogle Scholar
  107. Kuczmarski, E. R., and Spudich, J. A., 1980, Regulation of myosin self-assembly: phosphorylation of Dictyosteliumheavy chain inhibits formation of thick filaments, Proc. Natl. Acad. Sci. USA 77: 7292 – 7296.PubMedCrossRefGoogle Scholar
  108. Kuhlwein, H., and Reichenbach, H., 1981, Encyclopedia od Cinematography and Film, C893/ 1965, pp. 335–359, Inst. Wiss. Film, Gottingen.Google Scholar
  109. Kung, C., and Saimi, Y. 1982, The physiological basis of taxes in Paramecium, Annu. Rev. Physiol. 44: 519 – 534.Google Scholar
  110. Kung, C., Chang, S-Y., Satow, Y., Van Houten, J., and Hansma, H., 1975, Genetic dissection of behavior in Paramecium, Annu. Rev. Physiol. 44: 519 – 534.Google Scholar
  111. Lapidus, I. R., and Berg, H. C., 1982, Gliding motility of Cytophagasp strain U67, J. Bacteriol. 151: 384 – 398.PubMedGoogle Scholar
  112. Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP. The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239 – 1243.PubMedCrossRefGoogle Scholar
  113. Laszlo, D. J., 1981, “The mechanism of aerotaxis in Salmonella typhimurium”Ph.D. thesis, Loma Linda University, Loma Linda, Calif.Google Scholar
  114. Laszlo, D. J., and Taylor, B. L., 1981, Aerotaxis in Salmonella typhimurium: the role of electron transport, J. Bacteriol. 145: 990 – 1001.PubMedGoogle Scholar
  115. Liao, C. S., and Freer, R. J., 1980, Cryptic receptors for chemotactic peptides in rabbit neutrophils, Biochem. Biophys. Res. Commun, 93: 566 – 571.PubMedCrossRefGoogle Scholar
  116. Loomis, W. F., 1975, Dictyostelium discoideum: A Developmental System, Academic Press, New York.Google Scholar
  117. Machemer, H., 1974a, Frequency and directional response of cilia to membrane potential changes in Paramecium, J. Comp. Physiol. 92: 293 – 316.CrossRefGoogle Scholar
  118. Machemer, H., 1974b, Ciliary activity and metachronism in protozoa, in: Cilia and Flagella (M. A. Sleigh, ed.), pp. 199–286, Academic Press, New York.Google Scholar
  119. Machemer, H., 1976, Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium, J. Exp. Biol. 65: 427 – 448.Google Scholar
  120. Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol. (Lond.) 296: 49 – 60.Google Scholar
  121. Macnab, R. M., 1977, Bacterial flagella rotating in bundles: a study in helical geometry, Proc. Natl. Acad. Sci. USA 74: 221 – 225.PubMedCrossRefGoogle Scholar
  122. Macnab, R. M., 1979, Locomotion in microbial plants, in: Encyclopedia of Plant Physiology, Vol. 7, ( W. Haupt and M. E. Feinleib, eds.), pp. 207 – 233, Springer-Verlag, New York.Google Scholar
  123. Macnab, R. M., 1982, Sensory reception in bacteria, in: Prokaryotic and Eukaryotic Flagella, Society for Experimental Biology Symposium No. XXXV( W. B. Amos and J. G. Duckett, eds.), pp. 77 – 104, Cambridge University Press, London.Google Scholar
  124. Macnab, R. M., and Koshland, D. E., Jr., 1972, The gradient sensing mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 69: 2509 – 2512.PubMedCrossRefGoogle Scholar
  125. Macnab, R. W., and Ornston, M. K., 1977, Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force, J. Mol. Biol. 112: 1 – 30.PubMedCrossRefGoogle Scholar
  126. Maeda, K., and Imae, Y., 1979, Thermosensory transduction in Escherichia coli: inhibition of the thermoresponse by L-serine, Proc. Natl. Acad. Sci. USA 76: 91 – 95.PubMedCrossRefGoogle Scholar
  127. Malchow, D., and Gerisch, G., 1974, Short-term binding and hydrolysis of cyclic 3′,5′-adenosine monophosphate by aggregating Dictyosteliumcells, Proc. Natl. Acad. USA 71: 2423 – 2427.CrossRefGoogle Scholar
  128. Malchow, D., Bohme, R., and Rahmsdorf, H. J., 1981, Regulation of phosphorylation of myosin heavy chain during the chemotactic response of Dictyosteliumcells, Eur. J. Biochem. 117: 213 – 218.PubMedCrossRefGoogle Scholar
  129. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Van der Drift, C., 1977, A protonmotive force drives bacterial flagella, Proc. Natl. Acad. Sci. USA 74: 3060 – 3064.PubMedCrossRefGoogle Scholar
  130. Manson, M. D., Tedesco, P. M., and Berg, H. C., 1980, Energetics of flagellar rotation in bacteria, J. Mol. Biol. 138: 541 – 561.PubMedCrossRefGoogle Scholar
  131. Mascarenhas, J. P., 1978, Sexual chemotaxis and chemotropism in plants, in: Taxis and Behavior( G. L. Hazelbauer, ed.), pp. 169 – 203, Halsted Press, New York.Google Scholar
  132. Mato, J. M., and Malchow, D., 1978, Guanylate cyclase activation in response to chemotactic stimulation in Dictyostelium discoideum, FEBS Lett. 90: 119 – 122.PubMedCrossRefGoogle Scholar
  133. Mato, J. M., and Marin-Cao, D., 1979, Protein and phospholipid methylation during chemotaxis in Dictyostelum discoideumand its relationship to calcium movement, Proc. Natl. Acad. Sci. USA 76: 6106 – 6109.PubMedCrossRefGoogle Scholar
  134. Mato, J. M., Krens, F. A., van Haastert, P. J. M., and Konijn, T. M., 1977, 3’5’-cyclic AMP-dependent 3’5’-cyclic GMP accumulation in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 74:2348–2351.PubMedCrossRefGoogle Scholar
  135. Mato, J. M., Jastorff, B., Morr, M., and Konijn, T. M., 1978, A model for cyclic AMP-chemoreceptor interaction in Dictyostelium discoideum, Biochim. Biophys. Acta 544:309– 314.Google Scholar
  136. Matsuura, S., Shioi, J., and Imae, Y., 1977, Motility in Bacillus subtilisdriven by an artificial protonmotive force, FEBS Lett. 82: 187 – 190.CrossRefGoogle Scholar
  137. Mesibov, R., and Adler, J., 1972, Chemotaxis toward amino acids in Escherichia coli, J. Bacteriol. 112: 315 – 326.PubMedGoogle Scholar
  138. Miller, J. B., and Koshland, D. E., Jr., 1977, Sensory electrophysiology of bacterial: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 74: 4752 – 4756.PubMedCrossRefGoogle Scholar
  139. Miller, J. B., and Koshland, D. E., Jr., 1980, Protonmotive force and bacterial sensing, J. Bacteriol. 141: 26 – 32.PubMedGoogle Scholar
  140. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leucocyte membranes, J. Cell Biol. 73: 428 – 444.PubMedCrossRefGoogle Scholar
  141. Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203: 461 – 463.PubMedCrossRefGoogle Scholar
  142. Naitoh, Y., and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses of Parameciumto mechanical stimulation, Science 164: 963 – 965.PubMedCrossRefGoogle Scholar
  143. Naitoh, Y., Eckert, R., and Friedman, K., 1972, A regenerative calcium response in Paramecium, J. Exp. Biol. 56: 667 – 681.Google Scholar
  144. Nath, J., Flavin, M., and Schiffmann, E., 1981, Stimulation of tubulin tyrosylation in rabbit leukocytes evoked by the chemoattractant formyl-methionyl-leucyl-phenylalanine, J. Cell Biol. 91: 232 – 239.PubMedCrossRefGoogle Scholar
  145. Niedel, J. E., Kahane, I., and Cuatrecasas, P., 1979, Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils, Science 205: 1412 – 1414.PubMedCrossRefGoogle Scholar
  146. Niedel, J., Davis, J., and Cuatrecasas, P., 1980, Covalent affinity labeling of the formyl peptide chemotactic receptor, J. Biol. Chem. 255: 7063 – 7066.PubMedGoogle Scholar
  147. Nikaido, H., and Nakae, T., 1979, The outer membrane of gram negative bacteria, Adv. Microb. Physiol. 20: 163 – 250.PubMedCrossRefGoogle Scholar
  148. Niwano, M., and Taylor, B. L., 1982a, Novel sensory adaptation mechanism in bacterial chemotaxis to oxygen and phosphotransferase substrates, Proc. Natl. Acad. Sci. USA 79: 11 – 15.CrossRefGoogle Scholar
  149. Niwano, M., and Taylor, B. L., 19826, Requirement of CheB product for methylation-independent chemotaxis to oxygen in bacteria, Fed. Proc. 41:759.Google Scholar
  150. Nossal, R., and Zigmond, S. H., 1976, Chemotropism indices for polymorphonuclear leukocytes, Biophys, J. 16: 1171 – 1182.CrossRefGoogle Scholar
  151. O’Day, D. H., 1979, Aggregation during sexual development in Dictyostelium discoideum, Can. J. Microbiol. 25: 1416 – 1426.Google Scholar
  152. OAggregation during sexual development inDea, R. F., Viveros, O. H., Axelrod, J., Aswanikumar, S., Schiffman, E., and Corcoran, B. A., 1978, Rapid stimulation of protein carboxymethylation in leukocytes by a chemotactic peptide, Nature (Lond.) 272: 462 – 464.CrossRefGoogle Scholar
  153. Ogura, A., and Takahashi, K., 1976, Artificial deciliation causes loss of calcium-dependent responses in Paramecium, Nature (Lond.) 264: 170 – 172.CrossRefGoogle Scholar
  154. Ordal, G. W., 1977, Calcium ion regulates chemotactic behavior in bacteria, Nature (Lond.) 270: 66 – 67.CrossRefGoogle Scholar
  155. Ordal, G. W., and Adler, J., 1974, Isolation and complementation of mutants in galactose taxis and transport, J. Bacteriol. 117: 509 – 516.PubMedGoogle Scholar
  156. Ordal, G. W., and Fields, R. B., 1977, A biochemical mechanism for bacterial chemotaxis, J. Theor. Biol. 68: 491 – 500.PubMedCrossRefGoogle Scholar
  157. Ordal, G. W. and Goldman, D. J., 1975, Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis, Science 189: 802 – 805.PubMedCrossRefGoogle Scholar
  158. Ordal, G. W., and Goldman, D. J., 1976, Chemotactic repellents of Bacillus subtilis, J. Mol Biol. 100: 103 – 108.PubMedCrossRefGoogle Scholar
  159. Ordal, G. W., Villani, D. P., Nicholas, R. A., and Hamel, F. G., 1978, Independence of proline chemotaxis and transport in Bacillus subtilis, J. Biol Chem. 253: 4916 – 4919.PubMedGoogle Scholar
  160. Pan, P., Hall, E. M., and Bonner, J. T., 1972, Folic acid as second chemotactic substance in the cellular slime moulds, Nature (Lond.) 237: 181 – 182.Google Scholar
  161. Panasenko, S. M., 1983, Protein and lipid methylation by methionine and s-adenosylmethionine in Myxococcus xanthus, Can. J. Microbiol. 29: 1224 – 1228.PubMedCrossRefGoogle Scholar
  162. Parkinson, J. S., 1977, Behavioral genetics in bacteria, Annu. Rev. Genet. 11: 397 – 414.PubMedCrossRefGoogle Scholar
  163. Parkinson, J. S., 1981, Genetics of bacterial chemotaxis, in: Genetics as a Tool in Microbiology( S. W. Glover and D. A. Hopwood, eds.), pp. 265 – 290, Cambridge University Press, London.Google Scholar
  164. Parkinson, J. S., and Revello, P. T., 1978, Sensory adaptation mutants of E. coli, Cell 15: 1221 – 1230.PubMedCrossRefGoogle Scholar
  165. Parsons, R. G., and Hogg, R. W., 1973, A comparison of the L-arabinose and D-galactose-binding proteins of Escherichia coliB/r, J. Biol Chem. 249: 3608 – 3614.Google Scholar
  166. Pate, J. L., and Chang, L. Y. E., 1979, Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes, Curr. Microbiol. 2: 59 – 64.CrossRefGoogle Scholar
  167. Pike, M. C., Kredich, N. M., and Snyderman, R., 1978, Requirement of S-adenosylmethioninemediated methylation for human monocyte chemotaxis, Proc. Natl. Acad. Sci. USA 75: 3928 – 3932.PubMedCrossRefGoogle Scholar
  168. Poff, K. L., and Whitaker, B. D., 1979, Movement in slime molds, in: Encyclopedia of Plant Physiology, Vol. 7, pp. 355 S-adenosylmethioninemediated 382, Springer-Verlag, New York.Google Scholar
  169. Quiocho, F. A., Gilliland, G. L., Miller, D. M., and Newcomer, M. E., 1977, Crystallographic and chemical studies of L-arabinose-binding protein from E. coli, J. Supramol. Struct. 6: 503 – 518.PubMedCrossRefGoogle Scholar
  170. Quiocho, F. A., Meador, W. E., and Pflugrath, J. W., 1979, Preliminary crystallographic data of receptors for transport and chemotaxis in Escherichia coli: D-galactose and maltose binding proteins, J. Mol. Biol. 133: 181 – 184.PubMedCrossRefGoogle Scholar
  171. Rashevsky, N., 1933, Outline of a physico-mathematical theory of excitation and inhibition, Protoplasma 20: 42 – 56.CrossRefGoogle Scholar
  172. Richarme, G., 1982, Interaction of maltose-binding protein with membrane vesicles of Escherichia coli, J. Bacteriol. 149: 662 – 667.PubMedGoogle Scholar
  173. Robertson, A., Drage, D. J., and Cohen, M. H., 1972, Control of aggregation in Dictyostelium discoideumby an external periodic pulse of cyclic adenosine monophosphate, Science 175: 333 – 335.PubMedCrossRefGoogle Scholar
  174. Rollins, C., and Dahlquist, F. W., 1981, The methyl-accepting chemotaxis proteins of E. coli: a repellent-stimulated, covalent modification, distinct from methylation, Cell 25: 333 – 340.PubMedCrossRefGoogle Scholar
  175. Roos, W., Malchow, D., and Gerisch, G., 1977, Adenylate cyclase and the control of cell differentiation in Dictyostelium discoideum, Cell Diff. 6: 229 – 239.Google Scholar
  176. Rossier, C., Eitle, E., van Driel, R., and Gerisch, G., 1980, Biochemical regulation of cell development and aggregation in Dictyostelium discoideum, in: The Eukaryotic Microbial Cell( G. W. Gooday, D. Lloyd, and A. P. J. Trinci, eds.), pp. 405 – 424, Cambridge University Press, London.Google Scholar
  177. Rubik, B. A., and Koshland, D. E., Jr., 1978, Potentiation, desensitization, and inversion of response in bacterial sensing of chemical stimuli, Proc. Natl. Acad. Sci. USA 75: 2820 – 2824.PubMedCrossRefGoogle Scholar
  178. Schellenberg, G. D., 1978, “The multiplicity of glutamate and aspartate transport systems in Escherichia coli,” Ph.D. Thesis, University of California, Riverside.Google Scholar
  179. Schiffmann, E., 1982, Leukocyte chemotaxis, Annu. Rev. Physiol. 44: 553 – 568.PubMedCrossRefGoogle Scholar
  180. Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-Formylmethionyl peptides as che- moattractants for leucocytes, Proc. Natl Acad. Sci. USA 72: 1059 – 1062.PubMedCrossRefGoogle Scholar
  181. Schiffmann, E., O’Dea, R. F., Chiang, P. K., Venkatasubramanian, K., Corcoran, B., Hirata, F., and Axelrod, J., 1979, Role for methylation-leukocyte chemotaxis, in: Modulation of Protein Function, ICN-UCLA Symposium, Vol. 13 ( D. E. Atkinson and C. F. Fox, eds.), pp. 299 – 313, Academic Press, New York.Google Scholar
  182. Schiffmann, E., Aswanikumar, S., Venkatasubramanian, K., Corcoran, B. A., Pert, C. B., Brown, J., Gross, E., Day, A. R., Freer, R. J., Showell, H. J., and Becker, E. L., 1980, Some characteristics of the neutrophil receptor for the chemotactic peptides, FEBS Lett. 117: 1 – 7.PubMedCrossRefGoogle Scholar
  183. Schimkets, L. J., Dworkin, M., and Keller, K. H., 1979, A method for establishing stable concentration gradients in agar suitable for studying chemotaxis on a solid surface, Can. J. Microbiol 25: 1460 – 1467.CrossRefGoogle Scholar
  184. Segall, J. E., Manson, M. D., and Berg, H. C., 1982, Signal processing times in bacterial chemotaxis, Nature (Lond.) 296: 855 – 857.CrossRefGoogle Scholar
  185. Shaffer, B. M., 1975, Secretion of cyclic AMP induced by cyclic AMP in the cellular slime mold Dictyostelium discoideum, Nature (Lond.) 255: 549 – 552.CrossRefGoogle Scholar
  186. Sherris, D., and Parkinson, J. S., 1981, Posttranslational processing of methyl-accepting chemotaxis proteins in Escherichia coli, Proc. Natl Acad. Sci. USA 78: 6051 – 6055.PubMedCrossRefGoogle Scholar
  187. Shimomura, O., Suthers, H. L. B., and Bonner, J. T., 1982, Chemical identity of the acrasin of the cellular slime mold Polysphondylium violaceum, Proc. Natl. Acad. Sci. USA 79: 7376 – 7379.PubMedCrossRefGoogle Scholar
  188. Shioi, J., Shusuke, M., and Imae, Y., 1980, Quantitative measurements of proton motive force and motility in Bacillus subtilis, J. Bacteriol. 144: 891 – 897.PubMedGoogle Scholar
  189. Shioi, J., Thomsen, G. E., Rowsell, E. H., and Taylor, B. L., 1982a, Protonmotive force in bacterial chemotaxis to oxygen, Fed. Proc. 41: 759.Google Scholar
  190. Shioi, J., Galloway, R. J., Niwano, M., Chinnock, R. E., and Taylor, B. L., 19826, Requirement of ATP in bacterial chemotaxis, J. Biol. Chem. 257:7969–7975.Google Scholar
  191. Silhavy, T. J., Szmelcman, S., Boos, W., and Schwartz, M., 1975, On the significance of the retention of ligand by protein, Proc. Natl. Acad. Sci. USA 72: 2120 – 2124.PubMedCrossRefGoogle Scholar
  192. Silverman, M., and Simon, M., 1973, Genetic analysis of bacteriophage Mu-induced flagellar mutants in Escherichia coli, J. Bacteriol. 116: 114 – 122.PubMedGoogle Scholar
  193. Silverman, M., and Simon, M., 1974, Flagellar rotation and the mechanism of bacterial motility, Nature (Lond.) 249: 73 – 74.CrossRefGoogle Scholar
  194. Silverman, M., and Simon, M., 1977, Chemotaxis in Escherichia coli: Methylation of chegene products, Proc. Natl. Acad. Sci. USA 74: 3317 – 3321.PubMedCrossRefGoogle Scholar
  195. Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P., 1980, Transient elevation in intracellular cyclic AMP by chemotactic factors, Immunol. 124: 1482 – 1491.Google Scholar
  196. Slonczewski, J. L., Macnab, R. M., Alger, J. R., and Castle, A. M., 1982, Effects of pH and repellent tactic stimuli on protein methylation levels in Escherichia coli, J. Bacteriol. 152: 384 – 399.PubMedGoogle Scholar
  197. Snyder, M., Stock, J. B., and Koshland, D. E., Jr., 1981, Role of membrane potential and calcium in chemotactic sensing by bacteria, J. Mol. Biol. 149: 241 – 257.PubMedCrossRefGoogle Scholar
  198. Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124: 2754 – 2757.PubMedGoogle Scholar
  199. Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213: 830 – 837.PubMedCrossRefGoogle Scholar
  200. Springer, M.S., Kort, E. N., Larsen, S. H., Ordal, G.W., Reader, R.W., and Adler, J., 1975, Role of methionine in bacterial chemotaxis: requirement for tumbling and involvement in information processing, Proc. Natl. Acad. Sci. USA 72: 4640 – 4644.PubMedCrossRefGoogle Scholar
  201. Springer, M. S., Goy, M. F., and Adler, J., 1977a, Sensory transduction in Escherichia coli: a requirement for methionine in sensory adaptation, Proc. Natl. Acad. Sci. USA 74:183–187.CrossRefGoogle Scholar
  202. Springer, M. S., Goy, M. F., and Adler, J., 1977b, Sensory transduction in Escherichia coli: two complementary pathways of information processing that involve methylated proteins, Proc. Natl. Acad. Sci. USA 74:3312–3316.CrossRefGoogle Scholar
  203. Springer, M. S., Goy, M. F., and Adler, J., 1979, Protein methylation in behavioral control mechanism and in signal transduction, Nature (Lond.) 280: 279 – 284.CrossRefGoogle Scholar
  204. Springer, M. S., Zanolari, B., and Pierzchala, P. A., 1982, Ordered methylation of the methyl- accepting chemotaxis proteins of Escherichia coli, J. Biol. Chem. 257: 6861 – 6866.PubMedGoogle Scholar
  205. Springer, W. R., and Koshland, D. E., Jr., 1977, Identification of a protein methyltransferase as the cheRgene product in the bacterial sensing system, Proc. Natl. Acad. Sci. USA 74: 533 – 537.PubMedCrossRefGoogle Scholar
  206. Spudich, J. L., and Koshland, D. E., Jr., 1975, Quantitation of the sensory response in bacterial chemotaxis, Proc. Natl. Acad. Sci. USA 72: 710 – 713.PubMedCrossRefGoogle Scholar
  207. Stendahl, O. I., and Stossel, T. P., 1980, Actin-binding protein amplifies actomyosin concentration, and gelsolin confers calcium control on direction of contraction, Biochem. Biophys. Res. Commun. 92: 675 – 681.PubMedCrossRefGoogle Scholar
  208. Stock, J. B., and Koshland, D. E., Jr., 1978, A protein methylesterase involved in bacterial sensing, Proc. Natl. Acad. Sci. USA 75: 3659 – 3663.PubMedCrossRefGoogle Scholar
  209. Stock, J. B., and Koshland, D. E., Jr., 1981, Changing reactivity of receptor carboxyl groups during bacterial sensing, J. Biol. Chem. 256: 10826 – 10833PubMedGoogle Scholar
  210. Stock, J. B., Maderis, A. M., and Koshland, D. E., Jr., 1981, Bacterial chemotaxis in the absence of receptor carboxyl-methylation, Cell 27: 37 – 44.PubMedCrossRefGoogle Scholar
  211. Stossel, T. P., 1978, The mechanism of leukocyte locomotion, in: Leukocyte Chemotaxis( J. I. Gallin and P. G. Quie, eds.), pp. 143 – 160, Raven Press, New York.Google Scholar
  212. Strange, P. G., and Koshland, D. E., Jr., 1976, Receptor interactions in a signaling system: Competition between ribose receptor and galactose receptor in the chemotactic response, Proc. Natl. Acad. Sci. USA 73: 762 – 766.PubMedCrossRefGoogle Scholar
  213. Sullivan, S. J., and Zigmond, S. H., 1980, Chemotactic peptide receptor modulation in polymorphonuclear leukocytes, J. Cell. Biol. 85: 703 – 711.PubMedCrossRefGoogle Scholar
  214. Tanabe, H., Kurihara, K., and Kobatake, Y., 1980, Changes in membrane potential and membrane fluidity in Tetrahymena pyriformisin association with chemoreception of hydrophobic stimuli: fluorescence studies, Biochemistry 19: 5339 – 5344.PubMedCrossRefGoogle Scholar
  215. Taylor, B. L., and Laszlo, D. J., 1981, The role of proteins in chemical perception in bacteria, in: Perception of Behavioral Chemicals( D. M. Norris, ed.), pp. 1 – 27, Elsevier, Amsterdam.Google Scholar
  216. Taylor, B. L., and Shioi, J., 1982, Protonmotive force as a signal in bacterial sensory transduction, Twelfth International Congress of Biochemistry, Perth. Google Scholar
  217. Taylor, B. L., Miller, J. B., Warrick, H. M., and Koshland, D. E., Jr., 1979, Electron acceptor taxis and blue light effect on bacterial chemotaxis, J. Bacteriol. 140: 567 – 573.PubMedGoogle Scholar
  218. Toews, M. L., and Adler, J., 1979, Methanol formation in vivofrom methylated chemotaxis proteins in Escherichia coli, J. Biol. Chem. 254: 1761 – 1764.Google Scholar
  219. Toews, M. L., Goy, M. F., Springer, M. S., and Adler, J., 1979, Attractants and repellents control demethylation of methylated chemotaxis proteins in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 5544 – 5548.CrossRefGoogle Scholar
  220. Tomchik, K. J., and Devreotes, P. N., 1981, Adenosine 3′-5′-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography, Science 212: 443 – 446.PubMedCrossRefGoogle Scholar
  221. Tsang, N., Macnab, R. M., and Koshland, D. E., Jr., 1973, Common mechanism for repellents and attractants in bacterial chemotaxis, Science 181: 60 – 63.PubMedCrossRefGoogle Scholar
  222. Tso, W.-W., and Adler, J., 1974, Negative chemotaxis in Escherichia coli, J. Bacteriol. 118: 560 – 576.Google Scholar
  223. Van der Werf, P., and Koshland, D. E., Jr., 1977, Identification of a gamma-glutamyl methyl ester in bacterial membrane protein involved in chemotaxis, J. Biol. Chem. 252: 2793 – 2795.Google Scholar
  224. Van Driel, R., 1981, Binding of the chemoattractant folic acid by Dictyostelium discoideumcells, Eur. J. Biochem. 115: 391 – 396.PubMedCrossRefGoogle Scholar
  225. Van Haastert, P. J. M., Van Walsum, H., and Pasveer, F. J., 1982a, Nonequilibrium kinetics of a cyclic GMP-binding protein in Dictyostelium discoideum, J. Cell. Biol. 94: 271 – 278.CrossRefGoogle Scholar
  226. Van Haastert, P. J. M., van Lookeren Campagne, M. M., and Ross, F. M., 1982b, Altered cGMP-phosphodiesterase activity in chemotactic mutants of Dictyostelium discoideum, FEBS Lett. 147:149–152.CrossRefGoogle Scholar
  227. Van Houten, J., 1977, A mutant of Parameciumdefective in chemotaxis, Science 198: 746 – 748.CrossRefGoogle Scholar
  228. Van Houten, J., 1978, Two mechanisms of chemotaxis in Paramecium, J. Comp. Physiol. 127: 167 – 174.CrossRefGoogle Scholar
  229. Van Houten, J., 1979, Membrane potential changes during chemokinesis in Paramecium, Science 204: 1100 – 1103.PubMedCrossRefGoogle Scholar
  230. Van Houten, J., 1981, Chemosensory transduction in Paramecium: role of membrane potential, Olfact. Taste 7: 53 – 56.Google Scholar
  231. Van Houten, J., Hauser, D. C. R., and Levandowsky, M., 1981, Chemosensory behavior in protozoa, in: Biochemistry and Physiology of Protozoa, Vol. 4 ( M. Levandowsky and S. H. Hunter, eds.), pp. 67 – 124, Academic Press, New York.Google Scholar
  232. Varnum, B., and Soil, D. R., 1981, Chemoresponsiveness to cAMP and folic acid during growth, development and dedifferentiation in Dictyostelium discoideum, Cell Diff. 18: 151 – 160Google Scholar
  233. Vitkauskas, G., Showell, H. J., and Becker, E. L., 1980, Specific binding of synthetic chemotactic peptides to rabbit peritoneal neutrophils: effects on dissociability of bound peptide, receptor activity and subsequent biologic responsiveness (deactivation), Mol. Immunol. 17: 171 – 180.PubMedCrossRefGoogle Scholar
  234. Wang, E. A., and Koshland, D. E., Jr., 1980, Receptor structure in the bacterial sensing system, Proc. Natl. Acad. Sci. USA 77: 7157 – 7161.PubMedCrossRefGoogle Scholar
  235. Wang, E. A., Mowry, K. L., Clegg, D. O., and Koshland, D. E., Jr., 1982, Tandem duplication and multiple functions of a receptor gene in bacterial chemotaxis, J. Biol. Chem. 257:4673- 4676.Google Scholar
  236. Warner, F. D., 1974, The fine structure of ciliary and flagellar axonemes, in: Cilia and Flagella( M. A. Sleigh, ed.), pp. 11 – 37, Academic Press, London.Google Scholar
  237. Warrick, H. M., Taylor, B. L., and Koshland, D. E., Jr., 1977, Chemotactic mechanism of Salmonella typhimurium: preliminary mapping and characterization of mutants, J. Bacteriol. 130: 223 – 231.PubMedGoogle Scholar
  238. Wedner, H. J., Sinchowitz, L., Atkinson, J., and Stenson, W., 1980, Chemotactic factors induce rapid phosphorylation of a 90,000 dalton protein in human PMN leukocytes, Fed. Proc.39: 1950 (abst).Google Scholar
  239. Wick, U., Malchow, D., and Gerisch, G., 1978, Cyclic AMP stimulated calcium influx into aggregating cells of Dictyostelium discoideum, Cell Biol. Int. Rep. 2:71–79.PubMedCrossRefGoogle Scholar
  240. Williams, K. L., 1982, Molecules involved in morphogenesis in the multicellular stage of Dictyostelium discoideum, Thirty-third Mosbach Colloquium, in: Biochemistry of Differentiation and Morphogenesis( Z. Jaenicke, ed.), pp. 231 – 246, Springer-Verlag, Berlin.Google Scholar
  241. Williams, L. T., Snyderman, R., Pike, M. C., and Lefkowitz, R. J., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. USA 74: 1204 – 1208.PubMedCrossRefGoogle Scholar
  242. Willis, R. C., and Furlong, C. E., 1974, Purification and properties of a ribose-binding protein from Escherichia coli, J. Biol. Chem. 249: 6926 – 6929.PubMedGoogle Scholar
  243. Wurster, B., and Butz, U., 1980, Reversible binding of the chemoattractant folic acid to cells of Dictyostelium discoideum, Eur. J. Biochem. 109: 613 - 618.PubMedCrossRefGoogle Scholar
  244. Zigmond, S. H., 1977, The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol.75: 606 - 616.PubMedCrossRefGoogle Scholar
  245. Zigmond, S. H., 1978, Chemotaxis by polymorphonuclear leukocytes, J. Cell Biol. 77: 269 – 287.PubMedCrossRefGoogle Scholar
  246. Zigmond, S. H., and Hirsch, J. G., 1972, Effects of cytochalasin B on polymorphonuclear leukocyte locomotion, phagocytosis and glycolysis, Exp. Cell Res. 73: 383 – 393.PubMedCrossRefGoogle Scholar
  247. Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell Biol. 82: 517 – 527.PubMedCrossRefGoogle Scholar
  248. Zukin, R. S., 1979, Evidence for a conformational change in the Escherichia coli: maltose receptor by excited-state fluorescence lifetime data, Biochemistry 18: 2139 – 2145.PubMedCrossRefGoogle Scholar
  249. Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr., 1977a, Use of a distant reporter group as evidence for a conformational change in a sensory receptor, Proc. Natl. Acad. Sci. USA 74: 1932 – 1936.CrossRefGoogle Scholar
  250. Zukin, R. S., Strange, P. G., Heavy, L. R., and Koshland, D. E., Jr., 1977b, Properties of the galactose-binding protein of Salmonella typhimurium and Escherichia coli, Biochemistry 16:381–386.CrossRefGoogle Scholar
  251. Zukin, R. S., Hartig, P. R., and Koshland, D. E., Jr., 1979, Effect of an induced conformational change on the physical properties of two chemotactic receptor molecules, Biochemistry 18: 5599 – 5605.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Barry L. Taylor
    • 1
  • Sharon M. Panasenko
    • 2
  1. 1.Department of Biochemistry, School of MedicineLoma Linda UniversityLoma LindaUSA
  2. 2.Chemistry DepartmentPomona CollegeClaremontUSA

Personalised recommendations